nuttx/drivers/mmcsd/mmcsd_spi.c
Petro Karashchenko d499ac9d58 nuttx: fix multiple 'FAR', 'CODE' and style issues
Signed-off-by: Petro Karashchenko <petro.karashchenko@gmail.com>
2024-08-25 19:22:15 +08:00

2110 lines
57 KiB
C

/****************************************************************************
* drivers/mmcsd/mmcsd_spi.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#if defined (CONFIG_MMCSD) && defined (CONFIG_MMCSD_SPI)
#include <sys/types.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <unistd.h>
#include <nuttx/arch.h>
#include <nuttx/clock.h>
#include <nuttx/mutex.h>
#include <nuttx/signal.h>
#include <nuttx/spi/spi.h>
#include <nuttx/fs/fs.h>
#include <nuttx/mmcsd.h>
#include "mmcsd_spi.h"
#include "mmcsd_csd.h"
#include "mmcsd.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
#if !defined(CONFIG_MMCSD_READONLY)
# define MMCSD_MODE 0666
#else
# define MMCSD_MODE 0444
#endif
#ifndef CONFIG_MMCSD_SECTOR512
# define CONFIG_MMCSD_SECTOR512 /* Force 512 byte sectors on all cards */
#endif
/* Slot struct info *********************************************************/
/* Slot status definitions */
#define MMCSD_SLOTSTATUS_NOTREADY 0x01 /* Card not initialized */
#define MMCSD_SLOTSTATUS_NODISK 0x02 /* No card in the slot */
#define MMCSD_SLOTSTATUS_WRPROTECT 0x04 /* Card is write protected */
#define MMCSD_SLOTSTATUS_MEDIACHGD 0x08 /* Media changed in slot */
/* Values in the MMC/SD command table ***************************************/
/* These define the value returned by the MMC/SD command */
#define MMCSD_CMDRESP_R1 0
#define MMCSD_CMDRESP_R1B 1
#define MMCSD_CMDRESP_R2 2
#define MMCSD_CMDRESP_R3 3
#define MMCSD_CMDRESP_R7 4
#ifdef CONFIG_MMCSD_SECTOR512
# define SECTORSIZE(s) (512)
#else
# define SECTORSIZE(s) ((s)->sectorsize)
#endif
/* Time delays in units of the system clock. CLK_TCK is the number of clock
* ticks per second.
*/
#define MMCSD_DELAY_10MS (CLK_TCK/100 + 1)
#define MMCSD_DELAY_50MS (CLK_TCK/20 + 1)
#define MMCSD_DELAY_100MS (CLK_TCK/10 + 1)
#define MMCSD_DELAY_250MS (CLK_TCK/4 + 1)
#define MMCSD_DELAY_500MS (CLK_TCK/2 + 1)
#define MMCSD_DELAY_1SEC (CLK_TCK + 1)
#define MMCSD_DELAY_10SEC (10 * CLK_TCK + 1)
#define ELAPSED_TIME(t) (clock_systime_ticks()-(t))
#define START_TIME (clock_systime_ticks())
/* SD read timeout: ~100msec, Write Time out ~250ms. Units of clock ticks */
#define SD_READACCESS MMCSD_DELAY_100MS
#define SD_WRITEACCESS MMCSD_DELAY_250MS
/****************************************************************************
* Private Types
****************************************************************************/
/* This structure represents the state of one card slot */
struct mmcsd_slot_s
{
FAR struct spi_dev_s *spi; /* SPI port bound to this slot */
mutex_t lock; /* Assures mutually exclusive access to card and SPI */
uint8_t state; /* State of the slot (see MMCSD_SLOTSTATUS_* definitions) */
uint8_t type; /* Disk type */
uint8_t csd[16]; /* Copy of card CSD */
#ifndef CONFIG_MMCSD_SECTOR512
uint16_t sectorsize; /* Media block size (in bytes) */
#endif
uint32_t nsectors; /* Number of blocks on the media */
uint32_t taccess; /* Card access time */
uint32_t twrite; /* Card write time */
uint32_t ocr; /* Last 4 bytes of OCR (R3) */
uint32_t r7; /* Last 4 bytes of R7 */
uint32_t spispeed; /* Speed to use for SPI in data mode */
};
struct mmcsd_cmdinfo_s
{
uint8_t cmd;
uint8_t resp;
uint8_t chksum;
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Misc *********************************************************************/
static int mmcsd_lock(FAR struct mmcsd_slot_s *slot);
static void mmcsd_unlock(FAR struct mmcsd_slot_s *slot);
/* Card SPI interface *******************************************************/
static int mmcsd_waitready(FAR struct mmcsd_slot_s *slot);
static uint32_t mmcsd_sendcmd(FAR struct mmcsd_slot_s *slot,
FAR const struct mmcsd_cmdinfo_s *cmd,
uint32_t arg);
static void mmcsd_setblklen(FAR struct mmcsd_slot_s *slot,
uint32_t length);
static uint32_t mmcsd_nsac(FAR struct mmcsd_slot_s *slot, FAR uint8_t *csd,
uint32_t frequency);
static uint32_t mmcsd_taac(FAR struct mmcsd_slot_s *slot, FAR uint8_t *csd);
static void mmcsd_decodecsd(FAR struct mmcsd_slot_s *slot,
FAR uint8_t *csd);
static void mmcsd_checkwrprotect(FAR struct mmcsd_slot_s *slot,
FAR uint8_t *csd);
static int mmcsd_getcardinfo(FAR struct mmcsd_slot_s *slot,
FAR uint8_t *buffer,
FAR const struct mmcsd_cmdinfo_s *cmd);
#define mmcsd_getcsd(slot, csd) mmcsd_getcardinfo(slot, csd, &g_cmd9);
#define mmcsd_getcid(slot, cid) mmcsd_getcardinfo(slot, cid, &g_cmd10);
static int mmcsd_recvblock(FAR struct mmcsd_slot_s *slot,
FAR uint8_t *buffer, int nbytes);
#if !defined(CONFIG_MMCSD_READONLY)
static int mmcsd_xmitblock(FAR struct mmcsd_slot_s *slot,
FAR const uint8_t *buffer, int nbytes,
uint8_t token);
#endif
/* Block driver interfaces **************************************************/
static int mmcsd_open(FAR struct inode *inode);
static int mmcsd_close(FAR struct inode *inode);
static ssize_t mmcsd_read(FAR struct inode *inode,
FAR unsigned char *buffer,
blkcnt_t start_sector, unsigned int nsectors);
#if !defined(CONFIG_MMCSD_READONLY)
static ssize_t mmcsd_write(FAR struct inode *inode,
FAR const unsigned char *buffer,
blkcnt_t start_sector,
unsigned int nsectors);
#endif
static int mmcsd_geometry(FAR struct inode *inode,
FAR struct geometry *geometry);
/* Initialization ***********************************************************/
static int mmcsd_mediainitialize(FAR struct mmcsd_slot_s *slot);
static void mmcsd_mediachanged(FAR void *arg);
/****************************************************************************
* Private Data
****************************************************************************/
/* Driver state *************************************************************/
/* These are the lock driver methods supported by this file */
static const struct block_operations g_bops =
{
mmcsd_open, /* open */
mmcsd_close, /* close */
mmcsd_read, /* read */
#if !defined(CONFIG_MMCSD_READONLY)
mmcsd_write, /* write */
#else
NULL, /* write */
#endif
mmcsd_geometry, /* geometry */
NULL /* ioctl */
};
/* A slot structure allocated for each configured slot */
static struct mmcsd_slot_s g_mmcsdslot[CONFIG_MMCSD_NSLOTS];
/* Timing *******************************************************************/
/* We will use the TRAN_SPEED from the CSD to determine the maximum SPI
* clocking (TRAN_SPEED defines the maximum transfer rate per bit per data
* line).
*
* The CSD TRAN_SPEED is provided as a 3 bit rate unit (RU) and a 4 bit time
* value (TU). We need the transfer frequency which is: RU*TU bits/sec
*
* g_transpeedru holds RU/10 and g_transpeedtu holds TU*10 so that the
* correct value is returned in the product
*/
static const uint32_t g_transpeedru[8] =
{
10000, /* 0: 100 Kbit/sec / 10 */
100000, /* 1: 1 Mbit/sec / 10 */
1000000, /* 2: 10 Mbit/sec / 10 */
10000000, /* 3: 100 Mbit/sec / 10 */
0, 0, 0, 0 /* 4-7: Reserved values */
};
static const uint32_t g_transpeedtu[16] =
{
0, 10, 12, 13, /* 0-3: Reserved, 1.0, 1.1, 1.2, 1.3 */
15, 20, 25, 30, /* 4-7: 1.5, 2.0, 2.5, 3.0 */
35, 40, 45, 50, /* 8-11: 3.5, 4.0, 4.5, 5.0 */
55, 60, 70, 80, /* 12-15: 5.5, 6.0, 7.0, 8.0 */
};
/* The TAAC defines the asynchronous part of the data access time. The
* read access time the sum of the TAAC and the NSAC. These define the
* time from the end bit of the read command to start bit of the data block.
*
* The TAAC consists of a 3-bit time unit (TU) and a 4-bit time value (TV).
* TAAC is in units of time; NSAC is in units of SPI clocks.
* The access time we need is then given by:
*
* taccess = TU*TV + NSAC/spifrequency
*
* g_taactu holds TU in units of nanoseconds and microseconds (you have to
* use the index to distinguish). g_taactv holds TV with 8-bits of
* fraction.
*/
#define MAX_USTUNDX 2
static const uint16_t g_taactu[8] =
{
/* Units of nanoseconds */
1, /* 0: 1 ns */
10, /* 1: 10 ns */
100, /* 2: 100 ns */
/* Units of microseconds */
1, /* 3: 1 us 1,000 ns */
10, /* 4: 10 us 10,000 ns */
100, /* 5: 100 us 100,000 ns */
1000, /* 6: 1 ms 1,000,000 ns */
10000, /* 7: 10 ms 10,000,000 ns */
};
static const uint16_t g_taactv[] =
{
0x000, 0x100, 0x133, 0x14d, /* 0-3: Reserved, 1.0, 1.2, 1.3 */
0x180, 0x200, 0x280, 0x300, /* 4-7: 1.5, 2.0, 2.5, 3.0 */
0x380, 0x400, 0x480, 0x500, /* 8-11: 3.5, 4.0, 4.5, 5.0 */
0x580, 0x600, 0x700, 0x800 /* 12-15: 5.5, 6.0, 7.0, 8.0 */
};
/* Commands *****************************************************************/
static const struct mmcsd_cmdinfo_s g_cmd0 =
{
CMD0, MMCSD_CMDRESP_R1, 0x95
};
static const struct mmcsd_cmdinfo_s g_cmd1 =
{
CMD1, MMCSD_CMDRESP_R1, 0xff
};
static const struct mmcsd_cmdinfo_s g_cmd8 =
{
CMD8, MMCSD_CMDRESP_R7, 0x87
};
static const struct mmcsd_cmdinfo_s g_cmd9 =
{
CMD9, MMCSD_CMDRESP_R1, 0xff
};
#if 0 /* Not used */
static const struct mmcsd_cmdinfo_s g_cmd10 =
{
CMD10, MMCSD_CMDRESP_R1, 0xff
};
#endif
static const struct mmcsd_cmdinfo_s g_cmd12 =
{
CMD12, MMCSD_CMDRESP_R1, 0xff
};
static const struct mmcsd_cmdinfo_s g_cmd16 =
{
CMD16, MMCSD_CMDRESP_R1, 0xff
};
static const struct mmcsd_cmdinfo_s g_cmd17 =
{
CMD17, MMCSD_CMDRESP_R1, 0xff
};
static const struct mmcsd_cmdinfo_s g_cmd18 =
{
CMD18, MMCSD_CMDRESP_R1, 0xff
};
#if !defined(CONFIG_MMCSD_READONLY)
static const struct mmcsd_cmdinfo_s g_cmd24 =
{
CMD24, MMCSD_CMDRESP_R1, 0xff
};
static const struct mmcsd_cmdinfo_s g_cmd25 =
{
CMD25, MMCSD_CMDRESP_R1, 0xff
};
#endif
static const struct mmcsd_cmdinfo_s g_cmd55 =
{
CMD55, MMCSD_CMDRESP_R1, 0xff
};
static const struct mmcsd_cmdinfo_s g_cmd58 =
{
CMD58, MMCSD_CMDRESP_R3, 0xff
};
#if !defined(CONFIG_MMCSD_READONLY)
static const struct mmcsd_cmdinfo_s g_acmd23 =
{
ACMD23, MMCSD_CMDRESP_R1, 0xff
};
#endif
static const struct mmcsd_cmdinfo_s g_acmd41 =
{
ACMD41, MMCSD_CMDRESP_R1, 0xff
};
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: mmcsd_lock
****************************************************************************/
static int mmcsd_lock(FAR struct mmcsd_slot_s *slot)
{
int ret;
/* Get exclusive access to the MMC/SD device (possibly unnecessary if
* SPI_LOCK is also implemented as a mutex).
*/
ret = nxmutex_lock(&slot->lock);
if (ret < 0)
{
return ret;
}
/* Get exclusive access to the SPI bus (if necessary) */
SPI_LOCK(slot->spi, true);
/* Set the frequency, bit width and mode, as some other driver could have
* changed those since the last time that we had the SPI bus.
*/
SPI_SETMODE(slot->spi, CONFIG_MMCSD_SPIMODE);
SPI_SETBITS(slot->spi, 8);
SPI_HWFEATURES(slot->spi, 0);
SPI_SETFREQUENCY(slot->spi, slot->spispeed);
return ret;
}
/****************************************************************************
* Name: mmcsd_unlock
****************************************************************************/
static void mmcsd_unlock(FAR struct mmcsd_slot_s *slot)
{
/* Relinquish the lock on the SPI bus */
/* The card may need up to 8 SCLK cycles to sample the CS status
* and release the MISO line.
*/
SPI_SEND(slot->spi, 0xff);
/* Relinquish exclusive access to the SPI bus */
SPI_LOCK(slot->spi, false);
/* Relinquish the lock on the MMC/SD device */
nxmutex_unlock(&slot->lock);
}
/****************************************************************************
* Name: mmcsd_waitready
*
* Description:
* Wait until the card is no longer busy
*
* Assumptions:
* MMC/SD card already selected
*
****************************************************************************/
static int mmcsd_waitready(FAR struct mmcsd_slot_s *slot)
{
FAR struct spi_dev_s *spi = slot->spi;
uint8_t response;
clock_t start;
clock_t elapsed;
/* Wait until the card is no longer busy (up to 500MS) */
start = START_TIME;
do
{
response = SPI_SEND(spi, 0xff);
if (response == 0xff)
{
return OK;
}
elapsed = ELAPSED_TIME(start);
if (elapsed > MMCSD_DELAY_10MS)
{
/* Give other threads time to run */
nxsig_usleep(10000);
}
}
while (elapsed < MMCSD_DELAY_500MS);
finfo("Card still busy, last response: %02x\n", response);
return -EBUSY;
}
/****************************************************************************
* Name: mmcsd_sendcmd
*
* Description:
* Send a command to MMC
*
* Assumptions:
* MMC/SD card already selected
*
****************************************************************************/
static uint32_t mmcsd_sendcmd(FAR struct mmcsd_slot_s *slot,
FAR const struct mmcsd_cmdinfo_s *cmd,
uint32_t arg)
{
FAR struct spi_dev_s *spi = slot->spi;
uint32_t result;
uint8_t response = 0xff;
int ret;
int i;
/* Wait until the card is not busy. Some SD cards will not enter the IDLE
* state until CMD0 is sent for the first time, switching the card to SPI
* mode. Having a pull-up resistor on MISO may avoid this problem, but
* this check makes it work also without the pull-up.
*/
ret = mmcsd_waitready(slot);
if (ret != OK && cmd != &g_cmd0)
{
return ret;
}
/* Send command code */
SPI_SEND(spi, cmd->cmd);
/* Send command's arguments (should be zero if there are no arguments) */
SPI_SEND(spi, (arg >> 24) & 0xff);
SPI_SEND(spi, (arg >> 16) & 0xff);
SPI_SEND(spi, (arg >> 8) & 0xff);
SPI_SEND(spi, arg & 0xff);
/* Send CRC if needed. The SPI interface is initialized in non-protected
* mode. However, the reset command (CMD0) and CMD8 are received by the
* card while it is still in SD mode and, therefore, must have a valid
* CRC field.
*/
SPI_SEND(spi, cmd->chksum);
/* Skip stuff byte on CMD12 */
if (cmd->cmd == CMD12)
{
SPI_SEND(spi, 0xff);
}
/* Get the response to the command. A valid response will have bit7=0.
* Usually, the non-response is 0xff, but I have seen 0xc0 too.
*/
for (i = 0; i < 9 && (response & 0x80) != 0; i++)
{
response = SPI_SEND(spi, 0xff);
}
if ((response & 0x80) != 0)
{
ferr("ERROR: Failed: i=%d response=%02x\n", i, response);
return (uint32_t)-1;
}
/* Interpret the response according to the command */
result = response;
switch (cmd->resp)
{
/* The R1B response is two bytes long */
case MMCSD_CMDRESP_R1B:
{
uint32_t busy = 0;
clock_t start;
clock_t elapsed;
start = START_TIME;
do
{
busy = SPI_SEND(spi, 0xff);
elapsed = ELAPSED_TIME(start);
}
while (elapsed < slot->twrite && busy != 0xff);
if (busy != 0xff)
{
ferr("ERROR: Failed: card still busy (%02" PRIx32 ")\n", busy);
return (uint32_t)-1;
}
finfo("CMD%d[%08" PRIx32 "] R1B=%02" PRIx8 "\n",
cmd->cmd & 0x3f, arg, response);
}
break;
/* The R1 response is a single byte */
case MMCSD_CMDRESP_R1:
{
finfo("CMD%d[%08" PRIx32 "] R1=%02" PRIx8 "\n",
cmd->cmd & 0x3f, arg, response);
}
break;
/* The R2 response is two bytes long */
case MMCSD_CMDRESP_R2:
{
result = ((uint32_t)(response & 0xff) << 8);
result |= SPI_SEND(spi, 0xff) & 0xff;
finfo("CMD%d[%08" PRIx32 "] R2=%04" PRIx32 "\n",
cmd->cmd & 0x3f, arg, result);
}
break;
/* The R3 response is 5 bytes long. The first byte is identical to R1. */
case MMCSD_CMDRESP_R3:
{
slot->ocr = ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 24);
slot->ocr |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 16);
slot->ocr |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 8);
slot->ocr |= SPI_SEND(spi, 0xff) & 0xff;
finfo("CMD%d[%08" PRIx32 "] R1=%02" PRIx8 " OCR=%08" PRIx32 "\n",
cmd->cmd & 0x3f, arg, response, slot->ocr);
}
break;
/* The R7 response is 5 bytes long. The first byte is identical to R1. */
case MMCSD_CMDRESP_R7:
default:
{
slot->r7 = ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 24);
slot->r7 |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 16);
slot->r7 |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 8);
slot->r7 |= SPI_SEND(spi, 0xff) & 0xff;
finfo("CMD%d[%08" PRIx32 "] R1=%02" PRIx8 " R7=%08" PRIx32 "\n",
cmd->cmd & 0x3f, arg, response, slot->r7);
}
break;
}
return result;
}
/****************************************************************************
* Name: mmcsd_setblklen
*
* Description:
* Set block length
*
* Assumptions:
* MMC/SD card already selected
*
****************************************************************************/
static void mmcsd_setblklen(FAR struct mmcsd_slot_s *slot, uint32_t length)
{
uint32_t response;
finfo("Set block length to %" PRId32 "\n", length);
response = mmcsd_sendcmd(slot, &g_cmd16, length);
if (response != MMCSD_SPIR1_OK)
{
ferr("ERROR: Failed to set block length: %02" PRIx32 "\n", response);
}
}
/****************************************************************************
* Name: mmcsd_nsac
*
* Description: Convert the value of the NSAC to microseconds
*
****************************************************************************/
static uint32_t mmcsd_nsac(FAR struct mmcsd_slot_s *slot, FAR uint8_t *csd,
uint32_t frequency)
{
/* NSAC is 8-bits wide and is in units of 100 clock cycles. Therefore,
* the maximum value is 25.5K clock cycles.
*/
uint32_t nsac = MMCSD_CSD_NSAC(csd) * ((uint32_t)100 * 1000);
uint32_t fhkz = (frequency + 500) / 1000;
return (nsac + (fhkz >> 1)) / fhkz;
}
/****************************************************************************
* Name: mmcsd_taac
*
* Description: Convert the value of the TAAC to microseconds
*
****************************************************************************/
static uint32_t mmcsd_taac(FAR struct mmcsd_slot_s *slot, FAR uint8_t *csd)
{
int tundx;
/* The TAAC consists of a 3-bit time unit (TU) and a 4-bit time value (TV).
* TAAC is in units of time; NSAC is in units of SPI clocks.
* The access time we need is then given by:
*
* taccess = TU*TV + NSAC/spifrequency
*
* g_taactu holds TU in units of nanoseconds and microseconds (you have to
* use the index to distinguish. g_taactv holds TV with 8-bits of
* fraction.
*/
tundx = MMCSD_CSD_TAAC_TIMEUNIT(csd);
if (tundx <= MAX_USTUNDX)
{
/* The maximum value of the nanosecond TAAC is 800 ns. The rounded
* answer in microseconds will be at most 1.
*/
return 1;
}
else
{
/* Return the answer in microseconds */
return (g_taactu[tundx] * g_taactv[MMCSD_CSD_TAAC_TIMEVALUE(csd)] +
0x80) >> 8;
}
}
/****************************************************************************
* Name: mmcsd_decodecsd
*
* Description:
*
****************************************************************************/
static void mmcsd_decodecsd(FAR struct mmcsd_slot_s *slot, FAR uint8_t *csd)
{
FAR struct spi_dev_s *spi = slot->spi;
uint32_t maxfrequency;
uint32_t frequency;
uint32_t readbllen;
uint32_t csizemult;
uint32_t csize;
/* Calculate the SPI max clock frequency */
maxfrequency =
g_transpeedtu[MMCSD_CSD_TRANSPEED_TIMEVALUE(csd)] *
g_transpeedru[MMCSD_CSD_TRANSPEED_TRANSFERRATEUNIT(csd)];
/* Clip the max frequency to account for board limitations */
frequency = maxfrequency;
if (frequency > CONFIG_MMCSD_SPICLOCK)
{
frequency = CONFIG_MMCSD_SPICLOCK;
}
/* Set the actual SPI frequency as close as possible to the max frequency */
slot->spispeed = frequency;
frequency = SPI_SETFREQUENCY(spi, frequency);
/* Now determine the delay to access data */
if (slot->type == MMCSD_CARDTYPE_MMC)
{
/* The TAAC consists of a 3-bit time unit (TU) and a 4-bit time value
* (TV). TAAC is in units of time; NSAC is in units of SPI clocks.
* The access time we need is then given by:
*
* taccess = TU*TV + NSAC/spifrequency
*
* Example: TAAC = 1.5 ms, NSAC = 0, r2wfactor = 4, CLK_TCK=100
* taccessus = 1,500uS
* taccess = (1,500 * 100) / 100,000) + 1 = 2
* (ideal, 1.5)
* twrite = (1,500 * 4 * 100) / 100,000) + 1 = 7
* (ideal 6.0)
*
* First get the access time in microseconds
*/
uint32_t taccessus = mmcsd_taac(slot, csd) +
mmcsd_nsac(slot, csd, frequency);
/* Then convert to system clock ticks. The maximum read access is 10
* times the tacc value:
*
* taccess = 10 * (taccessus / 1,000,000) * CLK_TCK
*/
slot->taccess = (taccessus * CLK_TCK) / 100000 + 1;
/* NOTE that we add one to taccess to assure that we wait at least
* this time. The write access time is larger by the R2WFACTOR:
*/
slot->taccess = (taccessus * MMCSD_CSD_R2WFACTOR(csd) * CLK_TCK) /
100000 + 1;
}
else
{
/* For SD, the average is still given by the TAAC+NSAC, but the
* maximum are the constants 100 and 250MS
*/
slot->taccess = SD_READACCESS;
slot->twrite = SD_WRITEACCESS;
}
finfo("SPI Frequency\n");
finfo(" Maximum: %" PRId32 " Hz\n", maxfrequency);
finfo(" Actual: %" PRId32 " Hz\n", frequency);
finfo("Read access time: %" PRId32 " ticks\n", slot->taccess);
finfo("Write access time: %" PRId32 " ticks\n", slot->twrite);
/* Get the physical geometry of the card: sector size and number of
* sectors. The card's total capacity is computed from
*
* capacity = BLOCKNR * BLOCK_LEN
* BLOCKNR = (C_SIZE+1)*MULT
* MULT = 2**(C_SIZE_MULT+2) (C_SIZE_MULT < 8)
* BLOCK_LEN = 2**READ_BL_LEN (READ_BL_LEN < 12)
*
* Or
*
* capacity = ((C_SIZE+1) << (READD_BL_LEN + C_SIZE_MULT + 2))
*
* In units of the sector size (1 << READ_BL_LEN), then simplifies to
*
* nsectors = ((C_SIZE+1) << (C_SIZE_MULT + 2))
*/
if (MMCSD_CSD_CSDSTRUCT(csd) != 0)
{
/* SDC structure ver 2.xx */
/* Note: On SD card WRITE_BL_LEN is always the same as READ_BL_LEN */
readbllen = SD20_CSD_READBLLEN(csd);
csizemult = SD20_CSD_CSIZEMULT(csd) + 2;
csize = SD20_CSD_CSIZE(csd) + 1;
}
else
{
/* MMC or SD structure ver 1.xx */
/* Note: On SD card WRITE_BL_LEN is always the same as READ_BL_LEN */
readbllen = MMCSD_CSD_READBLLEN(csd);
csizemult = MMCSD_CSD_CSIZEMULT(csd) + 2;
csize = MMCSD_CSD_CSIZE(csd) + 1;
}
/* SDHC ver2.x cards have fixed block transfer size of 512 bytes. SDC
* ver1.x cards with capacity less than 1Gb, will have sector size
* 512 bytes. SDC ver1.x cards with capacity of 2Gb will report readbllen
* of 1024 but should use 512 bytes for block transfers. SDC ver1.x 4Gb
* cards will report readbllen of 2048 bytes -- are they also 512 bytes?
*/
#ifdef CONFIG_MMCSD_SECTOR512
if (readbllen > 9)
{
csizemult += (readbllen - 9);
}
else
{
DEBUGASSERT(readbllen == 9);
}
#else
if (IS_SDV2(slot->type))
{
if (readbllen > 9)
{
fwarn("WARNING: Forcing 512 byte sector size\n");
csizemult += (readbllen - 9);
readbllen = 9;
}
}
slot->sectorsize = 1 << readbllen;
#endif
slot->nsectors = csize << csizemult;
finfo("Sector size: %d\n", SECTORSIZE(slot));
finfo("Number of sectors: %" PRId32 "\n", slot->nsectors);
}
/****************************************************************************
* Name: mmcsd_checkwrprotect
*
* Description:
*
****************************************************************************/
static void mmcsd_checkwrprotect(FAR struct mmcsd_slot_s *slot,
FAR uint8_t *csd)
{
FAR struct spi_dev_s *spi = slot->spi;
/* Check if (1) the slot is reporting that reporting that write protection
* is set, (2) the card reports permanent write protect, or (2) the card
* reports temporary write protect.
*/
if ((SPI_STATUS(spi, SPIDEV_MMCSD(0)) & SPI_STATUS_WRPROTECTED) != 0 ||
MMCSD_CSD_PERMWRITEPROTECT(csd) ||
MMCSD_CSD_TMPWRITEPROTECT(csd))
{
slot->state |= MMCSD_SLOTSTATUS_WRPROTECT;
}
else
{
slot->state &= ~MMCSD_SLOTSTATUS_WRPROTECT;
}
}
/****************************************************************************
* Name: mmcsd_getcardinfo
*
* Description:
* Read CSD or CID registers
*
* Assumptions:
* MMC/SD card already selected
*
****************************************************************************/
static int mmcsd_getcardinfo(FAR struct mmcsd_slot_s *slot,
FAR uint8_t *buffer,
FAR const struct mmcsd_cmdinfo_s *cmd)
{
FAR struct spi_dev_s *spi = slot->spi;
uint32_t result;
uint8_t response;
int i;
SPI_SEND(spi, 0xff);
/* Send the CMD9 or CMD10 */
result = mmcsd_sendcmd(slot, cmd, 0);
if (result != MMCSD_SPIR1_OK)
{
ferr("ERROR: CMD9/10 failed: R1=%02" PRIx32 "\n", result);
return -EIO;
}
/* Try up to 8 times to find the start of block or until an error occurs */
for (i = 0; i < 8; i++)
{
response = SPI_SEND(spi, 0xff);
finfo("%d. SPI send returned %02x\n", i, response);
/* If a read operation fails and the card cannot provide the requested
* data, it will send a data error token instead. The 4 least
* significant bits are the same as those in the R2 response.
*/
if (response != 0 && (response & MMCSD_SPIDET_UPPER) == 0)
{
ferr("ERROR: %d. Data transfer error: %02x\n", i, response);
return -EIO;
}
else if (response == MMCSD_SPIDT_STARTBLKSNGL)
{
for (i = 0; i < 16; ++i)
{
*buffer++ = SPI_SEND(spi, 0xff);
}
/* CRC receive */
SPI_SEND(spi, 0xff);
SPI_SEND(spi, 0xff);
return OK;
}
}
ferr("ERROR: Did not find start of block\n");
return -EIO;
}
/****************************************************************************
* Name: mmcsd_recvblock
*
* Description: Receive a data block from the card
*
****************************************************************************/
static int mmcsd_recvblock(FAR struct mmcsd_slot_s *slot,
FAR uint8_t *buffer, int nbytes)
{
FAR struct spi_dev_s *spi = slot->spi;
clock_t start;
clock_t elapsed;
uint8_t token;
/* Wait up to the maximum to receive a valid data token. taccess is the
* time from when the command is sent until the first byte of data is
* received.
*/
start = START_TIME;
do
{
token = SPI_SEND(spi, 0xff);
elapsed = ELAPSED_TIME(start);
}
while (token == 0xff && elapsed < slot->taccess);
if (token == MMCSD_SPIDT_STARTBLKSNGL)
{
/* Receive the block */
SPI_RECVBLOCK(spi, buffer, nbytes);
/* Discard the CRC */
SPI_SEND(spi, 0xff);
SPI_SEND(spi, 0xff);
return OK;
}
ferr("ERROR: Did not receive data token (%02x)\n", token);
return ERROR;
}
/****************************************************************************
* Name: mmcsd_xmitblock
*
* Description: Transmit a data block to the card
*
****************************************************************************/
#if !defined(CONFIG_MMCSD_READONLY)
static int mmcsd_xmitblock(FAR struct mmcsd_slot_s *slot,
FAR const uint8_t *buffer, int nbytes,
uint8_t token)
{
FAR struct spi_dev_s *spi = slot->spi;
uint8_t response;
/* Start the block transfer:
* 1. 0xff (sync)
* 2. 0xfe or 0xfc (start of block token)
* 3. Followed by the block of data and 2 byte CRC
*/
SPI_SEND(spi, 0xff); /* sync */
SPI_SEND(spi, token); /* data token */
/* Transmit the block to the MMC/SD card */
SPI_SNDBLOCK(spi, buffer, nbytes);
/* Add the bogus CRC. By default, the SPI interface is initialized in
* non-protected mode. However, we still have to send bogus CRC values
*/
SPI_SEND(spi, 0xff);
SPI_SEND(spi, 0xff);
/* Now get the data response */
response = SPI_SEND(spi, 0xff);
if ((response & MMCSD_SPIDR_MASK) != MMCSD_SPIDR_ACCEPTED)
{
ferr("ERROR: Bad data response: %02x\n", response);
return -EIO;
}
return OK;
}
#endif /* !CONFIG_MMCSD_READONLY */
/****************************************************************************
* Block Driver Operations
****************************************************************************/
/****************************************************************************
* Name: mmcsd_open
*
* Description: Open the block device
*
****************************************************************************/
static int mmcsd_open(FAR struct inode *inode)
{
FAR struct mmcsd_slot_s *slot;
FAR struct spi_dev_s *spi;
int ret;
finfo("Entry\n");
#ifdef CONFIG_DEBUG_FEATURES
if (!inode || !inode->i_private)
{
ferr("ERROR: Internal confusion\n");
return -EIO;
}
#endif
/* Extract our private data from the inode structure */
slot = inode->i_private;
spi = slot->spi;
#ifdef CONFIG_DEBUG_FEATURES
if (!spi)
{
ferr("ERROR: Internal confusion\n");
return -EIO;
}
#endif
ret = mmcsd_lock(slot);
if (ret < 0)
{
return ret;
}
/* Verify that an MMC/SD card has been inserted */
ret = -ENODEV;
if ((SPI_STATUS(spi, SPIDEV_MMCSD(0)) & SPI_STATUS_PRESENT) != 0)
{
/* Yes.. a card is present. Has it been initialized? */
if (slot->type == MMCSD_CARDTYPE_UNKNOWN)
{
/* Initialize for the media in the slot */
ret = mmcsd_mediainitialize(slot);
if (ret < 0)
{
finfo("Failed to initialize card\n");
goto errout_with_lock;
}
}
/* Make sure that the card is ready */
SPI_SELECT(spi, SPIDEV_MMCSD(0), true);
ret = mmcsd_waitready(slot);
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
}
errout_with_lock:
mmcsd_unlock(slot);
return ret;
}
/****************************************************************************
* Name: mmcsd_close
*
* Description: close the block device
*
****************************************************************************/
static int mmcsd_close(FAR struct inode *inode)
{
finfo("Entry\n");
return OK;
}
/****************************************************************************
* Name: mmcsd_read
*
* Description: Read the specified number of sectors
*
****************************************************************************/
static ssize_t mmcsd_read(FAR struct inode *inode, FAR unsigned char *buffer,
blkcnt_t start_sector, unsigned int nsectors)
{
FAR struct mmcsd_slot_s *slot;
FAR struct spi_dev_s *spi;
FAR unsigned char *restore = buffer;
int retry_count = 0;
size_t nbytes;
off_t offset;
uint8_t response;
int i;
int ret;
finfo("start_sector=%" PRIuOFF " nsectors=%u\n", start_sector, nsectors);
#ifdef CONFIG_DEBUG_FEATURES
if (!buffer)
{
ferr("ERROR: Invalid parameters\n");
return -EINVAL;
}
if (!inode || !inode->i_private)
{
ferr("ERROR: Internal confusion\n");
return -EIO;
}
#endif
/* Extract our private data from the inode structure */
slot = inode->i_private;
spi = slot->spi;
#ifdef CONFIG_DEBUG_FEATURES
if (!spi)
{
ferr("ERROR: Internal confusion\n");
return -EIO;
}
#endif
/* Verify that card is available */
if (slot->state & MMCSD_SLOTSTATUS_NOTREADY)
{
ferr("ERROR: Slot not ready\n");
return -ENODEV;
}
/* Do nothing on zero-length transfer */
if (nsectors < 1)
{
return 0;
}
/* Convert sector and nsectors to nbytes and byte offset */
nbytes = nsectors * SECTORSIZE(slot);
UNUSED(nbytes);
if (IS_BLOCK(slot->type))
{
offset = start_sector;
finfo("nbytes=%zu sector offset=%" PRIdOFF "\n", nbytes, offset);
}
else
{
offset = start_sector * SECTORSIZE(slot);
finfo("nbytes=%zu byte offset=%" PRIdOFF "\n", nbytes, offset);
}
/* Select the slave */
ret = mmcsd_lock(slot);
if (ret < 0)
{
return (ssize_t)ret;
}
retry:
SPI_SELECT(spi, SPIDEV_MMCSD(0), true);
/* Single or multiple block read? */
if (nsectors == 1)
{
/* Send CMD17: Reads a block of the size selected by the SET_BLOCKLEN
* command and verify that good R1 status is returned
*/
response = mmcsd_sendcmd(slot, &g_cmd17, offset);
if (response != MMCSD_SPIR1_OK)
{
ferr("ERROR: CMD17 failed: R1=%02x\n", response);
goto errout_with_eio;
}
/* Receive the block */
if (mmcsd_recvblock(slot, buffer, SECTORSIZE(slot)) != 0)
{
ferr("ERROR: Failed: to receive the block\n");
goto errout_with_eio;
}
}
else
{
/* Send CMD18: Reads a block of the size selected by the SET_BLOCKLEN
* command and verify that good R1 status is returned
*/
response = mmcsd_sendcmd(slot, &g_cmd18, offset);
if (response != MMCSD_SPIR1_OK)
{
ferr("ERROR: CMD18 failed: R1=%02x\n", response);
goto errout_with_eio;
}
/* Receive each block */
for (i = 0; i < nsectors; i++)
{
if (mmcsd_recvblock(slot, buffer, SECTORSIZE(slot)) != 0)
{
ferr("ERROR: Failed: to receive the block\n");
/* Send CMD12: Stops transmission */
response = mmcsd_sendcmd(slot, &g_cmd12, 0);
goto errout_with_eio;
}
buffer += SECTORSIZE(slot);
}
/* Send CMD12: Stops transmission */
response = mmcsd_sendcmd(slot, &g_cmd12, 0);
}
/* On success, return the number of sectors transfer */
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
SPI_SEND(spi, 0xff);
mmcsd_unlock(slot);
finfo("Read %zu bytes:\n", nbytes);
mmcsd_dumpbuffer("Read buffer", buffer, nbytes);
return nsectors;
errout_with_eio:
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
if (retry_count++ < CONFIG_MMCSD_SPIRETRY_COUNT)
{
buffer = restore;
ret = mmcsd_mediainitialize(slot);
if (ret < 0)
{
ferr("ERROR: Failed to reinitialize card\n");
}
else
{
fwarn("ERROR: retry %d\n", retry_count);
goto retry;
}
}
mmcsd_unlock(slot);
return -EIO;
}
/****************************************************************************
* Name: mmcsd_write
*
* Description:
* Write the specified number of sectors
*
****************************************************************************/
#if !defined(CONFIG_MMCSD_READONLY)
static ssize_t mmcsd_write(FAR struct inode *inode,
FAR const unsigned char *buffer,
blkcnt_t start_sector, unsigned int nsectors)
{
FAR struct mmcsd_slot_s *slot;
FAR struct spi_dev_s *spi;
FAR const unsigned char *restore = buffer;
int retry_count = 0;
size_t nbytes;
off_t offset;
uint8_t response;
int i;
int ret;
finfo("start_sector=%" PRIuOFF " nsectors=%u\n", start_sector, nsectors);
#ifdef CONFIG_DEBUG_FEATURES
if (!buffer)
{
ferr("ERROR: Invalid parameters\n");
return -EINVAL;
}
if (!inode || !inode->i_private)
{
ferr("ERROR: Internal confusion\n");
return -EIO;
}
#endif
/* Extract our private data from the inode structure */
slot = inode->i_private;
spi = slot->spi;
#ifdef CONFIG_DEBUG_FEATURES
if (!spi)
{
ferr("ERROR: Internal confusion\n");
return -EIO;
}
#endif
/* Verify that card is available */
if (slot->state & MMCSD_SLOTSTATUS_NOTREADY)
{
ferr("ERROR: Slot not ready\n");
return -ENODEV;
}
/* Verify that the card is write enabled */
if (slot->state & MMCSD_SLOTSTATUS_WRPROTECT)
{
ferr("ERROR: Not write enabled\n");
return -EACCES;
}
/* Do nothing on zero-length transfer */
if (nsectors < 1)
{
return 0;
}
/* Convert sector and nsectors to nbytes and byte offset */
nbytes = nsectors * SECTORSIZE(slot);
UNUSED(nbytes);
if (IS_BLOCK(slot->type))
{
offset = start_sector;
finfo("nbytes=%zu sector offset=%" PRIdOFF "\n", nbytes, offset);
}
else
{
offset = start_sector * SECTORSIZE(slot);
finfo("nbytes=%zu byte offset=%" PRIdOFF "\n", nbytes, offset);
}
mmcsd_dumpbuffer("Write buffer", buffer, nbytes);
/* Select the slave */
ret = mmcsd_lock(slot);
if (ret < 0)
{
return (ssize_t)ret;
}
retry:
SPI_SELECT(spi, SPIDEV_MMCSD(0), true);
/* Single or multiple block transfer? */
if (nsectors == 1)
{
/* Send CMD24(WRITE_BLOCK) and verify that good R1 is returned */
response = mmcsd_sendcmd(slot, &g_cmd24, offset);
if (response != MMCSD_SPIR1_OK)
{
ferr("ERROR: CMD24 failed: R1=%02x\n", response);
goto errout_with_lock;
}
/* Then transfer the sector */
if (mmcsd_xmitblock(slot, buffer, SECTORSIZE(slot), 0xfe) != 0)
{
ferr("ERROR: Block transfer failed\n");
goto errout_with_lock;
}
}
else
{
/* Set the number of blocks to be pre-erased (SD only) */
if (IS_SD(slot->type))
{
response = mmcsd_sendcmd(slot, &g_cmd55, 0);
if (response != MMCSD_SPIR1_OK)
{
ferr("ERROR: CMD55 failed: R1=%02x\n", response);
goto errout_with_lock;
}
response = mmcsd_sendcmd(slot, &g_acmd23, nsectors);
if (response != MMCSD_SPIR1_OK)
{
ferr("ERROR: ACMD23 failed: R1=%02x\n", response);
goto errout_with_lock;
}
}
/* Send CMD25: Continuously write blocks of data until the
* transmission is stopped.
*/
response = mmcsd_sendcmd(slot, &g_cmd25, offset);
if (response != MMCSD_SPIR1_OK)
{
ferr("ERROR: CMD25 failed: R1=%02x\n", response);
goto errout_with_lock;
}
/* Transmit each block */
for (i = 0; i < nsectors; i++)
{
if (mmcsd_xmitblock(slot, buffer, SECTORSIZE(slot), 0xfc) != 0)
{
ferr("ERROR: Failed: to receive the block\n");
goto errout_with_lock;
}
buffer += SECTORSIZE(slot);
if (mmcsd_waitready(slot) != OK)
{
ferr("ERROR: Failed: card is busy\n");
goto errout_with_lock;
}
}
/* Send the stop transmission token */
SPI_SEND(spi, MMCSD_SPIDT_STOPTRANS);
}
/* Wait until the card is no longer busy */
mmcsd_waitready(slot);
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
SPI_SEND(spi, 0xff);
mmcsd_unlock(slot);
/* The success return value is the number of sectors written */
return nsectors;
errout_with_lock:
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
if (retry_count++ < CONFIG_MMCSD_SPIRETRY_COUNT)
{
buffer = restore;
ret = mmcsd_mediainitialize(slot);
if (ret < 0)
{
ferr("ERROR: Failed to reinitialize card\n");
}
else
{
fwarn("ERROR: retry %d\n", retry_count);
goto retry;
}
}
mmcsd_unlock(slot);
return -EIO;
}
#endif
/****************************************************************************
* Name: mmcsd_geometry
*
* Description:
* Return device geometry
*
****************************************************************************/
static int mmcsd_geometry(FAR struct inode *inode,
FAR struct geometry *geometry)
{
FAR struct mmcsd_slot_s *slot;
FAR struct spi_dev_s *spi;
uint8_t csd[16];
int ret;
#ifdef CONFIG_DEBUG_FEATURES
if (!geometry)
{
ferr("ERROR: Invalid parameters\n");
return -EINVAL;
}
if (!inode || !inode->i_private)
{
ferr("ERROR: Internal confusion\n");
return -EIO;
}
#endif
/* Extract our private data from the inode structure */
slot = inode->i_private;
spi = slot->spi;
#ifdef CONFIG_DEBUG_FEATURES
if (!spi)
{
ferr("ERROR: Internal confusion\n");
return -EIO;
}
#endif
/* Re-sample the CSD */
ret = mmcsd_lock(slot);
if (ret < 0)
{
return ret;
}
SPI_SELECT(spi, SPIDEV_MMCSD(0), true);
ret = mmcsd_getcsd(slot, csd);
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
if (ret < 0)
{
mmcsd_unlock(slot);
ferr("ERROR: mmcsd_getcsd returned %d\n", ret);
return ret;
}
/* Check for changes related to write protection */
mmcsd_checkwrprotect(slot, csd);
/* Then return the card geometry */
memset(geometry, 0, sizeof(*geometry));
geometry->geo_available =
((slot->state & (MMCSD_SLOTSTATUS_NOTREADY |
MMCSD_SLOTSTATUS_NODISK)) == 0);
geometry->geo_mediachanged =
((slot->state & MMCSD_SLOTSTATUS_MEDIACHGD) != 0);
#if !defined(CONFIG_MMCSD_READONLY)
geometry->geo_writeenabled =
((slot->state & MMCSD_SLOTSTATUS_WRPROTECT) == 0);
#else
geometry->geo_writeenabled = false;
#endif
geometry->geo_nsectors = slot->nsectors;
geometry->geo_sectorsize = SECTORSIZE(slot);
/* After reporting mediachanged, clear the indication so that it is not
* reported again.
*/
slot->state &= ~MMCSD_SLOTSTATUS_MEDIACHGD;
mmcsd_unlock(slot);
finfo("geo_available: %d\n", geometry->geo_available);
finfo("geo_mediachanged: %d\n", geometry->geo_mediachanged);
finfo("geo_writeenabled: %d\n", geometry->geo_writeenabled);
finfo("geo_nsectors: %" PRIuOFF "\n", geometry->geo_nsectors);
finfo("geo_sectorsize: %" PRIi16 "\n", geometry->geo_sectorsize);
return OK;
}
/****************************************************************************
* Name: mmcsd_mediainitialize
*
* Description:
* Detect media and initialize
*
* Precondition:
* Mutex has been taken.
****************************************************************************/
static int mmcsd_mediainitialize(FAR struct mmcsd_slot_s *slot)
{
FAR struct spi_dev_s *spi = slot->spi;
uint8_t csd[16];
uint32_t result = MMCSD_SPIR1_IDLESTATE;
clock_t start;
clock_t elapsed;
int i;
int j;
/* Assume that the card is not ready (we'll clear this on successful card
* initialization.
*/
slot->state |= MMCSD_SLOTSTATUS_NOTREADY;
/* Check if there is a card present in the slot. This is normally a
* matter is of GPIO sensing and does not really involve SPI, but by
* putting this functionality in the SPI interface, we encapsulate the
* SPI MMC/SD interface
*/
if ((SPI_STATUS(spi, SPIDEV_MMCSD(0)) & SPI_STATUS_PRESENT) == 0)
{
fwarn("WARNING: No card present\n");
slot->state |= MMCSD_SLOTSTATUS_NODISK;
return -ENODEV;
}
/* Clock Freq. Identification Mode < 400kHz */
slot->spispeed = CONFIG_MMCSD_IDMODE_CLOCK;
SPI_SETFREQUENCY(spi, CONFIG_MMCSD_IDMODE_CLOCK);
/* Set the maximum access time out */
slot->taccess = SD_READACCESS;
/* The SD card wakes up in SD mode. It will enter SPI mode if the chip
* select signal is asserted (negative) during the reception of the reset
* command (CMD0) and the card is in IDLE state.
*/
for (i = 0; i < 2; i++)
{
/* After power up at least 74 clock cycles are required prior to
* starting bus communication
*/
for (j = 10; j; j--)
{
SPI_SEND(spi, 0xff);
}
/* Send CMD0 (GO_TO_IDLE) with CS asserted to put MMC/SD in
* IDLE/SPI mode. Return from CMD0 is R1 which should now
* show IDLE STATE
*/
finfo("Send CMD0\n");
SPI_SELECT(spi, SPIDEV_MMCSD(0), true);
result = mmcsd_sendcmd(slot, &g_cmd0, 0);
if (result == MMCSD_SPIR1_IDLESTATE)
{
/* Break out of the loop with card selected */
finfo("Card is in IDLE state\n");
break;
}
/* De-select card and try again */
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
}
/* Verify that we exit the above loop with the card reporting IDLE state */
if (result != MMCSD_SPIR1_IDLESTATE)
{
ferr("ERROR: Send CMD0 failed: R1=%02" PRIx32 "\n", result);
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
return -EIO;
}
slot->type = MMCSD_CARDTYPE_UNKNOWN;
/* Check for SDHC Version 2.x. CMD 8 is reserved on SD version 1.0 and
* MMC.
*/
finfo("Send CMD8\n");
result = mmcsd_sendcmd(slot, &g_cmd8, 0x1aa);
if (result == MMCSD_SPIR1_IDLESTATE)
{
/* Verify the operating voltage and 0xaa was correctly echoed */
if (((slot->r7 & MMCSD_SPIR7_VOLTAGE_MASK) ==
MMCSD_SPIR7_VOLTAGE_27) &&
((slot->r7 & MMCSD_SPIR7_ECHO_MASK) == 0xaa))
{
/* Try CMD55/ACMD41 for up to 1 second or until the card exits
* the IDLE state
*/
start = START_TIME;
elapsed = 0;
do
{
finfo("%ju. Send CMD55/ACMD41\n", (uintmax_t)elapsed);
result = mmcsd_sendcmd(slot, &g_cmd55, 0);
if (result == MMCSD_SPIR1_IDLESTATE ||
result == MMCSD_SPIR1_OK)
{
result = mmcsd_sendcmd(slot, &g_acmd41, (uint32_t)1 << 30);
if (result == MMCSD_SPIR1_OK)
{
break;
}
}
elapsed = ELAPSED_TIME(start);
}
while (elapsed < MMCSD_DELAY_1SEC);
/* Check if ACMD41 was sent successfully */
if (elapsed < MMCSD_DELAY_1SEC)
{
finfo("Send CMD58\n");
SPI_SEND(spi, 0xff);
result = mmcsd_sendcmd(slot, &g_cmd58, 0);
if (result == MMCSD_SPIR1_OK)
{
finfo("OCR: %08" PRIx32 "\n", slot->ocr);
if ((slot->ocr & MMCSD_OCR_CCS) != 0)
{
finfo("Identified SD ver2 card/with block access\n");
slot->type = MMCSD_CARDTYPE_SDV2 |
MMCSD_CARDTYPE_BLOCK;
}
else
{
finfo("Identified SD ver2 card\n");
slot->type = MMCSD_CARDTYPE_SDV2;
}
}
}
}
}
/* Check for SDC version 1.x or MMC */
else
{
/* Both the MMC card and the SD card support CMD55 */
finfo("Send CMD55/ACMD41\n");
result = mmcsd_sendcmd(slot, &g_cmd55, 0);
if (result == MMCSD_SPIR1_IDLESTATE || result == MMCSD_SPIR1_OK)
{
/* But ACMD41 is supported only on SD */
result = mmcsd_sendcmd(slot, &g_acmd41, 0);
if (result == MMCSD_SPIR1_IDLESTATE || result == MMCSD_SPIR1_OK)
{
finfo("Identified SD ver1 card\n");
slot->type = MMCSD_CARDTYPE_SDV1;
}
}
/* Make sure that we are out of the Idle state */
start = START_TIME;
elapsed = 0;
do
{
if (IS_SD(slot->type))
{
finfo("%ju. Send CMD55/ACMD41\n", (uintmax_t)elapsed);
result = mmcsd_sendcmd(slot, &g_cmd55, 0);
if (result == MMCSD_SPIR1_IDLESTATE ||
result == MMCSD_SPIR1_OK)
{
result = mmcsd_sendcmd(slot, &g_acmd41, 0);
if (result == MMCSD_SPIR1_OK)
{
break;
}
}
}
else
{
finfo("%d. Send CMD1\n", i);
result = mmcsd_sendcmd(slot, &g_cmd1, 0);
if (result == MMCSD_SPIR1_OK)
{
finfo("%d. Identified MMC card\n", i);
slot->type = MMCSD_CARDTYPE_MMC;
break;
}
}
elapsed = ELAPSED_TIME(start);
}
while (elapsed < MMCSD_DELAY_1SEC);
if (elapsed >= MMCSD_DELAY_1SEC)
{
ferr("ERROR: Failed to exit IDLE state\n");
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
return -EIO;
}
}
if (slot->type == MMCSD_CARDTYPE_UNKNOWN)
{
ferr("ERROR: Failed to identify card\n");
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
return -EIO;
}
/* Read CSD. CSD must always be valid */
finfo("Get CSD\n");
result = mmcsd_getcsd(slot, csd);
if (result != OK)
{
ferr("ERROR: mmcsd_getcsd(CMD9) failed: %" PRId32 "\n", result);
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
return -EIO;
}
mmcsd_dmpcsd(csd, slot->type);
/* CSD data and set block size */
mmcsd_decodecsd(slot, csd);
mmcsd_checkwrprotect(slot, csd);
/* SDHC ver2.x cards have fixed block transfer size of 512 bytes. SDC
* ver1.x cards with capacity less than 1Gb, will have sector size
* 512 bytes. SDC ver1.x cards with capacity of 2Gb will report readbllen
* of 1024 but should use 512 bytes for block transfers. SDC ver1.x 4Gb
* cards will report readbllen of 2048 bytes -- are they also 512 bytes?
* I think that none of these high capacity cards support setting the
* block length??
*/
#ifdef CONFIG_MMCSD_SECTOR512
/* Using 512 byte sectors, the maximum ver1.x capacity is 4096 x 512
* blocks. The saved slot->nsectors is converted to 512 byte blocks, so
* if slot->nsectors exceeds 4096 x 512, then we must be dealing with a
* card with read_bl_len of 1024 or 2048.
*/
if (!IS_SDV2(slot->type) && slot->nsectors <= ((uint32_t)4096 * 12))
{
/* Don't set the block len on high capacity cards (ver1.x or ver2.x) */
mmcsd_setblklen(slot, SECTORSIZE(slot));
}
#else
if (!IS_SDV2(slot->type))
{
/* Don't set the block len on ver2.x cards */
mmcsd_setblklen(slot, SECTORSIZE(slot));
}
#endif
slot->state &= ~MMCSD_SLOTSTATUS_NOTREADY;
SPI_SELECT(spi, SPIDEV_MMCSD(0), false);
return OK;
}
/****************************************************************************
* Name: mmcsd_mediachanged
*
* Description:
* Handle initialization/media change events
*
****************************************************************************/
static void mmcsd_mediachanged(FAR void *arg)
{
FAR struct mmcsd_slot_s *slot = (FAR struct mmcsd_slot_s *)arg;
FAR struct spi_dev_s *spi;
uint8_t oldstate;
int ret;
#ifdef CONFIG_DEBUG_FEATURES
if (!slot || !slot->spi)
{
ferr("ERROR: Internal confusion\n");
return;
}
#endif
spi = slot->spi;
/* Save the current slot state and reassess the new state */
ret = mmcsd_lock(slot);
if (ret < 0)
{
return;
}
oldstate = slot->state;
/* Check if media was removed or inserted */
slot->state &= ~(MMCSD_SLOTSTATUS_NODISK | MMCSD_SLOTSTATUS_NOTREADY |
MMCSD_SLOTSTATUS_MEDIACHGD);
if ((SPI_STATUS(spi, SPIDEV_MMCSD(0)) & SPI_STATUS_PRESENT) == 0)
{
/* Media is not present */
fwarn("WARNING: No card present\n");
slot->state |= (MMCSD_SLOTSTATUS_NODISK | MMCSD_SLOTSTATUS_NOTREADY);
/* Was media removed? */
if ((oldstate & MMCSD_SLOTSTATUS_NODISK) == 0)
{
slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD;
}
}
/* Media is present, was it just inserted? Or, if it was previously not
* ready, then try re-initializing it
*/
else if ((oldstate & (MMCSD_SLOTSTATUS_NODISK |
MMCSD_SLOTSTATUS_NOTREADY)) != 0)
{
/* (Re-)initialize for the media in the slot */
ret = mmcsd_mediainitialize(slot);
if (ret == 0)
{
finfo("mmcsd_mediainitialize returned OK\n");
slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD;
}
}
mmcsd_unlock(slot);
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: mmcsd_spislotinitialize
*
* Description:
* Initialize one slot for operation using the SPI MMC/SD interface
*
* Input Parameters:
* minor - The MMC/SD minor device number. The MMC/SD device will be
* registered as /dev/mmcsdN where N is the minor number
* slotno - The slot number to use. This is only meaningful for
* architectures that support multiple MMC/SD slots. This value must be
* in the range {0, ..., CONFIG_MMCSD_NSLOTS}.
* spi - And instance of an SPI interface obtained by called the
* appropriate xyz_spibus_initialize() function for the MCU "xyz" with
* the appropriate port number.
*
****************************************************************************/
int mmcsd_spislotinitialize(int minor, int slotno, FAR struct spi_dev_s *spi)
{
struct mmcsd_slot_s *slot;
char devname[16];
int ret;
#ifdef CONFIG_DEBUG_FEATURES
if ((unsigned)slotno >= CONFIG_MMCSD_NSLOTS || (unsigned)minor > 255 ||
spi == NULL)
{
ferr("ERROR: Invalid arguments\n");
return -EINVAL;
}
#endif
/* Select the slot structure */
slot = &g_mmcsdslot[slotno];
memset(slot, 0, sizeof(struct mmcsd_slot_s));
nxmutex_init(&slot->lock);
/* Bind the SPI port to the slot */
slot->spi = spi;
slot->spispeed = CONFIG_MMCSD_IDMODE_CLOCK;
/* Get exclusive access to the SPI bus and make sure that SPI is properly
* configured for the MMC/SD card
*/
ret = mmcsd_lock(slot);
if (ret < 0)
{
return ret;
}
/* Initialize for the media in the slot (if any) */
ret = mmcsd_mediainitialize(slot);
mmcsd_unlock(slot);
if (ret == 0)
{
finfo("mmcsd_mediainitialize returned OK\n");
slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD;
}
/* Create a MMC/SD device name */
snprintf(devname, sizeof(devname), "/dev/mmcsd%d", minor);
/* Register the driver, even on a failure condition. A
* card may be inserted later, for example.
*/
ret = register_blockdriver(devname, &g_bops, MMCSD_MODE, slot);
if (ret < 0)
{
ferr("ERROR: register_blockdriver failed: %d\n", -ret);
nxmutex_destroy(&slot->lock);
slot->spi = NULL;
return ret;
}
/* Register a media change callback to handle insertion and
* removal of cards.
*/
SPI_REGISTERCALLBACK(spi, mmcsd_mediachanged, slot);
return OK;
}
#endif /* defined (CONFIG_MMCSD) && defined (CONFIG_MMCSD_SPI) */