2c9d402ad4
git-svn-id: svn://svn.code.sf.net/p/nuttx/code/trunk@5667 42af7a65-404d-4744-a932-0658087f49c3 |
||
---|---|---|
.. | ||
include | ||
ostest | ||
scripts | ||
src | ||
Kconfig | ||
README.txt |
README.txt ========== This is the README file for the port of NuttX to the NuvoTon NuTiny-SDK-NUC120 board. This board has the NUC120LE3AN chip with a built-in NuLink debugger. Contents ======== - Development Environment - GNU Toolchain Options - NuttX Buildroot Toolchain - LEDs - Serial Console - Debugging - NuTiny-specific Configuration Options - Configurations Development Environment ======================= Either Linux or Cygwin on Windows can be used for the development environment. The source has been built only using the GNU toolchain (see below). Other toolchains will likely cause problems. GNU Toolchain Options ===================== As of this writing, all testing has been performed using the NuttX buildroot toolchain described below. I have also verified the build using the CodeSourcery GCC toolchain for windows. Most any contemporary EABI GCC toolchain should work will a little tinkering. NuttX Buildroot Toolchain ========================= A GNU GCC-based toolchain is assumed. The files */setenv.sh should be modified to point to the correct path to the Cortex-M3 GCC toolchain (if different from the default in your PATH variable). If you have no Cortex-M0 toolchain, one can be downloaded from the NuttX SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/). This GNU toolchain builds and executes in the Linux or Cygwin environment. 1. You must have already configured Nuttx in <some-dir>/nuttx. cd tools ./configure.sh nutiny-nuc120/<sub-dir> 2. Download the latest buildroot package into <some-dir> 3. unpack the buildroot tarball. The resulting directory may have versioning information on it like buildroot-x.y.z. If so, rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot. 4. cd <some-dir>/buildroot 5. cp configs/cortexm0-eabi-defconfig-4.6.3 .config 6. make oldconfig 7. make 8. Edit setenv.h, if necessary, so that the PATH variable includes the path to the newly built binaries. See the file configs/README.txt in the buildroot source tree. That has more details PLUS some special instructions that you will need to follow if you are building a Cortex-M3 toolchain for Cygwin under Windows. LEDs ==== The NuTiny has a single green LED that can be controlled from sofware. This LED is connected to PIN17. It is pulled high so a low value will illuminate the LED. If CONFIG_ARCH_LEDs is defined, then NuttX will control the LED on board the NuTiny. The following definitions describe how NuttX controls the LEDs: SYMBOL Meaning LED state Initially all LED is OFF ------------------- ----------------------- ------------- ------------ LED_STARTED NuttX has been started LED ON LED_HEAPALLOCATE Heap has been allocated LED ON LED_IRQSENABLED Interrupts enabled LED ON LED_STACKCREATED Idle stack created LED ON LED_INIRQ In an interrupt LED should glow LED_SIGNAL In a signal handler LED might glow LED_ASSERTION An assertion failed LED ON while handling the assertion LED_PANIC The system has crashed LED Blinking at 2Hz LED_IDLE NUC1XX is is sleep mode (Optional, not used) Serial Console ============== By default UART1 is used as the serial console on these boards. NUC120LE3AN is provided as an LQFP48 package and, for this case, the UART1 RX signal (RXD1) is on PB.4, pin 8, and the TX signal (TXD1) is on PB.5, pin 9. These pins are available on the NuTiny-SDC-NUC120 JP5. NOTE: The TX vs RX terminology is confusing. On my RS-232 driver board, I need to connect the NUC120 TXD0 pin to the driver boards RXD pin. How confusing! UART0 is an alternative that can be selected by modifying the default configuation. UART0 RX (RXD0) is on PB.0, pin 17, and the TX signal (TXD0) is on PB.1, pin 18. These pins are available on the NuTiny-SDC-NUC120 JP1. NOTE: PB.0, pin 17, is also used to control the user LED on board (labeled "IO"). CONFIG_ARCH_LED should not be selected if UART0 is used. The NUC120LE3AN does not support UART2. Debugging ========= The NuTiny-SDK-NUC120 includes a built-in NuLink debugger. Unfortunately, full debug support is available only with the Keil and IAR toolchains. There is, however, a free program called ICP (In-Circuit Programmer). It can be used to burn programs into FLASH (aka APROM). The ICP program can also be used to burn an ISP program into LDROM. The ISP (In-System Programmer) is available free from the Nuvton website. Then NuttX build does not set the configuration words at 0x0030000-0x00300004. You should uncheck the Config box when burning APROM or the previous contents of the configuration words will be erased. NuTiny-specific Configuration Options ===================================== CONFIG_ARCH - Identifies the arch/ subdirectory. This should be set to: CONFIG_ARCH=arm CONFIG_ARCH_family - For use in C code: CONFIG_ARCH_ARM=y CONFIG_ARCH_architecture - For use in C code: CONFIG_ARCH_CORTEXM0=y CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory CONFIG_ARCH_CHIP=nuc1xx CONFIG_ARCH_CHIP_name - For use in C code to identify the exact chip: CONFIG_ARCH_CHIP_NUC120LE3AN=y CONFIG_ARCH_BOARD - Identifies the configs subdirectory and hence, the board that supports the particular chip or SoC. CONFIG_ARCH_BOARD=nutiny-nuc120 (for the NuTiny-SDK-NUC120 development board) CONFIG_ARCH_BOARD_name - For use in C code CONFIG_ARCH_BOARD_NUTINY_NUC120=y CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation of delay loops CONFIG_ENDIAN_BIG - define if big endian (default is little endian) CONFIG_DRAM_SIZE - Describes the installed DRAM (SRAM in this case): CONFIG_DRAM_SIZE=16384 (16Kb) CONFIG_DRAM_START - The start address of installed DRAM CONFIG_DRAM_START=0x20000000 CONFIG_ARCH_IRQPRIO - The Cortex-M0 supports interrupt prioritization CONFIG_ARCH_IRQPRIO=y CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that have LEDs CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt stack. If defined, this symbol is the size of the interrupt stack in bytes. If not defined, the user task stacks will be used during interrupt handling. CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture. CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that cause a 100 second delay during boot-up. This 100 second delay serves no purpose other than it allows you to calibratre CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until the delay actually is 100 seconds. Individual subsystems can be enabled as follows. These settings are for all of the NUC100/120 line and may not be available for the NUC120LE3AN in particular: AHB --- CONFIG_NUC_PDMA Peripheral DMA CONFIG_NUC_FMC Flash memory CONFIG_NUC_EBI External bus interface APB1 ---- CONFIG_NUC_WDT Watchdog timer CONFIG_NUC_RTC Real time clock (RTC) CONFIG_NUC_TMR0 Timer0 CONFIG_NUC_TMR1 Timer1 CONFIG_NUC_I2C0 I2C interface CONFIG_NUC_SPI0 SPI0 master/slave CONFIG_NUC_SPI1 SPI1 master/slave CONFIG_NUC_PWM0 PWM0 CONFIG_NUC_PWM1 PWM1 CONFIG_NUC_PWM2 PWM2 CONFIG_NUC_PWM3 PWM3 CONFIG_NUC_UART0 UART0 CONFIG_NUC_USBD USB 2.0 FS device controller CONFIG_NUC_ACMP Analog comparator CONFIG_NUC_ADC Analog-digital-converter (ADC) APB2 --- CONFIG_NUC_PS2 PS/2 interface CONFIG_NUC_TIMR2 Timer2 CONFIG_NUC_TIMR3 Timer3 CONFIG_NUC_I2C1 I2C1 interface CONFIG_NUC_SPI2 SPI2 master/slave CONFIG_NUC_SPI3 SPI3 master/slave CONFIG_NUC_PWM4 PWM4 CONFIG_NUC_PWM5 PWM5 CONFIG_NUC_PWM6 PWM6 CONFIG_NUC_PWM7 PWM7 CONFIG_NUC_UART1 UART1 CONFIG_NUC_UART2 UART2 CONFIG_NUC_I2S I2S interface NUC1XX specific device driver settings CONFIG_UARTn_SERIAL_CONSOLE - Selects the UARTn (n=0,1,2) for the console and ttys0. CONFIG_UARTn_RXBUFSIZE - Characters are buffered as received. This specific the size of the receive buffer for UARTn. CONFIG_UARTn_TXBUFSIZE - Characters are buffered before being sent. This specific the size of the transmit buffer for UARTn. CONFIG_UARTn_BAUD - The configure BAUD of UARTn, CONFIG_UARTn_BITS - The number of bits. Must be 5, 6, 7, or 8. CONFIG_UARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity CONFIG_UARTn_2STOP - Two stop bits Configurations ============== Each NuTiny-SDK-NUC120 configuration is maintained in a sub-directory and can be selected as follow: cd tools ./configure.sh nutiny-nuc120/<subdir> cd - . ./setenv.sh If this is a Windows native build, then configure.bat should be used instead of configure.sh: configure.bat nutiny-nuc120\<subdir> Where <subdir> is one of the following: ostest: ------ This configuration directory, performs a simple OS test using apps/examples/ostest. NOTES: 1. This configuration uses the mconf-based configuration tool. To change this configuration using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt and misc/tools/ b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. 2. Default toolchain: CONFIG_HOST_WINDOWS=y : Builds under Windows CONFIG_WINDOWS_CYGWIN=y : Using Cygwin CONFIG_ARMV6M_TOOLCHAIN_CODESOURCERYW=y : CodeSourcery for Windows 3. Serial Console. The serial console is on UART1 which is available on JP5: UART1 RX signal (RXD1) is on PB.4, pin 8, and UART1 TX signal (TXD1) is on PB.5, pin 9. nsh: --- Configures the NuttShell (nsh) located at apps/examples/nsh. The Configuration enables the serial interfaces on UART1. Support for builtin applications is disabled. NOTES: 1. This configuration uses the mconf-based configuration tool. To change this configuration using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt and misc/tools/ b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. 2. By default, this configuration uses the CodeSourcery toolchain for Windows and builds under Cygwin (or probably MSYS). That can easily be reconfigured, of course. CONFIG_HOST_WINDOWS=y : Builds under Windows CONFIG_WINDOWS_CYGWIN=y : Using Cygwin CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYW=y : CodeSourcery for Windows 3. Serial Console. The serial console is on UART1 which is available on JP5: UART1 RX signal (RXD1) is on PB.4, pin 8, and UART1 TX signal (TXD1) is on PB.5, pin 9. 4. This configuration includes USB Support (CDC/ACM device) CONFIG_STM32_USB=y : STM32 USB device support CONFIG_USBDEV=y : USB device support must be enabled CONFIG_CDCACM=y : The CDC/ACM driver must be built CONFIG_NSH_BUILTIN_APPS=y : NSH built-in application support must be enabled CONFIG_NSH_ARCHINIT=y : To perform USB initialization The CDC/ACM example is included as two NSH "built-in" commands. CONFIG_EXAMPLES_CDCACM=y : Enable apps/examples/cdcacm The two commands are: sercon : Connect the serial device a create /dev/ttyACM0 serdis : Disconnect the serial device. NOTE: The serial connections/disconnections do not work as advertised. This is because the NuTiny-SDK-NUC120 board does not provide circuitry for control of the "soft connect" USB pullup. As a result, the host PC does not know the USB has been logically connected or disconnected. You have to follow these steps to use USB: 1) Start NSH with USB disconnected 2) enter to 'sercon' command to start the CDC/ACM device, then 3) Connect the USB device to the host. and to close the connection: 4) Disconnect the USB device from the host 5) Enter the 'serdis' command