nuttx/fs/fs_fat32.c
patacongo b94766ca8f umount and fat fixes
git-svn-id: svn://svn.code.sf.net/p/nuttx/code/trunk@227 42af7a65-404d-4744-a932-0658087f49c3
2007-05-14 11:12:09 +00:00

1060 lines
33 KiB
C

/****************************************************************************
* fs_fat32.c
*
* Copyright (C) 2007 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <spudmonkey@racsa.co.cr>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name Gregory Nutt nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdlib.h>
#include <semaphore.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/fs.h>
#include "fs_internal.h"
#include "fs_fat32.h"
#if CONFIG_FS_FAT
/****************************************************************************
* Definitions
****************************************************************************/
/* Access to data in raw sector data */
#define UBYTE_VAL(p,o) (((ubyte*)(p))[o])
#define UBYTE_PTR(p,o) &UBYTE_VAL(p,o)
#define UBYTE_PUT(p,o,v) (UBYTE_VAL(p,o)=(ubyte)(v))
#define UINT16_PTR(p,o) ((uint16*)UBYTE_PTR(p,o))
#define UINT16_VAL(p,o) (*UINT16_PTR(p,o))
#define UINT16_PUT(p,o,v) (UINT16_VAL(p,o)=(uint16)(v))
#define UINT32_PTR(p,o) ((uint32*)UBYTE_PTR(p,o))
#define UINT32_VAL(p,o) (*UINT32_PTR(p,o))
#define UINT32_PUT(p,o,v) (UINT32_VAL(p,o)=(uint32)(v))
/* Regardless of the endian-ness of the target or alignment of the data, no
* special operations are required for byte, string or byte array accesses.
* The FAT data stream is little endian so multiple byte values must be
* accessed byte-by-byte for big-endian targets.
*/
#define MBR_GETSECPERCLUS(p) UBYTE_VAL(p,BS_SECPERCLUS)
#define MBR_GETNUMFATS(p) UBYTE_VAL(p,BS_NUMFATS)
#define MBR_GETMEDIA(p) UBYTE_VAL(p,BS_MEDIA)
#define MBR_GETDRVNUM16(p) UBYTE_VAL(p,BS16_DRVNUM)
#define MBR_GETDRVNUM32(p) UBYTE_VAL(p,BS32_DRVNUM)
#define MBR_GETBOOTSIG16(p) UBYTE_VAL(p,BS16_BOOTSIG)
#define MBR_GETBOOTSIG32(p) UBYTE_VAL(p,BS32_BOOTSIG)
#define MBR_PUTSECPERCLUS(p,v) UBYTE_PUT(p,BS_SECPERCLUS),v)
#define MBR_PUTNUMFATS(p,v) UBYTE_PUT(p,BS_NUMFATS,v)
#define MBR_PUTMEDIA(p,v) UBYTE_PUT(p,BS_MEDIA,v)
#define MBR_PUTDRVNUM16(p,v) UBYTE_PUT(p,BS16_DRVNUM,v)
#define MBR_PUTDRVNUM32(p,v) UBYTE_PUT(p,BS32_DRVNUM,v)
#define MBR_PUTBOOTSIG16(p,v) UBYTE_PUT(p,BS16_BOOTSIG,v)
#define MBR_PUTBOOTSIG32(p,v) UBYTE_PUT(p,BS32_BOOTSIG,v)
/* For the all targets, unaligned values need to be accessed byte-by-byte.
* Some architectures may handle unaligned accesses with special interrupt
* handlers. But even in that case, it is more efficient to avoid the traps.
*/
/* Unaligned multi-byte access macros */
#define MBR_GETBYTESPERSEC(p) fat_getuint16(UBYTE_PTR(p,BS_BYTESPERSEC))
#define MBR_GETROOTENTCNT(p) fat_getuint16(UBYTE_PTR(p,BS_ROOTENTCNT))
#define MBR_GETTOTSEC16(p) fat_getuint16(UBYTE_PTR(p,BS_TOTSEC16))
#define MBR_GETVOLID16(p) fat_getuint32(UBYTE_PTR(p,BS16_VOLID))
#define MBR_GETVOLID32(p) fat_getuint32(UBYTE_PTR(p,BS32_VOLID))
#define MBR_PUTBYTESPERSEC(p,v) fat_putuint16(UBYTE_PTR(p,BS_BYTESPERSEC),v)
#define MBR_PUTROOTENTCNT(p,v) fat_putuint16(UBYTE_PTR(p,BS_ROOTENTCNT),v)
#define MBR_PUTTOTSEC16(p,v) fat_putuint16(UBYTE_PTR(p,BS_TOTSEC16),v)
#define MBR_PUTVOLID16(p,v) fat_putuint32(UBYTE_PTR(p,BS16_VOLID),v)
#define MBR_PUTVOLID32(p,v) fat_putuint32(UBYTE_PTR(p,BS32_VOLID),v)
/* But for multi-byte values, the endian-ness of the target vs. the little
* endian order of the byte stream or alignment of the data within the byte
* stream can force special, byte-by-byte accesses.
*/
#ifdef CONFIG_ARCH_BIGENDIAN
/* If the target is big-endian, then even aligned multi-byte values must be
* accessed byte-by-byte.
*/
# define MBR_GETRESVDSECCOUNT(p) fat_getuint16(UBYTE_PTR(p,BS_RESVDSECCOUNT))
# define MBR_GETFATSZ16(p) fat_getuint16(UBYTE_PTR(p,BS_FATSZ16))
# define MBR_GETSECPERTRK(p) fat_getuint16(UBYTE_PTR(p,BS_SECPERTRK))
# define MBR_GETNUMHEADS(p) fat_getuint16(UBYTE_PTR(p,BS_NUMHEADS))
# define MBR_GETHIDSEC(p) fat_getuint32(UBYTE_PTR(p,BS_HIDSEC))
# define MBR_GETTOTSEC32(p) fat_getuint32(UBYTE_PTR(p,BS_TOTSEC32))
# define MBR_GETFATSZ32(p) fat_getuint32(UBYTE_PTR(p,BS32_FATSZ32))
# define MBR_GETEXTFLAGS(p) fat_getuint16(UBYTE_PTR(p,BS32_EXTFLAGS))
# define MBR_GETFSVER(p) fat_getuint16(UBYTE_PTR(p,BS32_FSVER))
# define MBR_GETROOTCLUS(p) fat_getuint32(UBYTE_PTR(p,BS32_ROOTCLUS))
# define MBR_GETFSINFO(p) fat_getuint16(UBYTE_PTR(p,BS32_FSINFO))
# define MBR_GETBKBOOTSEC(p) fat_getuint16(UBYTE_PTR(p,BS32_BKBOOTSEC))
# define MBR_GETSIGNATURE(p) fat_getuint16(UBYTE_PTR(p,BS_SIGNATURE))
# define MBR_GETPARTSECTOR(s) fat_getuint32(s);
# define FSI_GETLEADSIG(p) fat_getuint32(UBYTE_PTR(p,FSI_LEADSIG))
# define FSI_GETSTRUCTSIG(p) fat_getuint32(UBYTE_PTR(p,FSI_STRUCTSIG))
# define FSI_GETFREECOUNT(p) fat_getuint32(UBYTE_PTR(p,FSI_FREECOUNT))
# define FSI_GETNXTFREE(p) fat_getuint32(UBYTE_PTR(p,FSI_NXTFREE))
# define FSI_GETTRAILSIG(p) fat_getuint32(UBYTE_PTR(p,FSI_TRAILSIG))
# define MBR_PUTRESVDSECCOUNT(p,v) fat_putuint16(UBYTE_PTR(p,BS_RESVDSECCOUNT,v))
# define MBR_PUTFATSZ16(p,v) fat_putuint16(UBYTE_PTR(p,BS_FATSZ16,v))
# define MBR_PUTSECPERTRK(p,v) fat_putuint16(UBYTE_PTR(p,BS_SECPERTRK,v))
# define MBR_PUTNUMHEADS(p,v) fat_putuint16(UBYTE_PTR(p,BS_NUMHEADS,v))
# define MBR_PUTHIDSEC(p,v) fat_putuint32(UBYTE_PTR(p,BS_HIDSEC,v))
# define MBR_PUTTOTSEC32(p,v) fat_putuint32(UBYTE_PTR(p,BS_TOTSEC32,v))
# define MBR_PUTFATSZ32(p,v) fat_putuint32(UBYTE_PTR(p,BS32_FATSZ32,v))
# define MBR_PUTEXTFLAGS(p,v) fat_putuint16(UBYTE_PTR(p,BS32_EXTFLAGS,v))
# define MBR_PUTFSVER(p,v) fat_putuint16(UBYTE_PTR(p,BS32_FSVER,v))
# define MBR_PUTROOTCLUS(p,v) fat_putuint32(UBYTE_PTR(p,BS32_ROOTCLUS,v))
# define MBR_PUTFSINFO(p,v) fat_putuint16(UBYTE_PTR(p,BS32_FSINFO,v))
# define MBR_PUTBKBOOTSEC(p,v) fat_putuint16(UBYTE_PTR(p,BS32_BKBOOTSEC,v))
# define MBR_PUTSIGNATURE(p,v) fat_getuint16(UBYTE_PTR(p,BS_SIGNATURE),v)
# define FSI_PUTLEADSIG(p,v) fat_putuint32(UBYTE_PTR(p,FSI_LEADSIG),v)
# define FSI_PUTSTRUCTSIG(p,v) fat_putuint32(UBYTE_PTR(p,FSI_STRUCTSIG),v)
# define FSI_PUTFREECOUNT(p,v) fat_putuint32(UBYTE_PTR(p,FSI_FREECOUNT),v)
# define FSI_PUTNXTFREE(p,v) fat_putuint32(UBYTE_PTR(p,FSI_NXTFREE),v)
# define FSI_PUTTRAILSIG(p,v) fat_putuint32(UBYTE_PTR(p,FSI_TRAILSIG),v)
#else
/* But nothing special has to be done for the little endian-case for access
* to aligned mulitbyte values.
*/
# define MBR_GETRESVDSECCOUNT(p) UINT16_VAL(p,BS_RESVDSECCOUNT)
# define MBR_GETFATSZ16(p) UINT16_VAL(p,BS_FATSZ16)
# define MBR_GETSECPERTRK(p) UINT16_VAL(p,BS_SECPERTRK)
# define MBR_GETNUMHEADS(p) UINT16_VAL(p,BS_NUMHEADS)
# define MBR_GETHIDSEC(p) UINT32_VAL(p,BS_HIDSEC)
# define MBR_GETTOTSEC32(p) UINT32_VAL(p,BS_TOTSEC32)
# define MBR_GETFATSZ32(p) UINT32_VAL(p,BS32_FATSZ32)
# define MBR_GETEXTFLAGS(p) UINT16_VAL(p,BS32_EXTFLAGS)
# define MBR_GETFSVER(p) UINT16_VAL(p,BS32_FSVER)
# define MBR_GETROOTCLUS(p) UINT32_VAL(p,BS32_ROOTCLUS)
# define MBR_GETFSINFO(p) UINT16_VAL(p,BS32_FSINFO)
# define MBR_GETBKBOOTSEC(p) UINT16_VAL(p,BS32_BKBOOTSEC)
# define MBR_GETSIGNATURE(p) UINT16_VAL(p,BS_SIGNATURE)
# define MBR_GETPARTSECTOR(s) (*((uint32*)(s)))
# define FSI_GETLEADSIG(p) UINT32_VAL(p,FSI_LEADSIG)
# define FSI_GETSTRUCTSIG(p) UINT32_VAL(p,FSI_STRUCTSIG)
# define FSI_GETFREECOUNT(p) UINT32_VAL(p,FSI_FREECOUNT)
# define FSI_GETNXTFREE(p) UINT32_VAL(p,FSI_NXTFREE)
# define FSI_GETTRAILSIG(p) UINT32_VAL(p,FSI_TRAILSIG)
# define MBR_PUTRESVDSECCOUNT(p,v) UINT16_PUT(p,BS_RESVDSECCOUNT,v)
# define MBR_PUTFATSZ16(p,v) UINT16_PUT(p,BS_FATSZ16,v)
# define MBR_PUTSECPERTRK(p,v) UINT16_PUT(p,BS_SECPERTRK,v)
# define MBR_PUTNUMHEADS(p,v) UINT16_PUT(p,BS_NUMHEADS,v)
# define MBR_PUTHIDSEC(p,v) UINT32_PUT(p,BS_HIDSEC,v)
# define MBR_PUTTOTSEC32(p,v) UINT32_PUT(p,BS_TOTSEC32,v)
# define MBR_PUTFATSZ32(p,v) UINT32_PUT(p,BS32_FATSZ32,v)
# define MBR_PUTEXTFLAGS(p,v) UINT16_PUT(p,BS32_EXTFLAGS,v)
# define MBR_PUTFSVER(p,v) UINT16_PUT(p,BS32_FSVER,v)
# define MBR_PUTROOTCLUS(p,v) UINT32_PUT(p,BS32_ROOTCLUS,v)
# define MBR_PUTFSINFO(p,v) UINT16_PUT(p,BS32_FSINFO,v)
# define MBR_PUTBKBOOTSEC(p,v) UINT16_PUT(p,BS32_BKBOOTSEC,v)
# define MBR_PUTSIGNATURE(p,v) UINT16_PUT(p,BS_SIGNATURE,v)
# define FSI_PUTLEADSIG(p) UINT32_PUT(p,FSI_LEADSIG)
# define FSI_PUTSTRUCTSIG(p) UINT32_PUT(p,FSI_STRUCTSIG)
# define FSI_PUTFREECOUNT(p) UINT32_PUT(p,FSI_FREECOUNT)
# define FSI_PUTNXTFREE(p) UINT32_PUT(p,FSI_NXTFREE)
# define FSI_PUTTRAILSIG(p) UINT32_PUT(p,FSI_TRAILSIG)
#endif
/****************************************************************************
* Private Types
****************************************************************************/
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
static int fat_open(FAR struct file *filp, FAR struct inode *inode,
const char *rel_path, int oflags, mode_t mode);
static int fat_close(FAR struct file *filp);
static ssize_t fat_read(FAR struct file *filp, char *buffer, size_t buflen);
static ssize_t fat_write(FAR struct file *filp, const char *buffer,
size_t buflen);
static off_t fat_seek(FAR struct file *filp, off_t offset, int whence);
static int fat_ioctl(FAR struct file *filp, int cmd, unsigned long arg);
static int fat_bind(FAR struct inode *blkdriver, const void *data,
void **handle);
static int fat_unbind(void *handle);
/****************************************************************************
* Private Variables
****************************************************************************/
/****************************************************************************
* Public Variables
****************************************************************************/
/* See fs_mount.c -- this structure is explicitly externed there.
* We use the old-fashioned kind of initializers so that this will compile
* with any compiler.
*/
const struct mountpt_operations fat_operations =
{
fat_open,
fat_close,
fat_read,
fat_write,
fat_seek,
fat_ioctl,
fat_bind,
fat_unbind
};
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: fat_getuint16
****************************************************************************/
static uint16 fat_getuint16(ubyte *ptr)
{
#ifdef CONFIG_ARCH_BIGENDIAN
/* The bytes always have to be swapped if the target is big-endian */
return ((uint16)ptr[0] << 8) | ptr[1];
#else
/* Byte-by-byte transfer is still necessary if the address is un-aligned */
return ((uint16)ptr[1] << 8) | ptr[0];
#endif
}
/****************************************************************************
* Name: fat_getuint32
****************************************************************************/
static uint32 fat_getuint32(ubyte *ptr)
{
#ifdef CONFIG_ARCH_BIGENDIAN
/* The bytes always have to be swapped if the target is big-endian */
return ((uint32)fat_getuint16(&ptr[0]) << 16) | fat_getuint16(&ptr[2]);
#else
/* Byte-by-byte transfer is still necessary if the address is un-aligned */
return ((uint32)fat_getuint16(&ptr[2]) << 16) | fat_getuint16(&ptr[0]);
#endif
}
/****************************************************************************
* Name: fat_putuint16
****************************************************************************/
static void fat_putuint16(ubyte *ptr, uint16 value16)
{
ubyte *val = (ubyte*)&value16;
#ifdef CONFIG_ARCH_BIGENDIAN
/* The bytes always have to be swapped if the target is big-endian */
ptr[0] = val[1];
ptr[1] = val[0];
#else
/* Byte-by-byte transfer is still necessary if the address is un-aligned */
ptr[0] = val[0];
ptr[1] = val[1];
#endif
}
/****************************************************************************
* Name: fat_putuint32
****************************************************************************/
static void fat_putuint32(ubyte *ptr, uint32 value32)
{
uint16 *val = (uint16*)&value32;
#ifdef CONFIG_ARCH_BIGENDIAN
/* The bytes always have to be swapped if the target is big-endian */
fat_putuint16(&ptr[0], val[2]);
fat_putuint16(&ptr[2], val[0]);
#else
/* Byte-by-byte transfer is still necessary if the address is un-aligned */
fat_putuint16(&ptr[0], val[0]);
fat_putuint16(&ptr[2], val[2]);
#endif
}
/****************************************************************************
* Name: fat_semtake
****************************************************************************/
static void fat_semtake(struct fat_mountpt_s *fs)
{
/* Take the semaphore (perhaps waiting) */
while (sem_wait(&fs->fs_sem) != 0)
{
/* The only case that an error should occur here is if
* the wait was awakened by a signal.
*/
ASSERT(*get_errno_ptr() == EINTR);
}
}
/****************************************************************************
* Name: fat_semgive
****************************************************************************/
static inline void fat_semgive(struct fat_mountpt_s *fs)
{
sem_post(&fs->fs_sem);
}
/****************************************************************************
* Name: fat_checkmount
*
* Desciption: Check if the mountpoint is still valid.
*
* The caller should hold the mountpoint semaphore
*
****************************************************************************/
static int fat_checkmount(struct fat_mountpt_s *fs)
{
/* If the fs_mounted flag is FALSE, then we have already handled the loss
* of the mount.
*/
if (fs->fs_mounted)
{
struct fat_file_s *file;
/* We still think the mount is healthy. Check an see if this is
* still the case
*/
if (fs->fs_blkdriver)
{
struct inode *inode = fs->fs_blkdriver;
if (inode && inode->u.i_bops && inode->u.i_bops->geometry)
{
struct geometry geo;
int errcode = inode->u.i_bops->geometry(inode, &geo);
if (errcode == OK && geo.geo_available && !geo.geo_mediachanged)
{
return OK;
}
}
}
/* If we get here, the mount is NOT healthy */
fs->fs_mounted = FALSE;
/* Make sure that this is flagged in every opened file */
for (file = fs->fs_head; file; file = file->ff_next)
{
file->ff_open = FALSE;
}
}
return -ENODEV;
}
/****************************************************************************
* Name: fat_bread
*
* Desciption: Read the specified sector
*
****************************************************************************/
static int fat_bread(struct fat_mountpt_s *fs, size_t sector)
{
int ret = -ENODEV;
if (fs && fs->fs_blkdriver )
{
struct inode *inode = fs->fs_blkdriver;
if (inode && inode->u.i_bops && inode->u.i_bops->read)
{
ssize_t nSectorsRead = inode->u.i_bops->read(inode, fs->fs_buffer,
sector, 1);
if (nSectorsRead == 1)
{
ret = OK;
}
else if (nSectorsRead < 0)
{
ret = nSectorsRead;
}
}
}
return ret;
}
/****************************************************************************
* Name: fat_readfsinfo
*
* Desciption: Read the FAT32 FSINFO sector
*
****************************************************************************/
static int fat_readfsinfo(struct fat_mountpt_s *fs)
{
/* Verify that this is, indeed, an FSINFO sector */
if (FSI_GETLEADSIG(fs->fs_buffer) == 0x41615252 &&
FSI_GETSTRUCTSIG(fs->fs_buffer) == 0x61417272 &&
FSI_GETTRAILSIG(fs->fs_buffer) == 0xaa550000)
{
fs->fs_fsinextfree = FSI_GETFREECOUNT(fs->fs_buffer);
fs->fs_fsifreecount = FSI_GETNXTFREE(fs->fs_buffer);
return OK;
}
return -ENODEV;
}
/****************************************************************************
* Name: fat_checkbootrecord
*
* Desciption: Read a sector and verify that it is a a FAT boot record.
*
****************************************************************************/
static int fat_checkbootrecord(struct fat_mountpt_s *fs)
{
uint32 ndatasectors;
uint32 fatsize;
uint16 rootdirsectors = 0;
boolean notfat32 = FALSE;
/* Verify the MBR signature at offset 510 in the sector (true even
* if the sector size is greater than 512. All FAT file systems have
* this signature. On a FAT32 volume, the RootEntCount , FatSz16, and
* FatSz32 values should always be zero. The FAT sector size should
* match the reported hardware sector size.
*/
if (MBR_GETSIGNATURE(fs->fs_buffer) != 0xaa55 ||
MBR_GETBYTESPERSEC(fs->fs_buffer) != fs->fs_hwsectorsize)
{
return -ENODEV;
}
/* Verify the FAT32 file system type. The determination of the file
* system type is based on the number of clusters on the volume: FAT12
* volume has < 4085 cluseter, a FAT16 volume has fewer than 65,525
* clusters, and any larger is FAT32.
*
* Get the number of 32-bit directory entries in root directory (zero
* for FAT32.
*/
fs->fs_rootentcnt = MBR_GETROOTENTCNT(fs->fs_buffer);
if (fs->fs_rootentcnt != 0)
{
notfat32 = TRUE; /* Must be zero for FAT32 */
rootdirsectors = (32 * fs->fs_rootentcnt + fs->fs_hwsectorsize - 1) / fs->fs_hwsectorsize;
}
/* Determine the number of sectors in a FAT. */
fs->fs_fatsize = MBR_GETFATSZ16(fs->fs_buffer); /* Should be zero */
if (fs->fs_fatsize)
{
notfat32 = TRUE; /* Must be zero for FAT32 */
}
else
{
fs->fs_fatsize = MBR_GETFATSZ32(fs->fs_buffer);
}
if (!fs->fs_fatsize || fs->fs_fatsize >= fs->fs_hwnsectors)
{
return -ENODEV;
}
/* Get the total number of sectors on the volume. */
fs->fs_fattotsec = MBR_GETTOTSEC16(fs->fs_buffer); /* Should be zero */
if (fs->fs_fattotsec)
{
notfat32 = TRUE; /* Must be zero for FAT32 */
}
else
{
fs->fs_fattotsec = MBR_GETTOTSEC32(fs->fs_buffer);
}
if (!fs->fs_fattotsec || fs->fs_fattotsec > fs->fs_hwnsectors)
{
return -ENODEV;
}
/* Get the total number of reserved sectors */
fs->fs_fatresvdseccount = MBR_GETRESVDSECCOUNT(fs->fs_buffer);
if (fs->fs_fatresvdseccount > fs->fs_hwnsectors)
{
return -ENODEV;
}
/* Get the number of FATs. This is probably two but could have other values */
fs->fs_fatnumfats = MBR_GETNUMFATS(fs->fs_buffer);
fatsize = fs->fs_fatnumfats * fs->fs_fatsize;
/* Get the total number of data sectors */
ndatasectors = fs->fs_fattotsec - fs->fs_fatresvdseccount - fatsize - rootdirsectors;
if (ndatasectors > fs->fs_hwnsectors)
{
return -ENODEV;
}
/* Get the sectors per cluster */
fs->fs_fatsecperclus = MBR_GETSECPERCLUS(fs->fs_buffer);
/* Calculate the number of clusters */
fs->fs_nclusters = ndatasectors / fs->fs_fatsecperclus;
/* Finally, the test: */
if (fs->fs_nclusters < 4085)
{
fs->fs_fsinfo = 0;
fs->fs_type = FSTYPE_FAT12;
}
else if (fs->fs_nclusters < 65525)
{
fs->fs_fsinfo = 0;
fs->fs_type = FSTYPE_FAT16;
}
else if (!notfat32)
{
fs->fs_fsinfo = fs->fs_fatbase + MBR_GETFSINFO(fs->fs_buffer);
fs->fs_type = FSTYPE_FAT32;
}
else
{
return -ENODEV;
}
/* We have what appears to be a valid FAT filesystem! Save a few more things
* from the boot record that we will need later.
*/
fs->fs_fatbase += fs->fs_fatresvdseccount;
if (fs->fs_type == FSTYPE_FAT32)
{
fs->fs_rootbase = MBR_GETROOTCLUS(fs->fs_buffer);
}
else
{
fs->fs_rootbase = fs->fs_fatbase + fatsize;
}
fs->fs_database = fs->fs_fatbase + fatsize + fs->fs_rootentcnt / (fs->fs_hwsectorsize / 32);
fs->fs_fsifreecount = 0xffffffff;
return OK;
}
/****************************************************************************
* Name: fat_mount
*
* Desciption: This function is called only when the mountpoint is first
* established. It initializes the mountpoint structure and verifies
* that a valid FAT32 filesystem is provided by the block driver.
*
* The caller should hold the mountpoint semaphore
*
****************************************************************************/
static int fat_mount(struct fat_mountpt_s *fs, boolean writeable)
{
FAR struct inode *inode;
struct geometry geo;
int ret;
/* Assume that the mount is successful */
fs->fs_mounted = TRUE;
/* Check if there is media available */
inode = fs->fs_blkdriver;
if (!inode || !inode->u.i_bops || !inode->u.i_bops->geometry ||
inode->u.i_bops->geometry(inode, &geo) != OK || !geo.geo_available)
{
ret = -ENODEV;
goto errout;
}
/* Make sure that that the media is write-able (if write access is needed) */
if (writeable && !geo.geo_writeenabled)
{
ret = -EACCES;
goto errout;
}
/* Save the hardware geometry */
fs->fs_hwsectorsize = geo.geo_sectorsize;
fs->fs_hwnsectors = geo.geo_nsectors;
/* Allocate a buffer to hold one hardware sector */
fs->fs_buffer = (ubyte*)malloc(fs->fs_hwsectorsize);
if (!fs->fs_buffer)
{
ret = -ENOMEM;
goto errout;
}
/* Search FAT boot record on the drive. First check at sector zero. This
* could be either the boot record or a partition that refers to the boot
* record.
*
* First read sector zero. This will be the first access to the drive and a
* likely failure point.
*/
fs->fs_fatbase = 0;
ret = fat_bread(fs, 0);
if (ret < 0)
{
goto errout_with_buffer;
}
if (fat_checkbootrecord(fs) != OK)
{
/* The contents of sector 0 is not a boot record. It could be a
* partition, however. Assume it is a partition and get the offset
* into the partition table. This table is at offset MBR_TABLE and is
* indexed by 16x the partition number. Here we support only
* parition 0.
*/
ubyte *partition = &fs->fs_buffer[MBR_TABLE + 0];
/* Check if the partition exists and, if so, get the bootsector for that
* partition and see if we can find the boot record there.
*/
if (partition[4])
{
/* There appears to be a partition, get the sector number of the
* partition (LBA)
*/
fs->fs_fatbase = MBR_GETPARTSECTOR(&partition[8]);
/* Read the new candidate boot sector */
ret = fat_bread(fs, 0);
if (ret < 0)
{
goto errout_with_buffer;
}
/* Check if this is a boot record */
if (fat_checkbootrecord(fs) != OK)
{
goto errout_with_buffer;
}
}
}
/* We have what appears to be a valid FAT filesystem! Now read the
* FSINFO sector (FAT32 only)
*/
if (fs->fs_type == FSTYPE_FAT32)
{
ret = fat_readfsinfo(fs);
if (ret != OK)
{
goto errout_with_buffer;
}
}
/* We did it! */
dbg("FAT%d:\n", fs->fs_type == 0 ? 12 : fs->fs_type == 1 ? 16 : 32);
dbg("\tHW sector size: %d\n", fs->fs_hwsectorsize);
dbg("\t sectors: %d\n", fs->fs_hwnsectors);
dbg("\tFAT reserved: %d\n", fs->fs_fatresvdseccount);
dbg("\t sectors: %d\n", fs->fs_fattotsec);
dbg("\t start sector: %d\n", fs->fs_fatbase);
dbg("\t root sector: %d\n", fs->fs_rootbase);
dbg("\t root entries: %d\n", fs->fs_rootentcnt);
dbg("\t data sector: %d\n", fs->fs_database);
dbg("\t FSINFO sector: %d\n", fs->fs_fsinfo);
dbg("\t Num FATs: %d\n", fs->fs_fatnumfats);
dbg("\t FAT size: %d\n", fs->fs_fatsize);
dbg("\t sectors/cluster: %d\n", fs->fs_fatsecperclus);
dbg("\t max clusters: %d\n", fs->fs_nclusters);
dbg("\tFSI free count %d\n", fs->fs_fsifreecount);
dbg("\t next free %d\n", fs->fs_fsinextfree);
return OK;
errout_with_buffer:
free(fs->fs_buffer);
fs->fs_buffer = 0;
errout:
fs->fs_mounted = FALSE;
return ret;
}
/****************************************************************************
* Name: fat_open
****************************************************************************/
static int fat_open(FAR struct file *filp, FAR struct inode *inode,
const char *rel_path, int oflags, mode_t mode)
{
struct fat_mountpt_s *fs = (struct fat_mountpt_s *)inode->i_private;
struct fat_file_s *ff;
int ret = OK;
/* Make sure that the mount is still healthy */
if (!fs)
{
ret = -ENOSYS;
goto errout;
}
fat_semtake(fs);
ret = fat_checkmount(fs);
if (ret != OK)
{
goto errout_with_semaphore;
}
/* Allocate a new private instance for the struct file */
ff = (struct fat_file_s *)malloc(sizeof(struct fat_file_s));
if (!ff)
{
ret = -ENOMEM;
goto errout_with_semaphore;
}
/* Find the requested path and open or create the file */
#warning "Open logic missing"
/* Initialize the new private instance */
ff->ff_parent = fs;
ff->ff_open = TRUE;
/* Then insert the new instance into the mountpoint structure.
* It needs to be there (1) to handle error conditions that effect
* all files, and (2) to inform the umount logic that we are busy
* (but a simple reference count could have done that).
*/
ff->ff_next = fs->fs_head;
fs->fs_head = ff->ff_next;
fat_semgive(fs);
return OK;
errout_with_alloc:
free(ff);
errout_with_semaphore:
fat_semgive(fs);
errout:
return ret;
}
/****************************************************************************
* Name: fat_close
****************************************************************************/
static int fat_close(FAR struct file *filp)
{
struct fat_file_s *ff = filp->f_priv;
struct fat_mountpt_s *fs;
if (!ff || !(fs = ff->ff_parent))
{
return -EINVAL;
}
/* Do not check if the mount is healthy. We must support closing of
* the file even when there is healthy mount.
*/
return -ENOSYS;
}
/****************************************************************************
* Name: fat_read
****************************************************************************/
static ssize_t fat_read(FAR struct file *filp, char *buffer, size_t buflen)
{
struct fat_file_s *ff = filp->f_priv;
struct fat_mountpt_s *fs;
int ret;
if (!ff || !(fs = ff->ff_parent))
{
return -EINVAL;
}
/* Make sure that the mount is still healthy */
ret = fat_checkmount(fs);
if (ret != OK)
{
return ret;
}
return -ENOSYS;
}
/****************************************************************************
* Name: fat_write
****************************************************************************/
static ssize_t fat_write(FAR struct file *filp, const char *buffer,
size_t buflen)
{
struct fat_file_s *ff = filp->f_priv;
struct fat_mountpt_s *fs;
int ret;
if (!ff || !(fs = ff->ff_parent))
{
return -EINVAL;
}
/* Make sure that the mount is still healthy */
ret = fat_checkmount(fs);
if (ret != OK)
{
return ret;
}
return -ENOSYS;
}
/****************************************************************************
* Name: fat_seek
****************************************************************************/
static off_t fat_seek(FAR struct file *filp, off_t offset, int whence)
{
struct fat_file_s *ff = filp->f_priv;
struct fat_mountpt_s *fs;
int ret;
if (!ff || !(fs = ff->ff_parent))
{
return -EINVAL;
}
/* Make sure that the mount is still healthy */
ret = fat_checkmount(fs);
if (ret != OK)
{
return ret;
}
return -ENOSYS;
}
/****************************************************************************
* Name: fat_ioctl
****************************************************************************/
static int fat_ioctl(FAR struct file *filp, int cmd, unsigned long arg)
{
struct fat_file_s *ff = filp->f_priv;
struct fat_mountpt_s *fs;
int ret;
if (!ff || !(fs = ff->ff_parent))
{
return -EINVAL;
}
/* Make sure that the mount is still healthy */
ret = fat_checkmount(fs);
if (ret != OK)
{
return ret;
}
/* ioctl calls are just passed through to the contained block driver */
return -ENOSYS;
}
/****************************************************************************
* Name: fat_bind
*
* Description: This implements a portion of the mount operation. This
* function allocates and initializes the mountpoint private data and
* binds the blockdriver inode to the filesystem private data. The final
* binding of the private data (containing the blockdriver) to the
* mountpoint is performed by mount().
*
****************************************************************************/
static int fat_bind(FAR struct inode *blkdriver, const void *data,
void **handle)
{
struct fat_mountpt_s *fs;
int ret;
/* Create an instance of the mountpt state structure */
fs = (struct fat_mountpt_s *)zalloc(sizeof(struct fat_mountpt_s));
if ( !fs )
{
return -ENOMEM;
}
/* Initialize the allocated mountpt state structure */
fs->fs_blkdriver = blkdriver;
sem_init(&fs->fs_sem, 0, 0);
/* Then get information about the FAT32 filesystem on the devices managed
* by this block driver.
*/
ret = fat_mount(fs, TRUE);
if ( ret != 0 )
{
sem_destroy(&fs->fs_sem);
free(fs);
return ret;
}
*handle = (void*)fs;
fat_semgive(fs);
return OK;
}
/****************************************************************************
* Name: fat_unbind
*
* Description: This implements the filesystem portion of the umount
* operation.
*
****************************************************************************/
static int fat_unbind(void *handle)
{
struct fat_mountpt_s *fs = (struct fat_mountpt_s*)handle;
int ret;
if ( !fs )
{
return -EINVAL;
}
/* Check if there are sill any files opened on the filesystem. */
ret = OK; /* Assume success */
fat_semtake(fs);
if (fs->fs_head)
{
/* We cannot unmount now.. there are open files */
ret = -EBUSY;
}
else
{
/* Unmount ... close the block driver */
if (fs->fs_blkdriver)
{
struct inode *inode = fs->fs_blkdriver;
if (inode && inode->u.i_bops && inode->u.i_bops->close)
{
(void)inode->u.i_bops->close(inode);
}
}
/* Release the mountpoint private data */
if (fs->fs_buffer)
{
free(fs->fs_buffer);
}
free(fs);
}
fat_semgive(fs);
return ret;
}
/****************************************************************************
* Public Functions
****************************************************************************/
#endif /* CONFIG_FS_FAT */