nuttx/libs/libnx/nxglib/nxglib_rgbblend.c
2022-07-08 02:15:54 +08:00

222 lines
6.3 KiB
C

/****************************************************************************
* libs/libnx/nxglib/nxglib_rgbblend.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <stdint.h>
#include <fixedmath.h>
#include <nuttx/video/rgbcolors.h>
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: nxglib_rgb24_blend and nxglib_rgb565_blend
*
* Description:
* Blend a single RGB color component. This is *not* alpha blending:
* component2 is assumed to be opaque and "under" a semi-transparent
* component1.
*
* The frac1 value could be though as related to the 1/alpha value for
* component1.
* However, the background, component2, is always treated as though
* alpha == 1.
*
* This algorithm is used to handle endpoints as part of the
* implementation of anti-aliasing without transparency.
*
* Input Parameters:
* component1 - The semi-transparent, foreground 8-bit color component
* component2 - The opaque, background color component
* frac1 - The fractional amount of component1 to blend into component2
*
* Returned Value:
* The blended 8-bit color component.
*
****************************************************************************/
#if !defined(CONFIG_NX_DISABLE_16BPP) || !defined(CONFIG_NX_DISABLE_24BPP) || \
!defined(CONFIG_NX_DISABLE_32BPP)
static uint8_t nxglib_blend_component(uint8_t component1, uint8_t component2,
ub8_t frac1)
{
uint16_t blend;
uint32_t blendb8;
/* Use a uint32_t for the intermediate calculation. Due to rounding this
* value could exceed ub8MAX (0xffff == 255.999..).
*
* Hmm.. that might not actually be possible but this gives me piece of
* mind and there should not be any particular overhead on a 32-bit
* processor.
*/
blendb8 = (uint32_t)((ub16_t)component1 * frac1) +
(uint32_t)((ub16_t)component2 * (b8ONE - frac1)) +
(uint32_t)b8HALF;
/* Now we can snap it down to 16-bits and check for the overflow
* condition.
*/
blend = ub8toi(blendb8);
if (blend > 255)
{
blend = 255;
}
/* Return the blended value */
return (uint8_t)blend;
}
#endif
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: nxglib_rgb24_blend and nxglib_rgb565_blend
*
* Description:
* Blend a foreground color onto a background color. This is *not* alpha
* blending: color2 is assumed to be opaque and "under" a semi-
* transparent color1.
*
* The frac1 value could be though as related to the 1/alpha value for
* color1. However, the background, color2, is always treated as though
* alpha == 1.
*
* This algorithm is used to handle endpoints as part of the
* implementation of anti-aliasing without transparency.
*
* Input Parameters:
* color1 - The semi-transparent, foreground color
* color2 - The opaque, background color
* frac1 - The fractional amount of color1 to blend into color2
*
* Returned Value:
* The blended color, encoded just was the input color1 and color2
*
****************************************************************************/
#if !defined(CONFIG_NX_DISABLE_24BPP) || !defined(CONFIG_NX_DISABLE_32BPP)
uint32_t nxglib_rgb24_blend(uint32_t color1, uint32_t color2, ub16_t frac1)
{
uint8_t r;
uint8_t g;
uint8_t b;
uint8_t bg;
ub8_t fracb8;
/* Convert the fraction to ub8_t. We don't need that much precision to
* scale an 8-bit color component.
*/
fracb8 = ub16toub8(frac1);
/* Some limit checks. Rounding in the b16 to b8 conversion could cause
* the fraction exceed one; the loss of precision could cause small b16
* values to convert to zero.
*/
if (fracb8 >= b8ONE)
{
return color1;
}
else if (fracb8 == 0)
{
return color2;
}
/* Separate and blend each component */
r = RGB24RED(color1);
bg = RGB24RED(color2);
r = nxglib_blend_component(r, bg, fracb8);
g = RGB24GREEN(color1);
bg = RGB24GREEN(color2);
g = nxglib_blend_component(g, bg, fracb8);
b = RGB24BLUE(color1);
bg = RGB24BLUE(color2);
b = nxglib_blend_component(b, bg, fracb8);
/* Recombine and return the blended value */
return RGBTO24(r, g, b);
}
#endif
#ifndef CONFIG_NX_DISABLE_16BPP
uint16_t nxglib_rgb565_blend(uint16_t color1, uint16_t color2, ub16_t frac1)
{
uint8_t r;
uint8_t g;
uint8_t b;
uint8_t bg;
ub8_t fracb8;
/* Convert the fraction to ub8_t. We don't need that much precision. */
fracb8 = ub16toub8(frac1);
/* Some limit checks */
if (fracb8 >= b8ONE)
{
return color1;
}
else if (fracb8 == 0)
{
return color2;
}
/* Separate and blend each component */
r = RGB16RED(color1);
bg = RGB16RED(color2);
r = nxglib_blend_component(r, bg, fracb8);
g = RGB16GREEN(color1);
bg = RGB16GREEN(color2);
g = nxglib_blend_component(g, bg, fracb8);
b = RGB16BLUE(color1);
bg = RGB16BLUE(color2);
b = nxglib_blend_component(b, bg, fracb8);
/* Recombine and return the blended value */
return RGBTO24(r, g, b);
}
#endif