nuttx/arch/risc-v/include/irq.h
Ville Juven 35c27b5a9a riscv/fpu: Restore correct lazy-FPU functionality
- Save the FPU registers into the tcb so they don't get lost if the stack
  frame for xcp.regs moves (as it does)
- Handle interger and FPU register save/load separately
- Integer registers are saved/loaded always, like before
- FPU registers are only saved during a context switch:
  - Save ONLY if FPU is dirty
  - Restore always if FPU has been used (not in FSTATE_OFF, FSTATE_INIT)
- Remove all lazy-FPU related logic from the macros, it is not needed
2023-06-19 19:28:07 +08:00

748 lines
23 KiB
C

/****************************************************************************
* arch/risc-v/include/irq.h
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* This file should never be included directly but, rather, only indirectly
* through nuttx/irq.h
*/
#ifndef __ARCH_RISCV_INCLUDE_IRQ_H
#define __ARCH_RISCV_INCLUDE_IRQ_H
/****************************************************************************
* Included Files
****************************************************************************/
/* Include chip-specific IRQ definitions (including IRQ numbers) */
#include <nuttx/config.h>
#include <sys/types.h>
#include <arch/csr.h>
#include <arch/chip/irq.h>
#include <arch/mode.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#ifdef __ASSEMBLY__
# define __STR(s) s
#else
# define __STR(s) #s
#endif
#define __XSTR(s) __STR(s)
/* Map RISC-V exception code to NuttX IRQ */
/* IRQ 0-15 : (exception:interrupt=0) */
#define RISCV_IRQ_IAMISALIGNED (0) /* Instruction Address Misaligned */
#define RISCV_IRQ_IAFAULT (1) /* Instruction Access Fault */
#define RISCV_IRQ_IINSTRUCTION (2) /* Illegal Instruction */
#define RISCV_IRQ_BPOINT (3) /* Break Point */
#define RISCV_IRQ_LAMISALIGNED (4) /* Load Address Misaligned */
#define RISCV_IRQ_LAFAULT (5) /* Load Access Fault */
#define RISCV_IRQ_SAMISALIGNED (6) /* Store/AMO Address Misaligned */
#define RISCV_IRQ_SAFAULT (7) /* Store/AMO Access Fault */
#define RISCV_IRQ_ECALLU (8) /* Environment Call from U-mode */
#define RISCV_IRQ_ECALLS (9) /* Environment Call from S-mode */
#define RISCV_IRQ_ECALLH (10) /* Environment Call from H-mode */
#define RISCV_IRQ_ECALLM (11) /* Environment Call from M-mode */
#define RISCV_IRQ_INSTRUCTIONPF (12) /* Instruction page fault */
#define RISCV_IRQ_LOADPF (13) /* Load page fault */
#define RISCV_IRQ_RESERVED (14) /* Reserved */
#define RISCV_IRQ_STOREPF (15) /* Store/AMO page fault */
#define RISCV_MAX_EXCEPTION (15)
/* IRQ 16- : (async event:interrupt=1) */
#define RISCV_IRQ_ASYNC (16)
#define RISCV_IRQ_SSOFT (RISCV_IRQ_ASYNC + 1) /* Supervisor Software Int */
#define RISCV_IRQ_MSOFT (RISCV_IRQ_ASYNC + 3) /* Machine Software Int */
#define RISCV_IRQ_STIMER (RISCV_IRQ_ASYNC + 5) /* Supervisor Timer Int */
#define RISCV_IRQ_MTIMER (RISCV_IRQ_ASYNC + 7) /* Machine Timer Int */
#define RISCV_IRQ_SEXT (RISCV_IRQ_ASYNC + 9) /* Supervisor External Int */
#define RISCV_IRQ_MEXT (RISCV_IRQ_ASYNC + 11) /* Machine External Int */
#define RISCV_IRQ_HPMOV (RISCV_IRQ_ASYNC + 17) /* HPM Overflow Int */
/* IRQ bit and IRQ mask */
#ifdef CONFIG_ARCH_RV32
# define RISCV_IRQ_BIT (UINT32_C(1) << 31)
#else
# define RISCV_IRQ_BIT (UINT64_C(1) << 63)
#endif
#define RISCV_IRQ_MASK (~RISCV_IRQ_BIT)
/* Configuration ************************************************************/
/* If this is a kernel build, how many nested system calls should we
* support?
*/
#ifndef CONFIG_SYS_NNEST
# define CONFIG_SYS_NNEST 2
#endif
/* Processor PC */
#define REG_EPC_NDX 0
/* General pupose registers
* $0: Zero register does not need to be saved
* $1: ra (return address)
*/
#define REG_X1_NDX 1
/* $2: Stack POinter
* $3: Global Pointer
* $4: Thread Pointer
*/
#define REG_X2_NDX 2
#define REG_X3_NDX 3
#define REG_X4_NDX 4
/* $5-$7 = t0-t3: Temporary registers */
#define REG_X5_NDX 5
#define REG_X6_NDX 6
#define REG_X7_NDX 7
/* $8: s0 / fp Frame pointer */
#define REG_X8_NDX 8
/* $89 s1 Saved register */
#define REG_X9_NDX 9
/* $10-$17 = a0-a7: Argument registers */
#define REG_X10_NDX 10
#define REG_X11_NDX 11
#define REG_X12_NDX 12
#define REG_X13_NDX 13
#define REG_X14_NDX 14
#define REG_X15_NDX 15
#define REG_X16_NDX 16
#define REG_X17_NDX 17
/* $18-$27 = s2-s11: Saved registers */
#define REG_X18_NDX 18
#define REG_X19_NDX 19
#define REG_X20_NDX 20
#define REG_X21_NDX 21
#define REG_X22_NDX 22
#define REG_X23_NDX 23
#define REG_X24_NDX 24
#define REG_X25_NDX 25
#define REG_X26_NDX 26
#define REG_X27_NDX 27
/* $28-31 = t3-t6: Temporary (Volatile) registers */
#define REG_X28_NDX 28
#define REG_X29_NDX 29
#define REG_X30_NDX 30
#define REG_X31_NDX 31
/* Interrupt Context register */
#define REG_INT_CTX_NDX 32
#ifdef CONFIG_ARCH_RISCV_INTXCPT_EXTREGS
# define INT_XCPT_REGS (33 + CONFIG_ARCH_RISCV_INTXCPT_EXTREGS)
#else
# define INT_XCPT_REGS 33
#endif
#ifdef CONFIG_ARCH_RV32
# define INT_REG_SIZE 4
#else
# define INT_REG_SIZE 8
#endif
#define INT_XCPT_SIZE (INT_REG_SIZE * INT_XCPT_REGS)
#ifdef CONFIG_ARCH_RV32
# if defined(CONFIG_ARCH_QPFPU)
# define FPU_REG_SIZE 4
# elif defined(CONFIG_ARCH_DPFPU)
# define FPU_REG_SIZE 2
# elif defined(CONFIG_ARCH_FPU)
# define FPU_REG_SIZE 1
# endif
#else
# if defined(CONFIG_ARCH_QPFPU)
# define FPU_REG_SIZE 2
# else
# define FPU_REG_SIZE 1
# endif
#endif
#ifdef CONFIG_ARCH_FPU
# define REG_F0_NDX (FPU_REG_SIZE * 0)
# define REG_F1_NDX (FPU_REG_SIZE * 1)
# define REG_F2_NDX (FPU_REG_SIZE * 2)
# define REG_F3_NDX (FPU_REG_SIZE * 3)
# define REG_F4_NDX (FPU_REG_SIZE * 4)
# define REG_F5_NDX (FPU_REG_SIZE * 5)
# define REG_F6_NDX (FPU_REG_SIZE * 6)
# define REG_F7_NDX (FPU_REG_SIZE * 7)
# define REG_F8_NDX (FPU_REG_SIZE * 8)
# define REG_F9_NDX (FPU_REG_SIZE * 9)
# define REG_F10_NDX (FPU_REG_SIZE * 10)
# define REG_F11_NDX (FPU_REG_SIZE * 11)
# define REG_F12_NDX (FPU_REG_SIZE * 12)
# define REG_F13_NDX (FPU_REG_SIZE * 13)
# define REG_F14_NDX (FPU_REG_SIZE * 14)
# define REG_F15_NDX (FPU_REG_SIZE * 15)
# define REG_F16_NDX (FPU_REG_SIZE * 16)
# define REG_F17_NDX (FPU_REG_SIZE * 17)
# define REG_F18_NDX (FPU_REG_SIZE * 18)
# define REG_F19_NDX (FPU_REG_SIZE * 19)
# define REG_F20_NDX (FPU_REG_SIZE * 20)
# define REG_F21_NDX (FPU_REG_SIZE * 21)
# define REG_F22_NDX (FPU_REG_SIZE * 22)
# define REG_F23_NDX (FPU_REG_SIZE * 23)
# define REG_F24_NDX (FPU_REG_SIZE * 24)
# define REG_F25_NDX (FPU_REG_SIZE * 25)
# define REG_F26_NDX (FPU_REG_SIZE * 26)
# define REG_F27_NDX (FPU_REG_SIZE * 27)
# define REG_F28_NDX (FPU_REG_SIZE * 28)
# define REG_F29_NDX (FPU_REG_SIZE * 29)
# define REG_F30_NDX (FPU_REG_SIZE * 30)
# define REG_F31_NDX (FPU_REG_SIZE * 31)
# define REG_FCSR_NDX (FPU_REG_SIZE * 32)
# define FPU_XCPT_REGS (FPU_REG_SIZE * 33)
# define FPU_XCPT_SIZE (INT_REG_SIZE * FPU_XCPT_REGS)
#else /* !CONFIG_ARCH_FPU */
# define FPU_XCPT_REGS (0)
# define FPU_XCPT_SIZE (0)
#endif /* CONFIG_ARCH_FPU */
#define XCPTCONTEXT_REGS (INT_XCPT_REGS + FPU_XCPT_REGS)
/* Save only integer regs. FPU is handled separately */
#define XCPTCONTEXT_SIZE (INT_XCPT_SIZE)
/* In assembly language, values have to be referenced as byte address
* offsets. But in C, it is more convenient to reference registers as
* register save table offsets.
*/
#ifdef __ASSEMBLY__
# define REG_EPC (INT_REG_SIZE*REG_EPC_NDX)
# define REG_X1 (INT_REG_SIZE*REG_X1_NDX)
# define REG_X2 (INT_REG_SIZE*REG_X2_NDX)
# define REG_X3 (INT_REG_SIZE*REG_X3_NDX)
# define REG_X4 (INT_REG_SIZE*REG_X4_NDX)
# define REG_X5 (INT_REG_SIZE*REG_X5_NDX)
# define REG_X6 (INT_REG_SIZE*REG_X6_NDX)
# define REG_X7 (INT_REG_SIZE*REG_X7_NDX)
# define REG_X8 (INT_REG_SIZE*REG_X8_NDX)
# define REG_X9 (INT_REG_SIZE*REG_X9_NDX)
# define REG_X10 (INT_REG_SIZE*REG_X10_NDX)
# define REG_X11 (INT_REG_SIZE*REG_X11_NDX)
# define REG_X12 (INT_REG_SIZE*REG_X12_NDX)
# define REG_X13 (INT_REG_SIZE*REG_X13_NDX)
# define REG_X14 (INT_REG_SIZE*REG_X14_NDX)
# define REG_X15 (INT_REG_SIZE*REG_X15_NDX)
# define REG_X16 (INT_REG_SIZE*REG_X16_NDX)
# define REG_X17 (INT_REG_SIZE*REG_X17_NDX)
# define REG_X18 (INT_REG_SIZE*REG_X18_NDX)
# define REG_X19 (INT_REG_SIZE*REG_X19_NDX)
# define REG_X20 (INT_REG_SIZE*REG_X20_NDX)
# define REG_X21 (INT_REG_SIZE*REG_X21_NDX)
# define REG_X22 (INT_REG_SIZE*REG_X22_NDX)
# define REG_X23 (INT_REG_SIZE*REG_X23_NDX)
# define REG_X24 (INT_REG_SIZE*REG_X24_NDX)
# define REG_X25 (INT_REG_SIZE*REG_X25_NDX)
# define REG_X26 (INT_REG_SIZE*REG_X26_NDX)
# define REG_X27 (INT_REG_SIZE*REG_X27_NDX)
# define REG_X28 (INT_REG_SIZE*REG_X28_NDX)
# define REG_X29 (INT_REG_SIZE*REG_X29_NDX)
# define REG_X30 (INT_REG_SIZE*REG_X30_NDX)
# define REG_X31 (INT_REG_SIZE*REG_X31_NDX)
# define REG_INT_CTX (INT_REG_SIZE*REG_INT_CTX_NDX)
#ifdef CONFIG_ARCH_FPU
# define REG_F0 (INT_REG_SIZE*REG_F0_NDX)
# define REG_F1 (INT_REG_SIZE*REG_F1_NDX)
# define REG_F2 (INT_REG_SIZE*REG_F2_NDX)
# define REG_F3 (INT_REG_SIZE*REG_F3_NDX)
# define REG_F4 (INT_REG_SIZE*REG_F4_NDX)
# define REG_F5 (INT_REG_SIZE*REG_F5_NDX)
# define REG_F6 (INT_REG_SIZE*REG_F6_NDX)
# define REG_F7 (INT_REG_SIZE*REG_F7_NDX)
# define REG_F8 (INT_REG_SIZE*REG_F8_NDX)
# define REG_F9 (INT_REG_SIZE*REG_F9_NDX)
# define REG_F10 (INT_REG_SIZE*REG_F10_NDX)
# define REG_F11 (INT_REG_SIZE*REG_F11_NDX)
# define REG_F12 (INT_REG_SIZE*REG_F12_NDX)
# define REG_F13 (INT_REG_SIZE*REG_F13_NDX)
# define REG_F14 (INT_REG_SIZE*REG_F14_NDX)
# define REG_F15 (INT_REG_SIZE*REG_F15_NDX)
# define REG_F16 (INT_REG_SIZE*REG_F16_NDX)
# define REG_F17 (INT_REG_SIZE*REG_F17_NDX)
# define REG_F18 (INT_REG_SIZE*REG_F18_NDX)
# define REG_F19 (INT_REG_SIZE*REG_F19_NDX)
# define REG_F20 (INT_REG_SIZE*REG_F20_NDX)
# define REG_F21 (INT_REG_SIZE*REG_F21_NDX)
# define REG_F22 (INT_REG_SIZE*REG_F22_NDX)
# define REG_F23 (INT_REG_SIZE*REG_F23_NDX)
# define REG_F24 (INT_REG_SIZE*REG_F24_NDX)
# define REG_F25 (INT_REG_SIZE*REG_F25_NDX)
# define REG_F26 (INT_REG_SIZE*REG_F26_NDX)
# define REG_F27 (INT_REG_SIZE*REG_F27_NDX)
# define REG_F28 (INT_REG_SIZE*REG_F28_NDX)
# define REG_F29 (INT_REG_SIZE*REG_F29_NDX)
# define REG_F30 (INT_REG_SIZE*REG_F30_NDX)
# define REG_F31 (INT_REG_SIZE*REG_F31_NDX)
# define REG_FCSR (INT_REG_SIZE*REG_FCSR_NDX)
#endif
#else
# define REG_EPC REG_EPC_NDX
# define REG_X1 REG_X1_NDX
# define REG_X2 REG_X2_NDX
# define REG_X3 REG_X3_NDX
# define REG_X4 REG_X4_NDX
# define REG_X5 REG_X5_NDX
# define REG_X6 REG_X6_NDX
# define REG_X7 REG_X7_NDX
# define REG_X8 REG_X8_NDX
# define REG_X9 REG_X9_NDX
# define REG_X10 REG_X10_NDX
# define REG_X11 REG_X11_NDX
# define REG_X12 REG_X12_NDX
# define REG_X13 REG_X13_NDX
# define REG_X14 REG_X14_NDX
# define REG_X15 REG_X15_NDX
# define REG_X16 REG_X16_NDX
# define REG_X17 REG_X17_NDX
# define REG_X18 REG_X18_NDX
# define REG_X19 REG_X19_NDX
# define REG_X20 REG_X20_NDX
# define REG_X21 REG_X21_NDX
# define REG_X22 REG_X22_NDX
# define REG_X23 REG_X23_NDX
# define REG_X24 REG_X24_NDX
# define REG_X25 REG_X25_NDX
# define REG_X26 REG_X26_NDX
# define REG_X27 REG_X27_NDX
# define REG_X28 REG_X28_NDX
# define REG_X29 REG_X29_NDX
# define REG_X30 REG_X30_NDX
# define REG_X31 REG_X31_NDX
# define REG_INT_CTX REG_INT_CTX_NDX
#ifdef CONFIG_ARCH_FPU
# define REG_F0 REG_F0_NDX
# define REG_F1 REG_F1_NDX
# define REG_F2 REG_F2_NDX
# define REG_F3 REG_F3_NDX
# define REG_F4 REG_F4_NDX
# define REG_F5 REG_F5_NDX
# define REG_F6 REG_F6_NDX
# define REG_F7 REG_F7_NDX
# define REG_F8 REG_F8_NDX
# define REG_F9 REG_F9_NDX
# define REG_F10 REG_F10_NDX
# define REG_F11 REG_F11_NDX
# define REG_F12 REG_F12_NDX
# define REG_F13 REG_F13_NDX
# define REG_F14 REG_F14_NDX
# define REG_F15 REG_F15_NDX
# define REG_F16 REG_F16_NDX
# define REG_F17 REG_F17_NDX
# define REG_F18 REG_F18_NDX
# define REG_F19 REG_F19_NDX
# define REG_F20 REG_F20_NDX
# define REG_F21 REG_F21_NDX
# define REG_F22 REG_F22_NDX
# define REG_F23 REG_F23_NDX
# define REG_F24 REG_F24_NDX
# define REG_F25 REG_F25_NDX
# define REG_F26 REG_F26_NDX
# define REG_F27 REG_F27_NDX
# define REG_F28 REG_F28_NDX
# define REG_F29 REG_F29_NDX
# define REG_F30 REG_F30_NDX
# define REG_F31 REG_F31_NDX
# define REG_FCSR REG_FCSR_NDX
#endif
#endif
/* Now define more user friendly alternative name that can be used either
* in assembly or C contexts.
*/
/* $1 = ra: Return address */
#define REG_RA REG_X1
/* $2 = sp: The value of the stack pointer on return from the exception */
#define REG_SP REG_X2
/* $3 = gp: Only needs to be saved under conditions where there are
* multiple, per-thread values for the GP.
*/
#define REG_GP REG_X3
/* $4 = tp: Thread Pointer */
#define REG_TP REG_X4
/* $5-$7 = t0-t2: Caller saved temporary registers */
#define REG_T0 REG_X5
#define REG_T1 REG_X6
#define REG_T2 REG_X7
/* $8 = either s0 or fp: Depends if a frame pointer is used or not */
#define REG_S0 REG_X8
#define REG_FP REG_X8
/* $9 = s1: Caller saved register */
#define REG_S1 REG_X9
/* $10-$17 = a0-a7: Argument registers */
#define REG_A0 REG_X10
#define REG_A1 REG_X11
#define REG_A2 REG_X12
#define REG_A3 REG_X13
#define REG_A4 REG_X14
#define REG_A5 REG_X15
#define REG_A6 REG_X16
#define REG_A7 REG_X17
/* $18-$27 = s2-s11: Callee saved registers */
#define REG_S2 REG_X18
#define REG_S3 REG_X19
#define REG_S4 REG_X20
#define REG_S5 REG_X21
#define REG_S6 REG_X22
#define REG_S7 REG_X23
#define REG_S8 REG_X24
#define REG_S9 REG_X25
#define REG_S10 REG_X26
#define REG_S11 REG_X27
/* $28-$31 = t3-t6: Caller saved temporary registers */
#define REG_T3 REG_X28
#define REG_T4 REG_X29
#define REG_T5 REG_X30
#define REG_T6 REG_X31
#ifdef CONFIG_ARCH_FPU
/* $0-$1 = fs0-fs1: Callee saved registers */
# define REG_FS0 REG_F8
# define REG_FS1 REG_F9
/* $18-$27 = fs2-fs11: Callee saved registers */
# define REG_FS2 REG_F18
# define REG_FS3 REG_F19
# define REG_FS4 REG_F20
# define REG_FS5 REG_F21
# define REG_FS6 REG_F22
# define REG_FS7 REG_F23
# define REG_FS8 REG_F24
# define REG_FS9 REG_F25
# define REG_FS10 REG_F26
# define REG_FS11 REG_F27
#endif
/****************************************************************************
* Public Types
****************************************************************************/
#ifndef __ASSEMBLY__
/* This structure represents the return state from a system call */
#ifdef CONFIG_LIB_SYSCALL
struct xcpt_syscall_s
{
uintptr_t sysreturn; /* The return PC */
#ifndef CONFIG_BUILD_FLAT
uintptr_t int_ctx; /* Interrupt context (i.e. m-/sstatus) */
#endif
};
#endif
/* The following structure is included in the TCB and defines the complete
* state of the thread.
*/
struct xcptcontext
{
/* The following function pointer is non-NULL if there are pending signals
* to be processed.
*/
void *sigdeliver; /* Actual type is sig_deliver_t */
/* These additional register save locations are used to implement the
* signal delivery trampoline.
*
* REVISIT: Because there is only a reference of these save areas,
* only a single signal handler can be active. This precludes
* queuing of signal actions. As a result, signals received while
* another signal handler is executing will be ignored!
*/
uintptr_t *saved_regs;
#ifndef CONFIG_BUILD_FLAT
/* This is the saved address to use when returning from a user-space
* signal handler.
*/
uintptr_t sigreturn;
#endif
#ifdef CONFIG_LIB_SYSCALL
/* The following array holds information needed to return from each nested
* system call.
*/
uint8_t nsyscalls;
struct xcpt_syscall_s syscall[CONFIG_SYS_NNEST];
#endif
#ifdef CONFIG_ARCH_ADDRENV
#ifdef CONFIG_ARCH_KERNEL_STACK
/* In this configuration, all syscalls execute from an internal kernel
* stack. Why? Because when we instantiate and initialize the address
* environment of the new user process, we will temporarily lose the
* address environment of the old user process, including its stack
* contents. The kernel C logic will crash immediately with no valid
* stack in place.
*/
uintptr_t *ustkptr; /* Saved user stack pointer */
uintptr_t *kstack; /* Allocate base of the (aligned) kernel stack */
uintptr_t *ktopstk; /* Top of kernel stack */
uintptr_t *kstkptr; /* Saved kernel stack pointer */
#endif
#endif
/* Integer register save area */
uintptr_t *regs;
/* FPU register save area */
#ifdef CONFIG_ARCH_FPU
uintptr_t fregs[FPU_XCPT_SIZE];
#endif
};
#endif /* __ASSEMBLY__ */
/****************************************************************************
* Public Types
****************************************************************************/
#ifndef __ASSEMBLY__
/****************************************************************************
* Inline functions
****************************************************************************/
/* Return the current value of the stack pointer */
static inline uintptr_t up_getsp(void)
{
register uintptr_t sp;
__asm__
(
"\tadd %0, x0, x2\n"
: "=r"(sp)
);
return sp;
}
/****************************************************************************
* Public Data
****************************************************************************/
#undef EXTERN
#if defined(__cplusplus)
#define EXTERN extern "C"
extern "C"
{
#else
#define EXTERN extern
#endif
/* g_current_regs[] holds a references to the current interrupt level
* register storage structure. If is non-NULL only during interrupt
* processing. Access to g_current_regs[] must be through the macro
* CURRENT_REGS for portability.
*/
/* For the case of architectures with multiple CPUs, then there must be one
* such value for each processor that can receive an interrupt.
*/
EXTERN volatile uintptr_t *g_current_regs[CONFIG_SMP_NCPUS];
#define CURRENT_REGS (g_current_regs[up_cpu_index()])
/****************************************************************************
* Public Function Prototypes
****************************************************************************/
/****************************************************************************
* Name: up_irq_enable
*
* Description:
* Return the current interrupt state and enable interrupts
*
****************************************************************************/
irqstate_t up_irq_enable(void);
/****************************************************************************
* Name: up_cpu_index
*
* Description:
* Return an index in the range of 0 through (CONFIG_SMP_NCPUS-1) that
* corresponds to the currently executing CPU.
*
* Input Parameters:
* None
*
* Returned Value:
* An integer index in the range of 0 through (CONFIG_SMP_NCPUS-1) that
* corresponds to the currently executing CPU.
*
****************************************************************************/
#ifdef CONFIG_SMP
int up_cpu_index(void);
#else
# define up_cpu_index() (0)
#endif
/****************************************************************************
* Inline Functions
****************************************************************************/
/****************************************************************************
* Name: up_irq_save
*
* Description:
* Disable interrupts and return the previous value of the mstatus register
*
****************************************************************************/
static inline irqstate_t up_irq_save(void)
{
irqstate_t flags;
/* Read mstatus & clear machine interrupt enable (MIE) in mstatus */
__asm__ __volatile__
(
"csrrc %0, " __XSTR(CSR_STATUS) ", %1\n"
: "=r" (flags)
: "r"(STATUS_IE)
: "memory"
);
/* Return the previous mstatus value so that it can be restored with
* up_irq_restore().
*/
return flags;
}
/****************************************************************************
* Name: up_irq_restore
*
* Description:
* Restore the value of the mstatus register
*
****************************************************************************/
static inline void up_irq_restore(irqstate_t flags)
{
__asm__ __volatile__
(
"csrw " __XSTR(CSR_STATUS) ", %0\n"
: /* no output */
: "r" (flags)
: "memory"
);
}
/****************************************************************************
* Name: up_interrupt_context
*
* Description:
* Return true is we are currently executing in the interrupt
* handler context.
*
****************************************************************************/
static inline bool up_interrupt_context(void)
{
#ifdef CONFIG_SMP
irqstate_t flags = up_irq_save();
#endif
bool ret = CURRENT_REGS != NULL;
#ifdef CONFIG_SMP
up_irq_restore(flags);
#endif
return ret;
}
#undef EXTERN
#if defined(__cplusplus)
}
#endif
#endif /* __ASSEMBLY__ */
#endif /* __ARCH_RISCV_INCLUDE_IRQ_H */