nuttx/boards/arm/stm32/stm3220g-eval
2023-02-20 09:06:46 +08:00
..
configs Improvements in TCP connections allocation. 2023-02-20 09:06:46 +08:00
include
scripts
src Fix Error: board/stm32_selectsram.c:163:13: error: shifting a negative signed value is undefined [-Werror,-Wshift-negative-value] 2022-11-21 17:39:04 +08:00
tools
Kconfig
README.txt arch/arm/toolchain: migrate the toolchain define to arch/arm/Kconfig 2022-09-16 14:47:27 +08:00

README
======

This README discusses issues unique to NuttX configurations for the
STMicro STM3220G-EVAL development board.

Contents
========

  - Ethernet
  - LEDs
  - PWM
  - CAN
  - FSMC SRAM
  - I/O Expanders
  - STM3220G-EVAL-specific Configuration Options
  - Configurations

Ethernet
========

The Ethernet driver is configured to use the MII interface:

  Board Jumper Settings:

    Jumper  Description
    JP8     To enable MII, JP8 should not be fitted.
    JP6     2-3: Enable MII interface mode
    JP5     2-3: Provide 25 MHz clock for MII or 50 MHz clock for RMII by MCO at PA8
    SB1     Not used with MII

LEDs
====

The STM3220G-EVAL board has four LEDs labeled LD1, LD2, LD3 and LD4 on the
board.. These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is
defined.  In that case, the usage by the board port is defined in
include/board.h and src/up_leds.c. The LEDs are used to encode OS-related\
events as follows:

    SYMBOL               Meaning                 LED1*   LED2    LED3    LED4
    -------------------  ----------------------- ------- ------- ------- ------
    LED_STARTED          NuttX has been started  ON      OFF     OFF     OFF
    LED_HEAPALLOCATE     Heap has been allocated OFF     ON      OFF     OFF
    LED_IRQSENABLED      Interrupts enabled      ON      ON      OFF     OFF
    LED_STACKCREATED     Idle stack created      OFF     OFF     ON      OFF
    LED_INIRQ            In an interrupt**       ON      N/C     N/C     OFF
    LED_SIGNAL           In a signal handler***  N/C     ON      N/C     OFF
    LED_ASSERTION        An assertion failed     ON      ON      N/C     OFF
    LED_PANIC            The system has crashed  N/C     N/C     N/C     ON
    LED_IDLE             STM32 is is sleep mode  (Optional, not used)

  * If LED1, LED2, LED3 are statically on, then NuttX probably failed to boot
    and these LEDs will give you some indication of where the failure was
 ** The normal state is LED3 ON and LED1 faintly glowing.  This faint glow
    is because of timer interrupts that result in the LED being illuminated
    on a small proportion of the time.
*** LED2 may also flicker normally if signals are processed.

PWM
===

The STM3220G-Eval has no real on-board PWM devices, but the board can be
configured to output a pulse train using timer output pins.  The following
pins have been use to generate PWM output (see board.h for some other
candidates):

TIM4 CH2.  Pin PD13 is used by the FSMC (FSMC_A18) and is also connected
to the Motor Control Connector (CN5) just for this purpose.  If FSMC is
not enabled, then FSMC_A18 will not be used (and will be tri-stated from
the LCD).

  CONFIGURATION:

    CONFIG_STM32_TIM4=y
    CONFIG_PWM=n
    CONFIG_PWM_PULSECOUNT=n
    CONFIG_STM32_TIM4_PWM=y
    CONFIG_STM32_TIM4_CHANNEL=2

  ACCESS:

    Daughterboard Extension Connector, CN3, pin 32
    Ground is available on CN3, pin1

  NOTE: TIM4 hardware will not support pulse counting.

TIM8 CH4:  Pin PC9 is used by the microSD card (MicroSDCard_D1) and I2S
(I2S_CKIN) but can be completely disconnected from both by opening JP16.

  CONFIGURATION:

    CONFIG_STM32_TIM8=y
    CONFIG_PWM=n
    CONFIG_PWM_PULSECOUNT=y
    CONFIG_STM32_TIM8_PWM=y
    CONFIG_STM32_TIM8_CHANNEL=4

  ACCESS:

    Daughterboard Extension Connector, CN3, pin 17
    Ground is available on CN3, pin1

CAN
===

Connector 10 (CN10) is DB-9 male connector that can be used with CAN1 or CAN2.

  JP10 connects CAN1_RX or CAN2_RX to the CAN transceiver
  JP3 connects CAN1_TX or CAN2_TX to the CAN transceiver

CAN signals are then available on CN10 pins:

  CN10 Pin 7 = CANH
  CN10 Pin 2 = CANL

Mapping to STM32 GPIO pins:

  PD0   = FSMC_D2 & CAN1_RX
  PD1   = FSMC_D3 & CAN1_TX
  PB13  = ULPI_D6 & CAN2_TX
  PB5   = ULPI_D7 & CAN2_RX

Configuration Options:

  CONFIG_CAN - Enables CAN support (one or both of CONFIG_STM32_CAN1 or
    CONFIG_STM32_CAN2 must also be defined)
  CONFIG_CAN_EXTID - Enables support for the 29-bit extended ID.  Default
    Standard 11-bit IDs.
 CONFIG_CAN_FIFOSIZE - The size of the circular buffer of CAN messages.
    Default: 8
  CONFIG_CAN_NPENDINGRTR - The size of the list of pending RTR requests.
    Default: 4

  CONFIG_STM32_CAN1 - Enable support for CAN1
  CONFIG_STM32_CAN2 - Enable support for CAN2
  CONFIG_STM32_CAN1_BAUD - CAN1 BAUD rate.  Required if CONFIG_STM32_CAN1
    is defined.
  CONFIG_STM32_CAN2_BAUD - CAN1 BAUD rate.  Required if CONFIG_STM32_CAN2
    is defined.
  CONFIG_STM32_CAN_TSEG1 - The number of CAN time quanta in segment 1.
    Default: 6
  CONFIG_STM32_CAN_TSEG2 - the number of CAN time quanta in segment 2.
    Default: 7
  CONFIG_STM32_CAN_REGDEBUG - If CONFIG_DEBUG_FEATURES is set, this will generate an
    dump of all CAN registers.

FSMC SRAM
=========

On-board SRAM
-------------

A 16 Mbit SRAM is connected to the STM32F407IGH6 FSMC bus which shares the same
I/Os with the CAN1 bus. Jumper settings:

  JP1: Connect PE4 to SRAM as A20
  JP2: onnect PE3 to SRAM as A19

JP3 and JP10 must not be fitted for SRAM and LCD application.  JP3 and JP10
select CAN1 or CAN2 if fitted; neither if not fitted.

The on-board SRAM can be configured by setting

  CONFIG_STM32_FSMC=y
  CONFIG_STM32_EXTERNAL_RAM=y
  CONFIG_HEAP2_BASE=0x64000000
  CONFIG_HEAP2_SIZE=2097152
  CONFIG_MM_REGIONS=2

Configuration Options
---------------------

Internal SRAM is available in all members of the STM32 family. In addition
to internal SRAM, SRAM may also be available through the FSMC.  In order to
use FSMC SRAM, the following additional things need to be present in the
NuttX configuration file:

  CONFIG_STM32_FSMC=y         : Enables the FSMC
  CONFIG_STM32_EXTERNAL_RAM=y : Indicates that SRAM is available via the
                                FSMC (as opposed to an LCD or FLASH).
  CONFIG_HEAP2_BASE           : The base address of the SRAM in the FSMC
                                address space
  CONFIG_HEAP2_SIZE           : The size of the SRAM in the FSMC
                                address space
  CONFIG_MM_REGIONS           : Must be set to a large enough value to
                                include the FSMC SRAM

SRAM Configurations
-------------------
There are 2 possible SRAM configurations:

  Configuration 1. System SRAM (only)
                   CONFIG_MM_REGIONS == 1
  Configuration 2. System SRAM and FSMC SRAM
                   CONFIG_MM_REGIONS == 2
                   CONFIG_STM32_EXTERNAL_RAM defined

I/O Expanders
=============

The STM3220G-EVAL has two STMPE811QTR I/O expanders on board both connected to
the STM32 via I2C1.  They share a common interrupt line: PI2.

STMPE811 U24, I2C address 0x41 (7-bit)
------ ---- ---------------- --------------------------------------------
STPE11 PIN  BOARD SIGNAL     BOARD CONNECTION
------ ---- ---------------- --------------------------------------------
  Y-        TouchScreen_Y-   LCD Connector XL
  X-        TouchScreen_X-   LCD Connector XR
  Y+        TouchScreen_Y+   LCD Connector XD
  X+        TouchScreen_X+   LCD Connector XU
  IN3       EXP_IO9
  IN2       EXP_IO10
  IN1       EXP_IO11
  IN0       EXP_IO12

STMPE811 U29, I2C address 0x44 (7-bit)
------ ---- ---------------- --------------------------------------------
STPE11 PIN  BOARD SIGNAL     BOARD CONNECTION
------ ---- ---------------- --------------------------------------------
  Y-        EXP_IO1
  X-        EXP_IO2
  Y+        EXP_IO3
  X+        EXP_IO4
  IN3       EXP_IO5
  IN2       EXP_IO6
  IN1       EXP_IO7
  IN0       EXP_IO8

STM3220G-EVAL-specific Configuration Options
============================================

    CONFIG_ARCH - Identifies the arch/ subdirectory.  This should
       be set to:

       CONFIG_ARCH=arm

    CONFIG_ARCH_family - For use in C code:

       CONFIG_ARCH_ARM=y

    CONFIG_ARCH_architecture - For use in C code:

       CONFIG_ARCH_CORTEXM3=y

    CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory

       CONFIG_ARCH_CHIP=stm32

    CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
       chip:

       CONFIG_ARCH_CHIP_STM32F207IG=y

    CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG - Enables special STM32 clock
       configuration features.

       CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG=n

    CONFIG_ARCH_BOARD - Identifies the boards/ subdirectory and
       hence, the board that supports the particular chip or SoC.

       CONFIG_ARCH_BOARD=stm3220g_eval (for the STM3220G-EVAL development board)

    CONFIG_ARCH_BOARD_name - For use in C code

       CONFIG_ARCH_BOARD_STM3220G_EVAL=y

    CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
       of delay loops

    CONFIG_ENDIAN_BIG - define if big endian (default is little
       endian)

    CONFIG_RAM_SIZE - Describes the installed DRAM (SRAM in this case):

       CONFIG_RAM_SIZE=0x00010000 (64Kb)

    CONFIG_RAM_START - The start address of installed DRAM

       CONFIG_RAM_START=0x20000000

    In addition to internal SRAM, SRAM may also be available through the FSMC.
    In order to use FSMC SRAM, the following additional things need to be
    present in the NuttX configuration file:

    CONFIG_STM32_EXTERNAL_RAM - Indicates that SRAM is available via the
      FSMC (as opposed to an LCD or FLASH).

    CONFIG_HEAP2_BASE - The base address of the SRAM in the FSMC address space (hex)

    CONFIG_HEAP2_SIZE - The size of the SRAM in the FSMC address space (decimal)

    CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
       have LEDs

    CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
       stack. If defined, this symbol is the size of the interrupt
        stack in bytes.  If not defined, the user task stacks will be
      used during interrupt handling.

    CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions

    CONFIG_ARCH_LEDS -  Use LEDs to show state. Unique to board architecture.

  Individual subsystems can be enabled:

    AHB1
    ----
    CONFIG_STM32_CRC
    CONFIG_STM32_BKPSRAM
    CONFIG_STM32_DMA1
    CONFIG_STM32_DMA2
    CONFIG_STM32_ETHMAC
    CONFIG_STM32_OTGHS

    AHB2
    ----
    CONFIG_STM32_DCMI
    CONFIG_STM32_CRYP
    CONFIG_STM32_HASH
    CONFIG_STM32_RNG
    CONFIG_STM32_OTGFS

    AHB3
    ----
    CONFIG_STM32_FSMC

    APB1
    ----
    CONFIG_STM32_TIM2
    CONFIG_STM32_TIM3
    CONFIG_STM32_TIM4
    CONFIG_STM32_TIM5
    CONFIG_STM32_TIM6
    CONFIG_STM32_TIM7
    CONFIG_STM32_TIM12
    CONFIG_STM32_TIM13
    CONFIG_STM32_TIM14
    CONFIG_STM32_WWDG
    CONFIG_STM32_IWDG
    CONFIG_STM32_SPI2
    CONFIG_STM32_SPI3
    CONFIG_STM32_USART2
    CONFIG_STM32_USART3
    CONFIG_STM32_UART4
    CONFIG_STM32_UART5
    CONFIG_STM32_I2C1
    CONFIG_STM32_I2C2
    CONFIG_STM32_I2C3
    CONFIG_STM32_CAN1
    CONFIG_STM32_CAN2
    CONFIG_STM32_DAC1
    CONFIG_STM32_DAC2
    CONFIG_STM32_PWR -- Required for RTC

    APB2
    ----
    CONFIG_STM32_TIM1
    CONFIG_STM32_TIM8
    CONFIG_STM32_USART1
    CONFIG_STM32_USART6
    CONFIG_STM32_ADC1
    CONFIG_STM32_ADC2
    CONFIG_STM32_ADC3
    CONFIG_STM32_SDIO
    CONFIG_STM32_SPI1
    CONFIG_STM32_SYSCFG
    CONFIG_STM32_TIM9
    CONFIG_STM32_TIM10
    CONFIG_STM32_TIM11

  Timer devices may be used for different purposes.  One special purpose is
  to generate modulated outputs for such things as motor control.  If CONFIG_STM32_TIMn
  is defined (as above) then the following may also be defined to indicate that
  the timer is intended to be used for pulsed output modulation, ADC conversion,
  or DAC conversion. Note that ADC/DAC require two definition:  Not only do you have
  to assign the timer (n) for used by the ADC or DAC, but then you also have to
  configure which ADC or DAC (m) it is assigned to.

    CONFIG_STM32_TIMn_PWM   Reserve timer n for use by PWM, n=1,..,14
    CONFIG_STM32_TIMn_ADC   Reserve timer n for use by ADC, n=1,..,14
    CONFIG_STM32_TIMn_ADCm  Reserve timer n to trigger ADCm, n=1,..,14, m=1,..,3
    CONFIG_STM32_TIMn_DAC   Reserve timer n for use by DAC, n=1,..,14
    CONFIG_STM32_TIMn_DACm  Reserve timer n to trigger DACm, n=1,..,14, m=1,..,2

  For each timer that is enabled for PWM usage, we need the following additional
  configuration settings:

    CONFIG_STM32_TIMx_CHANNEL - Specifies the timer output channel {1,..,4}

  NOTE: The STM32 timers are each capable of generating different signals on
  each of the four channels with different duty cycles.  That capability is
  not supported by this driver:  Only one output channel per timer.

  JTAG Enable settings (by default JTAG-DP and SW-DP are disabled):

    CONFIG_STM32_JTAG_FULL_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
    CONFIG_STM32_JTAG_NOJNTRST_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
      but without JNTRST.
    CONFIG_STM32_JTAG_SW_ENABLE - Set JTAG-DP disabled and SW-DP enabled

  STM3220xxx specific device driver settings

    CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=1,2,3) or UART
           m (m=4,5) for the console and ttys0 (default is the USART1).
    CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received.
       This specific the size of the receive buffer
    CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before
       being sent.  This specific the size of the transmit buffer
    CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART.  Must be
    CONFIG_U[S]ARTn_BITS - The number of bits.  Must be either 7 or 8.
    CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
    CONFIG_U[S]ARTn_2STOP - Two stop bits

    CONFIG_STM32_SPI_INTERRUPTS - Select to enable interrupt driven SPI
      support. Non-interrupt-driven, poll-waiting is recommended if the
      interrupt rate would be to high in the interrupt driven case.
    CONFIG_STM32_SPIx_DMA - Use DMA to improve SPIx transfer performance.
      Cannot be used with CONFIG_STM32_SPI_INTERRUPT.

    CONFIG_SDIO_DMA - Support DMA data transfers.  Requires CONFIG_STM32_SDIO
      and CONFIG_STM32_DMA2.
    CONFIG_STM32_SDIO_PRI - Select SDIO interrupt priority.  Default: 128
    CONFIG_STM32_SDIO_DMAPRIO - Select SDIO DMA interrupt priority.
      Default:  Medium
    CONFIG_STM32_SDIO_WIDTH_D1_ONLY - Select 1-bit transfer mode.  Default:
      4-bit transfer mode.

    CONFIG_STM32_PHYADDR - The 5-bit address of the PHY on the board
    CONFIG_STM32_MII - Support Ethernet MII interface
    CONFIG_STM32_MII_MCO1 - Use MCO1 to clock the MII interface
    CONFIG_STM32_MII_MCO2 - Use MCO2 to clock the MII interface
    CONFIG_STM32_RMII - Support Ethernet RMII interface
    CONFIG_STM32_AUTONEG - Use PHY autonegotiation to determine speed and mode
    CONFIG_STM32_ETHFD - If CONFIG_STM32_AUTONEG is not defined, then this
      may be defined to select full duplex mode. Default: half-duplex
    CONFIG_STM32_ETH100MBPS - If CONFIG_STM32_AUTONEG is not defined, then this
      may be defined to select 100 MBps speed.  Default: 10 Mbps
    CONFIG_STM32_PHYSR - This must be provided if CONFIG_STM32_AUTONEG is
      defined.  The PHY status register address may diff from PHY to PHY.  This
      configuration sets the address of the PHY status register.
    CONFIG_STM32_PHYSR_SPEED - This must be provided if CONFIG_STM32_AUTONEG is
      defined.  This provides bit mask indicating 10 or 100MBps speed.
    CONFIG_STM32_PHYSR_100MBPS - This must be provided if CONFIG_STM32_AUTONEG is
      defined.  This provides the value of the speed bit(s) indicating 100MBps speed.
    CONFIG_STM32_PHYSR_MODE - This must be provided if CONFIG_STM32_AUTONEG is
      defined.  This provide bit mask indicating full or half duplex modes.
    CONFIG_STM32_PHYSR_FULLDUPLEX - This must be provided if CONFIG_STM32_AUTONEG is
      defined.  This provides the value of the mode bits indicating full duplex mode.
    CONFIG_STM32_ETH_PTP - Precision Time Protocol (PTP).  Not supported
      but some hooks are indicated with this condition.

  STM3220G-EVAL CAN Configuration

    CONFIG_CAN - Enables CAN support (one or both of CONFIG_STM32_CAN1 or
      CONFIG_STM32_CAN2 must also be defined)
    CONFIG_CAN_FIFOSIZE - The size of the circular buffer of CAN messages.
      Default: 8
    CONFIG_CAN_NPENDINGRTR - The size of the list of pending RTR requests.
      Default: 4
    CONFIG_CAN_LOOPBACK - A CAN driver may or may not support a loopback
      mode for testing. The STM32 CAN driver does support loopback mode.
    CONFIG_STM32_CAN1_BAUD - CAN1 BAUD rate.  Required if CONFIG_STM32_CAN1
      is defined.
    CONFIG_STM32_CAN2_BAUD - CAN1 BAUD rate.  Required if CONFIG_STM32_CAN2
      is defined.
    CONFIG_STM32_CAN_TSEG1 - The number of CAN time quanta in segment 1.
      Default: 6
    CONFIG_STM32_CAN_TSEG2 - the number of CAN time quanta in segment 2.
      Default: 7
    CONFIG_STM32_CAN_REGDEBUG - If CONFIG_DEBUG_FEATURES is set, this will generate an
      dump of all CAN registers.

  STM3220G-EVAL LCD Hardware Configuration

  STM32 USB OTG FS Host Driver Support

  Pre-requisites

   CONFIG_USBHOST      - Enable general USB host support
   CONFIG_STM32_OTGFS  - Enable the STM32 USB OTG FS block
   CONFIG_STM32_SYSCFG - Needed

  Options:

   CONFIG_STM32_OTGFS_RXFIFO_SIZE - Size of the RX FIFO in 32-bit words.
     Default 128 (512 bytes)
   CONFIG_STM32_OTGFS_NPTXFIFO_SIZE - Size of the non-periodic Tx FIFO
     in 32-bit words.  Default 96 (384 bytes)
   CONFIG_STM32_OTGFS_PTXFIFO_SIZE - Size of the periodic Tx FIFO in 32-bit
     words.  Default 96 (384 bytes)
   CONFIG_STM32_OTGFS_DESCSIZE - Maximum size of a descriptor.  Default: 128
   CONFIG_STM32_OTGFS_SOFINTR - Enable SOF interrupts.  Why would you ever
     want to do that?
   CONFIG_STM32_USBHOST_REGDEBUG - Enable very low-level register access
     debug.  Depends on CONFIG_DEBUG_FEATURES.
   CONFIG_STM32_USBHOST_PKTDUMP - Dump all incoming and outgoing USB
     packets. Depends on CONFIG_DEBUG_FEATURES.

Configurations
==============

Each STM3220G-EVAL configuration is maintained in a sub-directory and
can be selected as follow:

    tools/configure.sh stm3220g-eval:<subdir>

Where <subdir> is one of the following:

  dhcpd:
  -----

    This builds the DHCP server using the apps/examples/dhcpd application
    (for execution from FLASH.) See apps/examples/README.txt for information
    about the dhcpd example.

    NOTES:

    1. This configuration uses the mconf-based configuration tool.  To
       change this configurations using that tool, you should:

       a. Build and install the kconfig-mconf tool.  See nuttx/README.txt
          see additional README.txt files in the NuttX tools repository.

       b. Execute 'make menuconfig' in nuttx/ in order to start the
          reconfiguration process.

    2. The server address is 10.0.0.1 and it serves IP addresses in the range
       10.0.0.2 through 10.0.0.17 (all of which, of course, are configurable).

    3. Default build environment (also easily reconfigured):

      CONFIG_HOST_WINDOWS=y
      CONFIG_WINDOWS_CYGWIN=y
      CONFIG_ARM_TOOLCHAIN_GNU_EABI=y

  nettest:
  -------

    This configuration directory may be used to verify networking performance
    using the STM32's Ethernet controller. It uses apps/examples/nettest to exercise the
    TCP/IP network.

    CONFIG_EXAMPLES_NETTEST_SERVER=n                       : Target is configured as the client
    CONFIG_EXAMPLES_NETTEST_PERFORMANCE=y                  : Only network performance is verified.
    CONFIG_EXAMPLES_NETTEST_IPADDR=(10<<24|0<<16|0<<8|2)   : Target side is IP: 10.0.0.2
    CONFIG_EXAMPLES_NETTEST_DRIPADDR=(10<<24|0<<16|0<<8|1) : Host side is IP: 10.0.0.1
    CONFIG_EXAMPLES_NETTEST_CLIENTIP=(10<<24|0<<16|0<<8|1) : Server address used by which ever is client.

    NOTES:

    1. This configuration uses the mconf-based configuration tool.  To
       change this configuration using that tool, you should:

       a. Build and install the kconfig-mconf tool.  See nuttx/README.txt
          see additional README.txt files in the NuttX tools repository.

       b. Execute 'make menuconfig' in nuttx/ in order to start the
          reconfiguration process.

    2. Default build environment:

        CONFIG_HOST_WINDOWS=y                    : Windows
        CONFIG_WINDOWS_CYGWIN=y                  : Under Cygwin
        CONFIG_ARM_TOOLCHAIN_GNU_EABI=y       : GNU EABI toolchain for Windows

       Than can, of course, be easily changes by reconfiguring per Note 1.

  nsh:
  ---
    Configures the NuttShell (nsh) located at apps/examples/nsh.  The
    Configuration enables both the serial and telnet NSH interfaces.

    CONFIG_ARM_TOOLCHAIN_GNU_EABI=y            : GNU EABI toolchain for Windows
    CONFIG_NSH_DHCPC=n                            : DHCP is disabled
    CONFIG_NSH_IPADDR=(192<<24|168<<16|13<<8|161) : Target IP address 192.168.8.161
    CONFIG_NSH_DRIPADDR=(192<<24|168<<16|13<<8|1) : Host IP address 192.168.8.1

    NOTES:

    1. This configuration uses the mconf-based configuration tool.  To
       change this configurations using that tool, you should:

       a. Build and install the kconfig-mconf tool.  See nuttx/README.txt
          see additional README.txt files in the NuttX tools repository.

       b. Execute 'make menuconfig' in nuttx/ in order to start the
          reconfiguration process.

    2. This example assumes that a network is connected.  During its
       initialization, it will try to negotiate the link speed.  If you have
       no network connected when you reset the board, there will be a long
       delay (maybe 30 seconds?) before anything happens.  That is the timeout
       before the networking finally gives up and decides that no network is
       available.

    3. This example supports the ADC test (apps/examples/adc) but this must
       be manually enabled by selecting:

       CONFIG_ADC=y             : Enable the generic ADC infrastructure
       CONFIG_STM32_ADC3=y      : Enable ADC3
       CONFIG_STM32_TIM1=y      : Enable Timer 1
       CONFIG_STM32_TIM1_ADC=y  : Indicate that timer 1 will be used to trigger an ADC
       CONFIG_STM32_TIM1_ADC3=y : Assign timer 1 to drive ADC3 sampling
       CONFIG_STM32_ADC3_SAMPLE_FREQUENCY=100 : Select a sampling frequency

       See also apps/examples/README.txt

       General debug for analog devices (ADC/DAC):

       CONFIG_DEBUG_ANALOG

    4. This example supports the PWM test (apps/examples/pwm) but this must
       be manually enabled by selecting eeither

       CONFIG_PWM=y                : Enable the generic PWM infrastructure
       CONFIG_PWM_PULSECOUNT=n     : Disable to support for TIM1/8 pulse counts
       CONFIG_STM32_TIM4=y         : Enable TIM4
       CONFIG_STM32_TIM4_PWM=y     : Use TIM4 to generate PWM output
       CONFIG_STM32_TIM4_CHANNEL=2 : Select output on TIM4, channel 2

       If CONFIG_STM32_FSMC is disabled, output will appear on CN3, pin 32.
       Ground is available on CN3, pin1.

       Or..

       CONFIG_PWM=y                : Enable the generic PWM infrastructure
       CONFIG_PWM_PULSECOUNT=y     : Enable to support for TIM1/8 pulse counts
       CONFIG_STM32_TIM8=y         : Enable TIM8
       CONFIG_STM32_TIM8_PWM=y     : Use TIM8 to generate PWM output
       CONFIG_STM32_TIM8_CHANNEL=4 : Select output on TIM8, channel 4

       If CONFIG_STM32_FSMC is disabled, output will appear on CN3, pin 17
       Ground is available on CN23 pin1.

       See also include/board.h and apps/examples/README.txt

       Special PWM-only debug options:

       CONFIG_DEBUG_PWM_INFO

    5. This example supports the CAN loopback test (apps/examples/can) but this
       must be manually enabled by selecting:

       CONFIG_CAN=y             : Enable the generic CAN infrastructure
       CONFIG_CAN_EXTID=y or n  : Enable to support extended ID frames
       CONFIG_STM32_CAN1=y      : Enable CAN1
       CONFIG_CAN_LOOPBACK=y    : Enable CAN loopback mode

       See also apps/examples/README.txt

       Special CAN-only debug options:

       CONFIG_DEBUG_CAN_INFO
       CONFIG_STM32_CAN_REGDEBUG

    6. This example can support an FTP client.  In order to build in FTP client
       support simply reconfigure NuttX, adding:

       CONFIG_NETUTILS_FTPC=y
       CONFIG_EXAMPLES_FTPC=y

    7. This example can support an FTP server.  In order to build in FTP server
       support simply add the following lines in the NuttX configuration file:

       CONFIG_NETUTILS_FTPD=y
       CONFIG_EXAMPLES_FTPD=y

    8. This example supports the watchdog timer test (apps/examples/watchdog)
       but this must be manually enabled by selecting:

       CONFIG_WATCHDOG=y         : Enables watchdog timer driver support
       CONFIG_STM32_WWDG=y       : Enables the WWDG timer facility, OR
       CONFIG_STM32_IWDG=y       : Enables the IWDG timer facility (but not both)

       The WWDG watchdog is driven off the (fast) 42MHz PCLK1 and, as result,
       has a maximum timeout value of 49 milliseconds.  For WWDG watchdog, you
       should also add the following to the configuration file:

       CONFIG_EXAMPLES_WATCHDOG_PINGDELAY=20
       CONFIG_EXAMPLES_WATCHDOG_TIMEOUT=49

       The IWDG timer has a range of about 35 seconds and should not be an issue.

    9. Adding LCD and graphics support:

       Enable the application configurations that you want to use.  As examples:

       CONFIG_EXAMPLES_NX=y      : Pick one or more
       CONFIG_EXAMPLES_NXHELLO=y :
       CONFIG_EXAMPLES_NXIMAGE=y :
       CONFIG_EXAMPLES_NXLINES=y :

       defconfig (nuttx/.config):

       CONFIG_STM32_FSMC=y       : FSMC support is required for the LCD
       CONFIG_NX=y               : Enable graphics support
       CONFIG_MM_REGIONS=2       : When FSMC is enabled, so is the on-board SRAM memory region

    10. USB OTG FS Device or Host Support

       CONFIG_USBDEV             : Enable USB device support, OR
       CONFIG_USBHOST            : Enable USB host support (but not both)

       CONFIG_STM32_OTGFS        : Enable the STM32 USB OTG FS block
       CONFIG_STM32_SYSCFG       : Needed for all USB OTF FS support

       CONFIG_SCHED_WORKQUEUE    : Worker thread support is required for the mass
                                   storage class (both host and device).
       CONFIG_NSH_ARCHINIT       : Architecture specific USB initialization
                                   is needed

    11. This configuration requires that jumper JP22 be set to enable RS-232 operation.

  nsh2:
  -----

    This is an alternative NSH configuration.  One limitation of the STM3220G-EVAL
    board is that you cannot have both a UART-based NSH console and SDIO support.
    The nsh2 differs from the nsh configuration in the following ways:

    -CONFIG_STM32_USART3=y      : USART3 is disabled
    +CONFIG_STM32_USART3=n

    -CONFIG_STM32_SDIO=n        : SDIO is enabled
    +CONFIG_STM32_SDIO=y

    Logically, these are the only differences:  This configuration has SDIO (and
    the SD card) enabled and the serial console disabled. There is ONLY a
    Telnet console!.

    There are some special settings to make life with only a Telnet

    CONFIG_RAMLOG=y - Enable the RAM-based logging feature.
    CONFIG_CONSOLE_SYSLOG=y - Use the RAM logger as the default console.
      This means that any console output from non-Telnet threads will
      go into the circular buffer in RAM.
    CONFIG_RAMLOG_SYSLOG - This enables the RAM-based logger as the
      system logger.  This means that (1) in addition to the console
      output from other tasks, ALL of the debug output will also to
      to the circular buffer in RAM, and (2) NSH will now support a
      command called 'dmesg' that can be used to dump the RAM log.

    There are a few other configuration differences as necessary to support
    this different device configuration. Just the do the 'diff' if you are
    curious.

    NOTES:

    1. This configuration uses the mconf-based configuration tool.  To
       change this configurations using that tool, you should:

       a. Build and install the kconfig-mconf tool.  See nuttx/README.txt
          see additional README.txt files in the NuttX tools repository.

       b. Execute 'make menuconfig' in nuttx/ in order to start the
          reconfiguration process.

    2. See the notes for the nsh configuration.  Most also apply to the nsh2
       configuration.

    3. RS-232 is disabled, but Telnet is still available for use as a console.
       Since RS-232 and SDIO use the same pins (one controlled by JP22), RS232
       and SDIO cannot be used concurrently.

    4. This configuration requires that jumper JP22 be set to enable SDIO
       operation.  To enable MicroSD Card, which shares same I/Os with RS-232,
       JP22 is not fitted.

    5. In order to use SDIO without overruns, DMA must be used.

    6. Another SDIO/DMA issue.  This one is probably a software bug.  This is
       the bug as stated in the TODO list:

       "If you use a large I/O buffer to access the file system, then the
        MMCSD driver will perform multiple block SD transfers.  With DMA
        ON, this seems to result in CRC errors detected by the hardware
        during the transfer.  Workaround:  CONFIG_MMCSD_MULTIBLOCK_LIMIT=1"

       For this reason, CONFIG_MMCSD_MULTIBLOCK_LIMIT=1 appears in the defconfig
       file.

    7. Another DMA-related concern.  I see this statement in the reference
       manual:  "The burst configuration has to be selected in order to respect
       the AHB protocol, where bursts must not cross the 1 KB address boundary
       because the minimum address space that can be allocated to a single slave
       is 1 KB. This means that the 1 KB address boundary should not be crossed
       by a burst block transfer, otherwise an AHB error would be generated,
       that is not reported by the DMA registers."

       There is nothing in the DMA driver to prevent this now.

  nxwm
  ----
    This is a special configuration setup for the NxWM window manager
    UnitTest.  The NxWM window manager can be found here:

      apps/graphics/NxWidgets/nxwm

    The NxWM unit test can be found at:

      apps/graphics/NxWidgets/UnitTests/nxwm

    NOTES:

    1. This configuration uses the mconf-based configuration tool.  To
       change this configuration using that tool, you should:

       a. Build and install the kconfig-mconf tool.  See nuttx/README.txt
          see additional README.txt files in the NuttX tools repository.

       b. Execute 'make menuconfig' in nuttx/ in order to start the
          reconfiguration process.

    2. This configuration is currently set up to build under Cygwin on
       a Windows machine using the ARM EABI GCC Windows toolchain.
       That configuration can be easy changed as described in Note 1.

  telnetd:
  --------

    A simple test of the Telnet daemon(see apps/netutils/README.txt,
    apps/examples/README.txt, and apps/examples/telnetd).  This is
    the same daemon that is used in the nsh configuration so if you
    use NSH, then you don't care about this.  This test is good for
    testing the Telnet daemon only because it works in a simpler
    environment than does the nsh configuration.

    NOTES:

    1. This configuration uses the mconf-based configuration tool.  To
       change this configurations using that tool, you should:

       a. Build and install the kconfig-mconf tool.  See nuttx/README.txt
          see additional README.txt files in the NuttX tools repository.

       b. Execute 'make menuconfig' in nuttx/ in order to start the
          reconfiguration process.

    3. Default build environment (easily reconfigured):

      CONFIG_HOST_WINDOWS=y
      CONFIG_WINDOWS_CYGWIN=y
      CONFIG_ARM_TOOLCHAIN_GNU_EABI=y