45dc56b0af
git-svn-id: svn://svn.code.sf.net/p/nuttx/code/trunk@5578 42af7a65-404d-4744-a932-0658087f49c3 |
||
---|---|---|
.. | ||
include | ||
nsh | ||
scripts | ||
src | ||
tools | ||
Kconfig | ||
README.txt |
README ====== This README discusses issues unique to NuttX configurations for the CloudController development board featuring the STMicro STM32F107VCT MCU. Features of the CloudController board include: - STM32F107VCT - 10/100M PHY (DM9161AEP) - USB OTG - USART connectos (USART1-2) - SPI Flash (W25X16) - (3) LEDs (LED1-3) - (3) Buttons (KEY1-3, USERKEY2, USERKEY, TEMPER, WAKEUP) - 5V/3.3V power conversion - SWD Contents ======== - STM32F107VCT Pin Usage - Development Environment - GNU Toolchain Options - IDEs - NuttX EABI buildroot Toolchain - NuttX OABI buildroot Toolchain - NXFLAT Toolchain - Cloudctrl-specific Configuration Options - LEDs - Cloudctrl-specific Configuration Options - Configurations STM32F107VCT Pin Usage ====================== -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- **23 PA0 WAKEUP Connected to KEY4. Active low: Closing KEY4 pulls WAKEUP to ground. 24 PA1 MII_RX_CLK RMII_REF_CLK 25 PA2 MII_MDIO 26 PA3 315M_VT 29 PA4 DAC_OUT1 To CON5(CN14) 30 PA5 DAC_OUT2 To CON5(CN14). JP10 SPI1_SCK To the SD card, SPI FLASH 31 PA6 SPI1_MISO To the SD card, SPI FLASH 32 PA7 SPI1_MOSI To the SD card, SPI FLASH 67 PA8 MCO To DM9161AEP PHY 68 PA9 USB_VBUS MINI-USB-AB. JP3 USART1_TX MAX3232 to CN5 69 PA10 USB_ID MINI-USB-AB. JP5 USART1_RX MAX3232 to CN5 70 PA11 USB_DM MINI-USB-AB 71 PA12 USB_DP MINI-USB-AB 72 PA13 TMS/SWDIO 76 PA14 TCK/SWCLK 77 PA15 TDI -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- 35 PB0 ADC_IN1 To CON5(CN14) 36 PB1 ADC_IN2 To CON5(CN14) 37 PB2 DATA_LE To TFT LCD (CN13) BOOT1 JP13 89 PB3 TDO/SWO 90 PB4 TRST 91 PB5 CAN2_RX 92 PB6 CAN2_TX JP11 I2C1_SCL 93 PB7 I2C1_SDA 95 PB8 USB_PWR Drives USB VBUS 96 PB9 F_CS To both the TFT LCD (CN13) and to the W25X16 SPI FLASH 47 PB10 USERKEY Connected to KEY2 48 PB11 MII_TX_EN Ethernet PHY 51 PB12 I2S_WS Audio DAC MII_TXD0 Ethernet PHY 52 PB13 I2S_CK Audio DAC MII_TXD1 Ethernet PHY 53 PB14 SD_CD There is confusion here. Schematic is wrong LCD_WR is PB14. 54 PB15 I2S_DIN Audio DAC -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- 15 PC0 POTENTIO_METER 16 PC1 MII_MDC Ethernet PHY 17 PC2 WIRELESS_INT 18 PC3 WIRELESS_CE To the NRF24L01 2.4G wireless module 33 PC4 USERKEY2 Connected to KEY1 34 PC5 TP_INT JP6. To TFT LCD (CN13) module MII_INT Ethernet PHY 63 PC6 I2S_MCK Audio DAC. Active low: Pulled high 64 PC7 PCM1770_CS Audio DAC. Active low: Pulled high 65 PC8 LCD_CS TFT LCD (CN13). Active low: Pulled high 66 PC9 TP_CS TFT LCD (CN13). Active low: Pulled high 78 PC10 SPI3_SCK To TFT LCD (CN13), the NRF24L01 2.4G wireless module 79 PC11 SPI3_MISO To TFT LCD (CN13), the NRF24L01 2.4G wireless module 80 PC12 SPI3_MOSI To TFT LCD (CN13), the NRF24L01 2.4G wireless module 7 PC13 TAMPER Connected to KEY3 8 PC14 OSC32_IN Y1 32.768Khz XTAL 9 PC15 OSC32_OUT Y1 32.768Khz XTAL -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- 81 PD0 CAN1_RX 82 PD1 CAN1_TX 83 PD2 LED1 Active low: Pulled high 84 PD3 LED2 Active low: Pulled high 85 PD4 LED3 Active low: Pulled high 86 PD5 485_TX Same as USART2_TX but goes to SP3485 USART2_TX MAX3232 to CN6 87 PD6 485_RX Save as USART2_RX but goes to SP3485 (see JP4) USART2_RX MAX3232 to CN6 88 PD7 LED4 Active low: Pulled high 485_DIR SP3485 read enable (not) 55 PD8 MII_RX_DV Ethernet PHY RMII_CRSDV Ethernet PHY 56 PD9 MII_RXD0 Ethernet PHY 57 PD10 MII_RXD1 Ethernet PHY 58 PD11 SD_CS Active low: Pulled high (See also TFT LCD CN13, pin 32) 59 PD12 WIRELESS_CS To the NRF24L01 2.4G wireless module 60 PD13 LCD_RS To TFT LCD (CN13) 61 PD14 LCD_WR To TFT LCD (CN13). Schematic is wrong LCD_WR is PB14. 62 PD15 LCD_RD To TFT LCD (CN13) -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- 97 PE0 DB00 To TFT LCD (CN13) 98 PE1 DB01 To TFT LCD (CN13) 1 PE2 DB02 To TFT LCD (CN13) 2 PE3 DB03 To TFT LCD (CN13) 3 PE4 DB04 To TFT LCD (CN13) 4 PE5 DB05 To TFT LCD (CN13) 5 PE6 DB06 To TFT LCD (CN13) 38 PE7 DB07 To TFT LCD (CN13) 39 PE8 DB08 To TFT LCD (CN13) 40 PE9 DB09 To TFT LCD (CN13) 41 PE10 DB10 To TFT LCD (CN13) 42 PE11 DB11 To TFT LCD (CN13) 43 PE12 DB12 To TFT LCD (CN13) 44 PE13 DB13 To TFT LCD (CN13) 45 PE14 DB14 To TFT LCD (CN13) 46 PE15 DB15 To TFT LCD (CN13) -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- 73 N/C 12 OSC_IN Y2 25Mhz XTAL 13 OSC_OUT Y2 25Mhz XTAL 94 BOOT0 JP15 (3.3V or GND) 14 RESET S5 6 VBAT JP14 (3.3V or battery) 49 VSS_1 GND 74 VSS_2 GND 99 VSS_3 GND 27 VSS_4 GND 10 VSS_5 GND 19 VSSA VSSA 20 VREF- VREF- Development Environment ======================= Either Linux or Cygwin on Windows can be used for the development environment. The source has been built only using the GNU toolchain (see below). Other toolchains will likely cause problems. Testing was performed using the Cygwin environment because the development tools that I used only work under Windows. GNU Toolchain Options ===================== Toolchain Configurations ------------------------ The NuttX make system has been modified to support the following different toolchain options. 1. The CodeSourcery GNU toolchain, 2. The Atollic Toolchain, 3. The devkitARM GNU toolchain, 4. Raisonance GNU toolchain, or 5. The NuttX buildroot Toolchain (see below). Most testing has been conducted using the CodeSourcery toolchain for Windows and that is the default toolchain in most configurations. To use the Atollic, devkitARM, Raisonance GNU, or NuttX buildroot toolchain, you simply need to add one of the following configuration options to your .config (or defconfig) file: CONFIG_STM32_CODESOURCERYW=y : CodeSourcery under Windows CONFIG_STM32_CODESOURCERYL=y : CodeSourcery under Linux CONFIG_STM32_ATOLLIC_LITE=y : The free, "Lite" version of Atollic toolchain under Windows CONFIG_STM32_ATOLLIC_PRO=y : The paid, "Pro" version of Atollic toolchain under Windows CONFIG_STM32_DEVKITARM=y : devkitARM under Windows CONFIG_STM32_RAISONANCE=y : Raisonance RIDE7 under Windows CONFIG_STM32_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default) If you change the default toolchain, then you may also have to modify the PATH in the setenv.h file if your make cannot find the tools. NOTE: the CodeSourcery (for Windows), Atollic, devkitARM, and Raisonance toolchains are Windows native toolchains. The CodeSourcery (for Linux) and NuttX buildroot toolchains are Cygwin and/or Linux native toolchains. There are several limitations to using a Windows based toolchain in a Cygwin environment. The three biggest are: 1. The Windows toolchain cannot follow Cygwin paths. Path conversions are performed automatically in the Cygwin makefiles using the 'cygpath' utility but you might easily find some new path problems. If so, check out 'cygpath -w' 2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links are used in Nuttx (e.g., include/arch). The make system works around these problems for the Windows tools by copying directories instead of linking them. But this can also cause some confusion for you: For example, you may edit a file in a "linked" directory and find that your changes had no effect. That is because you are building the copy of the file in the "fake" symbolic directory. If you use a Windows toolchain, you should get in the habit of making like this: make clean_context all An alias in your .bashrc file might make that less painful. 3. Dependencies are not made when using Windows versions of the GCC. This is because the dependencies are generated using Windows pathes which do not work with the Cygwin make. MKDEP = $(TOPDIR)/tools/mknulldeps.sh The CodeSourcery Toolchain (2009q1) ----------------------------------- The CodeSourcery toolchain (2009q1) does not work with default optimization level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with -Os. The Atollic "Pro" and "Lite" Toolchain -------------------------------------- One problem that I had with the Atollic toolchains is that the provide a gcc.exe and g++.exe in the same bin/ file as their ARM binaries. If the Atollic bin/ path appears in your PATH variable before /usr/bin, then you will get the wrong gcc when you try to build host executables. This will cause to strange, uninterpretable errors build some host binaries in tools/ when you first make. The Atollic "Lite" Toolchain ---------------------------- The free, "Lite" version of the Atollic toolchain does not support C++ nor does it support ar, nm, objdump, or objdcopy. If you use the Atollic "Lite" toolchain, you will have to set: CONFIG_HAVE_CXX=n In order to compile successfully. Otherwise, you will get errors like: "C++ Compiler only available in TrueSTUDIO Professional" The make may then fail in some of the post link processing because of some of the other missing tools. The Make.defs file replaces the ar and nm with the default system x86 tool versions and these seem to work okay. Disable all of the following to avoid using objcopy: CONFIG_RRLOAD_BINARY=n CONFIG_INTELHEX_BINARY=n CONFIG_MOTOROLA_SREC=n CONFIG_RAW_BINARY=n devkitARM --------- The devkitARM toolchain includes a version of MSYS make. Make sure that the the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM path or will get the wrong version of make. IDEs ==== NuttX is built using command-line make. It can be used with an IDE, but some effort will be required to create the project. Makefile Build -------------- Under Eclipse, it is pretty easy to set up an "empty makefile project" and simply use the NuttX makefile to build the system. That is almost for free under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty makefile project in order to work with Windows (Google for "Eclipse Cygwin" - there is a lot of help on the internet). Native Build ------------ Here are a few tips before you start that effort: 1) Select the toolchain that you will be using in your .config file 2) Start the NuttX build at least one time from the Cygwin command line before trying to create your project. This is necessary to create certain auto-generated files and directories that will be needed. 3) Set up include pathes: You will need include/, arch/arm/src/stm32, arch/arm/src/common, arch/arm/src/armv7-m, and sched/. 4) All assembly files need to have the definition option -D __ASSEMBLY__ on the command line. Startup files will probably cause you some headaches. The NuttX startup file is arch/arm/src/stm32/stm32_vectors.S. With RIDE, I have to build NuttX one time from the Cygwin command line in order to obtain the pre-built startup object needed by RIDE. NuttX EABI buildroot Toolchain ============================== A GNU GCC-based toolchain is assumed. The files */setenv.sh should be modified to point to the correct path to the Cortex-M3 GCC toolchain (if different from the default in your PATH variable). If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/). This GNU toolchain builds and executes in the Linux or Cygwin environment. 1. You must have already configured Nuttx in <some-dir>/nuttx. cd tools ./configure.sh shenzhou/<sub-dir> cd .. make context 2. Download the latest buildroot package into <some-dir> 3. unpack the buildroot tarball. The resulting directory may have versioning information on it like buildroot-x.y.z. If so, rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot. 4. cd <some-dir>/buildroot 5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config 6. make oldconfig 7. make 8. Edit nuttx/.config to select the buildroot toolchain as described above and below: -CONFIG_STM32_CODESOURCERYW=y +CONFIG_STM32_BUILDROOT=y 9. Edit setenv.h, if necessary, so that the PATH variable includes the path to the newly built binaries. -export TOOLCHAIN_BIN="/cygdrive/c/Program Files (x86)/CodeSourcery/Sourcery G++ Lite/bin" +#export TOOLCHAIN_BIN="/cygdrive/c/Program Files (x86)/CodeSourcery/Sourcery G++ Lite/bin" -#export TOOLCHAIN_BIN="${WD}/../misc/buildroot/build_arm_nofpu/staging_dir/bin" +export TOOLCHAIN_BIN="${WD}/../misc/buildroot/build_arm_nofpu/staging_dir/bin" See the file configs/README.txt in the buildroot source tree. That has more detailed PLUS some special instructions that you will need to follow if you are building a Cortex-M3 toolchain for Cygwin under Windows. NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for more information about this problem. If you plan to use NXFLAT, please do not use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain. See instructions below. NuttX OABI "buildroot" Toolchain ================================ The older, OABI buildroot toolchain is also available. To use the OABI toolchain: 1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3 configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI configuration such as cortexm3-defconfig-4.3.3 2. Modify the Make.defs file to use the OABI conventions: +CROSSDEV = arm-nuttx-elf- +ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft +NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections -CROSSDEV = arm-nuttx-eabi- -ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft -NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections NXFLAT Toolchain ================ If you are *not* using the NuttX buildroot toolchain and you want to use the NXFLAT tools, then you will still have to build a portion of the buildroot tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can be downloaded from the NuttX SourceForge download site (https://sourceforge.net/projects/nuttx/files/). This GNU toolchain builds and executes in the Linux or Cygwin environment. 1. You must have already configured Nuttx in <some-dir>/nuttx. cd tools ./configure.sh lpcxpresso-lpc1768/<sub-dir> 2. Download the latest buildroot package into <some-dir> 3. unpack the buildroot tarball. The resulting directory may have versioning information on it like buildroot-x.y.z. If so, rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot. 4. cd <some-dir>/buildroot 5. cp configs/cortexm3-defconfig-nxflat .config 6. make oldconfig 7. make 8. Edit setenv.h, if necessary, so that the PATH variable includes the path to the newly builtNXFLAT binaries. LEDs ==== The Cloudctrl board has four LEDs labeled LED1, LED2, LED3 and LED4 on the board. These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is defined. In that case, the usage by the board port is defined in include/board.h and src/up_leds.c. The LEDs are used to encode OS-related events as follows: SYMBOL Meaning LED1* LED2 LED3 LED4**** ------------------- ----------------------- ------- ------- ------- ------ LED_STARTED NuttX has been started ON OFF OFF OFF LED_HEAPALLOCATE Heap has been allocated OFF ON OFF OFF LED_IRQSENABLED Interrupts enabled ON ON OFF OFF LED_STACKCREATED Idle stack created OFF OFF ON OFF LED_INIRQ In an interrupt** ON N/C N/C OFF LED_SIGNAL In a signal handler*** N/C ON N/C OFF LED_ASSERTION An assertion failed ON ON N/C OFF LED_PANIC The system has crashed N/C N/C N/C ON LED_IDLE STM32 is is sleep mode (Optional, not used) * If LED1, LED2, LED3 are statically on, then NuttX probably failed to boot and these LEDs will give you some indication of where the failure was ** The normal state is LED1 ON and LED1 faintly glowing. This faint glow is because of timer interupts that result in the LED being illuminated on a small proportion of the time. *** LED2 may also flicker normally if signals are processed. **** LED4 may not be available if RS-485 is also used. For RS-485, it will then indicate the RS-485 direction. Cloudctrl-specific Configuration Options ============================================ CONFIG_ARCH - Identifies the arch/ subdirectory. This should be set to: CONFIG_ARCH=arm CONFIG_ARCH_family - For use in C code: CONFIG_ARCH_ARM=y CONFIG_ARCH_architecture - For use in C code: CONFIG_ARCH_CORTEXM3=y CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory CONFIG_ARCH_CHIP=stm32 CONFIG_ARCH_CHIP_name - For use in C code to identify the exact chip: CONFIG_ARCH_CHIP_STM32F107VC=y CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG - Enables special STM32 clock configuration features. CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG=n CONFIG_ARCH_BOARD - Identifies the configs subdirectory and hence, the board that supports the particular chip or SoC. CONFIG_ARCH_BOARD=shenzhou (for the Cloudctrl development board) CONFIG_ARCH_BOARD_name - For use in C code CONFIG_ARCH_BOARD_SHENZHOU=y CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation of delay loops CONFIG_ENDIAN_BIG - define if big endian (default is little endian) CONFIG_DRAM_SIZE - Describes the installed DRAM (SRAM in this case): CONFIG_DRAM_SIZE=0x00010000 (64Kb) CONFIG_DRAM_START - The start address of installed DRAM CONFIG_DRAM_START=0x20000000 CONFIG_STM32_CCMEXCLUDE - Exclude CCM SRAM from the HEAP CONFIG_ARCH_IRQPRIO - The STM32107xxx supports interrupt prioritization CONFIG_ARCH_IRQPRIO=y CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that have LEDs CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt stack. If defined, this symbol is the size of the interrupt stack in bytes. If not defined, the user task stacks will be used during interrupt handling. CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture. CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that cause a 100 second delay during boot-up. This 100 second delay serves no purpose other than it allows you to calibratre CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until the delay actually is 100 seconds. Individual subsystems can be enabled: AHB --- CONFIG_STM32_DMA1 CONFIG_STM32_DMA2 CONFIG_STM32_CRC CONFIG_STM32_ETHMAC CONFIG_STM32_OTGFS CONFIG_STM32_IWDG CONFIG_STM32_PWR -- Required for RTC APB1 (low speed) ---------------- CONFIG_STM32_BKP CONFIG_STM32_TIM2 CONFIG_STM32_TIM3 CONFIG_STM32_TIM4 CONFIG_STM32_TIM5 CONFIG_STM32_TIM6 CONFIG_STM32_TIM7 CONFIG_STM32_USART2 CONFIG_STM32_USART3 CONFIG_STM32_UART4 CONFIG_STM32_UART5 CONFIG_STM32_SPI2 CONFIG_STM32_SPI3 CONFIG_STM32_I2C1 CONFIG_STM32_I2C2 CONFIG_STM32_CAN1 CONFIG_STM32_CAN2 CONFIG_STM32_DAC1 CONFIG_STM32_DAC2 CONFIG_STM32_WWDG APB2 (high speed) ----------------- CONFIG_STM32_TIM1 CONFIG_STM32_SPI1 CONFIG_STM32_USART1 CONFIG_STM32_ADC1 CONFIG_STM32_ADC2 Timer and I2C devices may need to the following to force power to be applied unconditionally at power up. (Otherwise, the device is powered when it is initialized). CONFIG_STM32_FORCEPOWER Timer devices may be used for different purposes. One special purpose is to generate modulated outputs for such things as motor control. If CONFIG_STM32_TIMn is defined (as above) then the following may also be defined to indicate that the timer is intended to be used for pulsed output modulation, ADC conversion, or DAC conversion. Note that ADC/DAC require two definition: Not only do you have to assign the timer (n) for used by the ADC or DAC, but then you also have to configure which ADC or DAC (m) it is assigned to. CONFIG_STM32_TIMn_PWM Reserve timer n for use by PWM, n=1,..,14 CONFIG_STM32_TIMn_ADC Reserve timer n for use by ADC, n=1,..,14 CONFIG_STM32_TIMn_ADCm Reserve timer n to trigger ADCm, n=1,..,14, m=1,..,3 CONFIG_STM32_TIMn_DAC Reserve timer n for use by DAC, n=1,..,14 CONFIG_STM32_TIMn_DACm Reserve timer n to trigger DACm, n=1,..,14, m=1,..,2 For each timer that is enabled for PWM usage, we need the following additional configuration settings: CONFIG_STM32_TIMx_CHANNEL - Specifies the timer output channel {1,..,4} NOTE: The STM32 timers are each capable of generating different signals on each of the four channels with different duty cycles. That capability is not supported by this driver: Only one output channel per timer. JTAG Enable settings (by default JTAG-DP and SW-DP are disabled): CONFIG_STM32_JTAG_FULL_ENABLE - Enables full SWJ (JTAG-DP + SW-DP) CONFIG_STM32_JTAG_NOJNTRST_ENABLE - Enables full SWJ (JTAG-DP + SW-DP) but without JNTRST. CONFIG_STM32_JTAG_SW_ENABLE - Set JTAG-DP disabled and SW-DP enabled STM32107xxx specific device driver settings CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=1,2,3) or UART m (m=4,5) for the console and ttys0 (default is the USART1). CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received. This specific the size of the receive buffer CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before being sent. This specific the size of the transmit buffer CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8. CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity CONFIG_U[S]ARTn_2STOP - Two stop bits CONFIG_STM32_SPI_INTERRUPTS - Select to enable interrupt driven SPI support. Non-interrupt-driven, poll-waiting is recommended if the interrupt rate would be to high in the interrupt driven case. CONFIG_STM32_SPI_DMA - Use DMA to improve SPI transfer performance. Cannot be used with CONFIG_STM32_SPI_INTERRUPT. CONFIG_STM32_PHYADDR - The 5-bit address of the PHY on the board CONFIG_STM32_MII - Support Ethernet MII interface CONFIG_STM32_MII_MCO - Use MCO to clock the MII interface CONFIG_STM32_RMII - Support Ethernet RMII interface CONFIG_STM32_RMII_MCO - Use MCO to clock the RMII interface CONFIG_STM32_AUTONEG - Use PHY autonegotion to determine speed and mode CONFIG_STM32_ETHFD - If CONFIG_STM32_AUTONEG is not defined, then this may be defined to select full duplex mode. Default: half-duplex CONFIG_STM32_ETH100MBPS - If CONFIG_STM32_AUTONEG is not defined, then this may be defined to select 100 MBps speed. Default: 10 Mbps CONFIG_STM32_PHYSR - This must be provided if CONFIG_STM32_AUTONEG is defined. The PHY status register address may diff from PHY to PHY. This configuration sets the address of the PHY status register. CONFIG_STM32_PHYSR_SPEED - This must be provided if CONFIG_STM32_AUTONEG is defined. This provides bit mask indicating 10 or 100MBps speed. CONFIG_STM32_PHYSR_100MBPS - This must be provided if CONFIG_STM32_AUTONEG is defined. This provides the value of the speed bit(s) indicating 100MBps speed. CONFIG_STM32_PHYSR_MODE - This must be provided if CONFIG_STM32_AUTONEG is defined. This provide bit mask indicating full or half duplex modes. CONFIG_STM32_PHYSR_FULLDUPLEX - This must be provided if CONFIG_STM32_AUTONEG is defined. This provides the value of the mode bits indicating full duplex mode. CONFIG_STM32_ETH_PTP - Precision Time Protocol (PTP). Not supported but some hooks are indicated with this condition. Cloudctrl CAN Configuration CONFIG_CAN - Enables CAN support (one or both of CONFIG_STM32_CAN1 or CONFIG_STM32_CAN2 must also be defined) CONFIG_CAN_FIFOSIZE - The size of the circular buffer of CAN messages. Default: 8 CONFIG_CAN_NPENDINGRTR - The size of the list of pending RTR requests. Default: 4 CONFIG_CAN_LOOPBACK - A CAN driver may or may not support a loopback mode for testing. The STM32 CAN driver does support loopback mode. CONFIG_CAN1_BAUD - CAN1 BAUD rate. Required if CONFIG_STM32_CAN1 is defined. CONFIG_CAN2_BAUD - CAN1 BAUD rate. Required if CONFIG_STM32_CAN2 is defined. CONFIG_CAN_TSEG1 - The number of CAN time quanta in segment 1. Default: 6 CONFIG_CAN_TSEG2 - the number of CAN time quanta in segment 2. Default: 7 CONFIG_CAN_REGDEBUG - If CONFIG_DEBUG is set, this will generate an dump of all CAN registers. Cloudctrl LCD Hardware Configuration The LCD driver supports the following LCDs on the STM324xG_EVAL board: AM-240320L8TNQW00H (LCD_ILI9320 or LCD_ILI9321) OR AM-240320D5TOQW01H (LCD_ILI9325) Configuration options. CONFIG_LCD_LANDSCAPE - Define for 320x240 display "landscape" support. Default is this 320x240 "landscape" orientation For the Cloudctrl board, the edge opposite from the row of buttons is used as the top of the display in this orientation. CONFIG_LCD_RLANDSCAPE - Define for 320x240 display "reverse landscape" support. Default is this 320x240 "landscape" orientation For the Cloudctrl board, the edge next to the row of buttons is used as the top of the display in this orientation. CONFIG_LCD_PORTRAIT - Define for 240x320 display "portrait" orientation support. CONFIG_LCD_RPORTRAIT - Define for 240x320 display "reverse portrait" orientation support. CONFIG_LCD_RDSHIFT - When reading 16-bit gram data, there appears to be a shift in the returned data. This value fixes the offset. Default 5. The LCD driver dynamically selects the LCD based on the reported LCD ID value. However, code size can be reduced by suppressing support for individual LCDs using: CONFIG_STM32_ILI9320_DISABLE (includes ILI9321) CONFIG_STM32_ILI9325_DISABLE STM32 USB OTG FS Host Driver Support Pre-requisites CONFIG_USBHOST - Enable USB host support CONFIG_STM32_OTGFS - Enable the STM32 USB OTG FS block CONFIG_STM32_SYSCFG - Needed CONFIG_SCHED_WORKQUEUE - Worker thread support is required Options: CONFIG_STM32_OTGFS_RXFIFO_SIZE - Size of the RX FIFO in 32-bit words. Default 128 (512 bytes) CONFIG_STM32_OTGFS_NPTXFIFO_SIZE - Size of the non-periodic Tx FIFO in 32-bit words. Default 96 (384 bytes) CONFIG_STM32_OTGFS_PTXFIFO_SIZE - Size of the periodic Tx FIFO in 32-bit words. Default 96 (384 bytes) CONFIG_STM32_OTGFS_DESCSIZE - Maximum size of a descriptor. Default: 128 CONFIG_STM32_OTGFS_SOFINTR - Enable SOF interrupts. Why would you ever want to do that? CONFIG_STM32_USBHOST_REGDEBUG - Enable very low-level register access debug. Depends on CONFIG_DEBUG. CONFIG_STM32_USBHOST_PKTDUMP - Dump all incoming and outgoing USB packets. Depends on CONFIG_DEBUG. Configurations ============== Each Cloudctrl configuration is maintained in a sudirectory and can be selected as follow: cd tools ./configure.sh shenzhou/<subdir> cd - . ./setenv.sh Where <subdir> is one of the following: nsh: --- Configures the NuttShell (nsh) located at apps/examples/nsh. The Configuration enables both the serial and telnet NSH interfaces. CONFIG_STM32_CODESOURCERYW=y : CodeSourcery under Windows CONFIG_NSH_DHCPC=n : DHCP is disabled CONFIG_NSH_IPADDR=0x0a000002 : Target IP address 10.0.0.2 CONFIG_NSH_DRIPADDR=0x0a000001 : Host IP address 10.0.0.1 NOTES: 1. This example assumes that a network is connected. During its initialization, it will try to negotiate the link speed. If you have no network connected when you reset the board, there will be a long delay (maybe 30 seconds?) before anything happens. That is the timeout before the networking finally gives up and decides that no network is available. 2. Enabling the ADC example: The only internal signal for ADC testing is the potentiometer input: ADC1_IN10(PC0) Potentiometer External signals are also available on CON5 CN14: ADC_IN8 (PB0) CON5 CN14 Pin2 ADC_IN9 (PB1) CON5 CN14 Pin1 The signal selection is hard-coded in configs/shenzhou/src/up_adc.c: The potentiometer input (only) is selected. These selections will enable sampling the potentiometer input at 100Hz using Timer 1: CONFIG_ANALOG=y : Enable analog device support CONFIG_ADC=y : Enable generic ADC driver support CONFIG_ADC_DMA=n : ADC DMA is not supported CONFIG_STM32_ADC1=y : Enable ADC 1 CONFIG_STM32_TIM1=y : Enable Timer 1 CONFIG_STM32_TIM1_ADC=y : Use Timer 1 for ADC CONFIG_STM32_TIM1_ADC1=y : Allocate Timer 1 to ADC 1 CONFIG_STM32_ADC1_SAMPLE_FREQUENCY=100 : Set sampling frequency to 100Hz CONFIG_STM32_ADC1_TIMTRIG=0 : Trigger on timer output 0 CONFIG_STM32_FORCEPOWER=y : Apply power to TIM1 a boot up time CONFIG_EXAMPLES_ADC=y : Enable the apps/examples/adc built-in nxwm ---- This is a special configuration setup for the NxWM window manager UnitTest. The NxWM window manager can be found here: nuttx-code/NxWidgets/nxwm The NxWM unit test can be found at: nuttx-code/NxWidgets/UnitTests/nxwm NOTE: JP6 selects between the touchscreen interrupt and the MII interrupt. It should be positioned 1-2 to enable the touchscreen interrupt. Documentation for installing the NxWM unit test can be found here: nuttx-code/NxWidgets/UnitTests/README.txt Here is the quick summary of the build steps (Assuming that all of the required packages are available in a directory ~/nuttx-code): 1. Intall the nxwm configuration $ cd ~/nuttx-code/tools $ ./configure.sh shenzhou/nxwm 2. Make the build context (only) $ cd .. $ . ./setenv.sh $ make context ... 3. Install the nxwm unit test $ cd ~/nuttx-code/NxWidgets $ tools/install.sh ~/nuttx-code/apps nxwm Creating symbolic link - To ~/nuttx-code/NxWidgets/UnitTests/nxwm - At ~/nuttx-code/apps/external 4. Build the NxWidgets library $ cd ~/nuttx-code/NxWidgets/libnxwidgets $ make TOPDIR=~/nuttx-code ... 5. Build the NxWM library $ cd ~/nuttx-code/NxWidgets/nxwm $ make TOPDIR=~/nuttx-code ... 6. Built NuttX with the installed unit test as the application $ cd ~/nuttx-code $ make NOTE: Reading from the LCD is not currently supported by this configuration. The hardware will support reading from the LCD and drivers/lcd/ssd1289.c also supports reading from the LCD. This limits some graphics capabilities. Reading from the LCD is not supported only because it has not been test. If you get inspired to test this feature, you can turn the LCD read functionality on by setting: -CONFIG_LCD_NOGETRUN=y +# CONFIG_LCD_NOGETRUN is not set -CONFIG_NX_WRITEONLY=y +# CONFIG_NX_WRITEONLY is not set thttpd ------ This builds the THTTPD web server example using the THTTPD and the apps/examples/thttpd application. NOTE: See note above with regard to the EABI/OABI buildroot toolchains. This example can only be built using the older OABI toolchain due to incompatibilities introduced in later GCC releases.