nuttx/drivers/can.c
patacongo 9535a28d7a Eliminate some hcs12 compile errors/warnings
git-svn-id: svn://svn.code.sf.net/p/nuttx/code/trunk@2329 42af7a65-404d-4744-a932-0658087f49c3
2009-12-13 15:13:37 +00:00

761 lines
21 KiB
C

/****************************************************************************
* drivers/can.c
*
* Copyright (C) 2008 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <spudmonkey@racsa.co.cr>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Compilation Switches
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <unistd.h>
#include <string.h>
#include <semaphore.h>
#include <fcntl.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/fs.h>
#include <nuttx/arch.h>
#include <nuttx/can.h>
#include <arch/irq.h>
/****************************************************************************
* Definitions
****************************************************************************/
#define HALF_SECOND_MSEC 500
#define HALF_SECOND_USEC 500000L
/****************************************************************************
* Private Type Definitions
****************************************************************************/
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
static int can_open(FAR struct file *filep);
static int can_close(FAR struct file *filep);
static ssize_t can_read(FAR struct file *filep, FAR char *buffer, size_t buflen);
static int can_xmit(FAR struct can_dev_s *dev);
static ssize_t can_write(FAR struct file *filep, FAR const char *buffer, size_t buflen);
static inline ssize_t can_rtrread(FAR struct can_dev_s *dev, FAR struct canioctl_rtr_s *rtr);
static int can_ioctl(FAR struct file *filep, int cmd, unsigned long arg);
/****************************************************************************
* Private Data
****************************************************************************/
static const struct file_operations g_canops =
{
can_open, /* open */
can_close, /* close */
can_read, /* read */
can_write, /* write */
0, /* seek */
can_ioctl /* ioctl */
#ifndef CONFIG_DISABLE_POLL
, 0 /* poll */
#endif
};
/****************************************************************************
* Private Functions
****************************************************************************/
/************************************************************************************
* Name: can_open
*
* Description:
* This function is called whenever the CAN device is opened.
*
************************************************************************************/
static int can_open(FAR struct file *filep)
{
FAR struct inode *inode = filep->f_inode;
FAR struct can_dev_s *dev = inode->i_private;
ubyte tmp;
int ret = OK;
/* If the port is the middle of closing, wait until the close is finished */
if (sem_wait(&dev->cd_closesem) != OK)
{
ret = -errno;
}
else
{
/* Increment the count of references to the device. If this the first
* time that the driver has been opened for this device, then initialize
* the device.
*/
tmp = dev->cd_ocount + 1;
if (tmp == 0)
{
/* More than 255 opens; ubyte overflows to zero */
ret = -EMFILE;
}
else
{
/* Check if this is the first time that the driver has been opened. */
if (tmp == 1)
{
/* Yes.. perform one time hardware initialization. */
irqstate_t flags = irqsave();
ret = dev_setup(dev);
if (ret == OK)
{
/* Mark the FIFOs empty */
dev->cd_xmit.cf_head = 0;
dev->cd_xmit.cf_tail = 0;
dev->cd_recv.cf_head = 0;
dev->cd_recv.cf_tail = 0;
/* Finally, Enable the CAN RX interrupt */
dev_rxint(dev, TRUE);
/* Save the new open count on success */
dev->cd_ocount = tmp;
}
irqrestore(flags);
}
}
sem_post(&dev->cd_closesem);
}
return ret;
}
/************************************************************************************
* Name: can_close
*
* Description:
* This routine is called when the CAN device is closed.
* It waits for the last remaining data to be sent.
*
************************************************************************************/
static int can_close(FAR struct file *filep)
{
FAR struct inode *inode = filep->f_inode;
FAR struct can_dev_s *dev = inode->i_private;
irqstate_t flags;
int ret = OK;
if (sem_wait(&dev->cd_closesem) != OK)
{
ret = -errno;
}
else
{
/* Decrement the references to the driver. If the reference count will
* decrement to 0, then uninitialize the driver.
*/
if (dev->cd_ocount > 1)
{
dev->cd_ocount--;
sem_post(&dev->cd_closesem);
}
else
{
/* There are no more references to the port */
dev->cd_ocount = 0;
/* Stop accepting input */
dev_rxint(dev, FALSE);
/* Now we wait for the transmit FIFO to clear */
while (dev->cd_xmit.cf_head != dev->cd_xmit.cf_tail)
{
#ifndef CONFIG_DISABLE_SIGNALS
usleep(HALF_SECOND_USEC);
#else
up_mdelay(HALF_SECOND_MSEC);
#endif
}
/* And wait for the TX hardware FIFO to drain */
while (!dev_txempty(dev))
{
#ifndef CONFIG_DISABLE_SIGNALS
usleep(HALF_SECOND_USEC);
#else
up_mdelay(HALF_SECOND_MSEC);
#endif
}
/* Free the IRQ and disable the CAN device */
flags = irqsave(); /* Disable interrupts */
dev_shutdown(dev); /* Disable the CAN */
irqrestore(flags);
sem_post(&dev->cd_closesem);
}
}
return ret;
}
/************************************************************************************
* Name: can_read
*
* Description:
* Read standard CAN messages
*
************************************************************************************/
static ssize_t can_read(FAR struct file *filep, FAR char *buffer, size_t buflen)
{
FAR struct inode *inode = filep->f_inode;
FAR struct can_dev_s *dev = inode->i_private;
size_t nread;
irqstate_t flags;
int ret = 0;
/* The caller must provide enough memory to catch the smallest possible message
* This is not a system error condition, but we won't permit it, Hence we return 0.
*/
if (buflen >= CAN_MSGLEN(0))
{
/* Interrupts must be disabled while accessing the cd_recv FIFO */
flags = irqsave();
while (dev->cd_recv.cf_head == dev->cd_recv.cf_tail)
{
/* The receive FIFO is empty -- was non-blocking mode selected? */
if (filep->f_oflags & O_NONBLOCK)
{
ret = -EAGAIN;
goto return_with_irqdisabled;
}
/* Wait for a message to be received */
ret = sem_wait(&dev->cd_recv.cf_sem);
if (ret < 0)
{
ret = -errno;
goto return_with_irqdisabled;
}
}
/* The cd_recv FIFO is not empty. Copy all buffered data that will fit
* in the user buffer.
*/
nread = 0;
do
{
/* Will the next message in the FIFO fit into the user buffer? */
FAR struct can_msg_s *msg = &dev->cd_recv.cf_buffer[dev->cd_recv.cf_head];
int msglen = CAN_MSGLEN(msg->cm_hdr);
if (ret + msglen > buflen)
{
break;
}
/* Copy the message to the user buffer */
memcpy(&buffer[nread], msg, msglen);
nread += msglen;
/* Increment the head of the circular message buffer */
if (++dev->cd_recv.cf_head >= CONFIG_CAN_FIFOSIZE)
{
dev->cd_recv.cf_head = 0;
}
}
while (dev->cd_recv.cf_head != dev->cd_recv.cf_tail);
/* All on the messages have bee transferred. Return the number of bytes
* that were read.
*/
ret = nread;
return_with_irqdisabled:
irqrestore(flags);
}
return ret;
}
/************************************************************************************
* Name: can_xmit
*
* Description:
* Send the message at the head of the cd_xmit FIFO
*
* Assumptions:
* Called with interrupts disabled
*
************************************************************************************/
static int can_xmit(FAR struct can_dev_s *dev)
{
boolean enable = FALSE;
int ret = OK;
/* Check if the xmit FIFO is empty */
if (dev->cd_xmit.cf_head != dev->cd_xmit.cf_tail)
{
/* Send the next message at the head of the FIFO */
ret = dev_send(dev, &dev->cd_xmit.cf_buffer[dev->cd_xmit.cf_head]);
/* Make sure the TX done interrupts are enabled */
enable = (ret == OK ? TRUE : FALSE);
}
dev_txint(dev, enable);
return ret;
}
/************************************************************************************
* Name: can_write
************************************************************************************/
static ssize_t can_write(FAR struct file *filep, FAR const char *buffer, size_t buflen)
{
FAR struct inode *inode = filep->f_inode;
FAR struct can_dev_s *dev = inode->i_private;
FAR struct can_fifo_s *fifo = &dev->cd_xmit;
FAR struct can_msg_s *msg;
boolean empty = FALSE;
ssize_t nsent = 0;
irqstate_t flags;
int nexttail;
int msglen;
int ret = 0;
/* Interrupts must disabled throughout the following */
flags = irqsave();
/* Check if the TX FIFO was empty when we started. That is a clue that we have
* to kick off a new TX sequence.
*/
empty = (fifo->cf_head == fifo->cf_tail);
/* Add the messages to the FIFO. Ignore any trailing messages that are
* shorter than the minimum.
*/
while ((buflen - nsent) >= CAN_MSGLEN(0))
{
/* Check if adding this new message would over-run the drivers ability to enqueue
* xmit data.
*/
nexttail = fifo->cf_tail + 1;
if (nexttail >= CONFIG_CAN_FIFOSIZE)
{
nexttail = 0;
}
/* If the XMIT fifo becomes full, then wait for space to become available */
while (nexttail == fifo->cf_head)
{
/* The transmit FIFO is full -- was non-blocking mode selected? */
if (filep->f_oflags & O_NONBLOCK)
{
if (nsent == 0)
{
ret = -EAGAIN;
}
else
{
ret = nsent;
}
goto return_with_irqdisabled;
}
/* If the FIFO was empty when we started, then we will have
* start the XMIT sequence to clear the FIFO.
*/
if (empty)
{
can_xmit(dev);
}
/* Wait for a message to be sent */
do
{
ret = sem_wait(&fifo->cf_sem);
if (ret < 0 && errno != EINTR)
{
ret = -errno;
goto return_with_irqdisabled;
}
}
while (ret < 0);
/* Re-check the FIFO state */
empty = (fifo->cf_head == fifo->cf_tail);
}
/* We get here if there is space at the end of the FIFO. Add the new
* CAN message at the tail of the FIFO.
*/
msg = (FAR struct can_msg_s *)&buffer[nsent];
msglen = CAN_MSGLEN(msg->cm_hdr);
memcpy(&fifo->cf_buffer[fifo->cf_tail], msg, msglen);
/* Increment the tail of the circular buffer */
fifo->cf_tail = nexttail;
/* Increment the number of bytes that were sent */
nsent += msglen;
}
/* We get here after all messages have been added to the FIFO. Check if
* we need to kick of the XMIT sequence.
*/
if (empty)
{
can_xmit(dev);
}
/* Return the number of bytes that were sent */
ret = nsent;
return_with_irqdisabled:
irqrestore(flags);
return ret;
}
/************************************************************************************
* Name: can_rtrread
*
* Description:
* Read RTR messages. The RTR message is a special message -- it is an outgoing
* message that says "Please re-transmit the message with the same identifier as
* this message. So the RTR read is really a send-wait-receive operation.
*
************************************************************************************/
static inline ssize_t can_rtrread(FAR struct can_dev_s *dev, FAR struct canioctl_rtr_s *rtr)
{
FAR struct can_rtrwait_s *wait = NULL;
irqstate_t flags;
int i;
int ret = -ENOMEM;
/* Disable interrupts through this operation */
flags = irqsave();
/* Find an avaiable slot in the pending RTR list */
for (i = 0; i < CONFIG_CAN_NPENDINGRTR; i++)
{
FAR struct can_rtrwait_s *tmp = &dev->cd_rtr[i];
if (!rtr->ci_msg)
{
tmp->cr_id = rtr->ci_id;
tmp->cr_msg = rtr->ci_msg;
dev->cd_npendrtr++;
wait = tmp;
break;
}
}
if (wait)
{
/* Send the remote transmission request */
ret = dev_remoterequest(dev, wait->cr_id);
if (ret == OK)
{
/* Then wait for the response */
ret = sem_wait(&wait->cr_sem);
}
}
irqrestore(flags);
return ret;
}
/************************************************************************************
* Name: can_ioctl
************************************************************************************/
static int can_ioctl(FAR struct file *filep, int cmd, unsigned long arg)
{
FAR struct inode *inode = filep->f_inode;
FAR struct can_dev_s *dev = inode->i_private;
int ret = OK;
/* Handle built-in ioctl commands */
switch (cmd)
{
/* CANIOCTL_RTR: Send the remote transmission request and wait for the response.
* Argument is a reference to struct canioctl_rtr_s (casting to uintptr first
* eliminates complaints on some architectures where the sizeof long is different
* from the size of a pointer).
*/
case CANIOCTL_RTR:
ret = can_rtrread(dev, (struct canioctl_rtr_s*)((uintptr)arg));
break;
/* Not a "built-in" ioctl command.. perhaps it is unique to this device driver */
default:
ret = dev_ioctl(dev, cmd, arg);
break;
}
return ret;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/************************************************************************************
* Name: can_register
*
* Description:
* Register serial console and serial ports.
*
************************************************************************************/
int can_register(FAR const char *path, FAR struct can_dev_s *dev)
{
int i;
/* Initialize the CAN device structure */
dev->cd_ocount = 0;
sem_init(&dev->cd_xmit.cf_sem, 0, 0);
sem_init(&dev->cd_recv.cf_sem, 0, 0);
sem_init(&dev->cd_closesem, 0, 1);
for (i = 0; i < CONFIG_CAN_NPENDINGRTR; i++)
{
sem_init(&dev->cd_rtr[i].cr_sem, 0, 0);
dev->cd_rtr[i].cr_msg = NULL;
dev->cd_npendrtr--;
}
/* Initialize/reset the CAN hardware */
dev_reset(dev);
/* Register the CAN device */
dbg("Registering %s\n", path);
return register_driver(path, &g_canops, 0666, dev);
}
/************************************************************************************
* Name: can_receive
*
* Description:
* Called from the CAN interrupt handler when new read data is available
*
* Parameters:
* dev - CAN driver state structure
* hdr - CAN message header
* data - CAN message data (if DLC > 0)
*
* Assumptions:
* CAN interrupts are disabled.
*
************************************************************************************/
int can_receive(FAR struct can_dev_s *dev, uint16 hdr, FAR ubyte *data)
{
FAR struct can_fifo_s *fifo = &dev->cd_recv;
FAR ubyte *dest;
int nexttail;
int err = -ENOMEM;
int i;
/* Check if adding this new message would over-run the drivers ability to enqueue
* read data.
*/
nexttail = fifo->cf_tail + 1;
if (nexttail >= CONFIG_CAN_FIFOSIZE)
{
nexttail = 0;
}
/* First, check if this response matches any RTR response that we may be waiting for */
if (dev->cd_npendrtr > 0)
{
/* There are pending RTR requests -- search the lists of requests
* and see any any matches this new message.
*/
for (i = 0; i < CONFIG_CAN_NPENDINGRTR; i++)
{
FAR struct can_rtrwait_s *rtr = &dev->cd_rtr[i];
FAR struct can_msg_s *msg = rtr->cr_msg;
/* Check if the entry is valid and if the ID matches. A valid entry has
* a non-NULL receiving address
*/
if (msg && CAN_ID(hdr) == rtr->cr_id)
{
/* We have the response... copy the data to the user's buffer */
msg->cm_hdr = hdr;
for (i = 0, dest = msg->cm_data; i < CAN_DLC(hdr); i++)
{
*dest++ = *data++;
}
/* Mark the entry unused */
rtr->cr_msg = NULL;
/* And restart the waiting thread */
sem_post(&rtr->cr_sem);
}
}
}
/* Refuse the new data if the FIFO is full */
if (nexttail != fifo->cf_head)
{
/* Add the new, decoded CAN message at the tail of the FIFO */
fifo->cf_buffer[fifo->cf_tail].cm_hdr = hdr;
for (i = 0, dest = fifo->cf_buffer[fifo->cf_tail].cm_data; i < CAN_DLC(hdr); i++)
{
*dest++ = *data++;
}
/* Increment the tail of the circular buffer */
fifo->cf_tail = nexttail;
/* The increment the counting semaphore. The maximum value should be
* CONFIG_CAN_FIFOSIZE -- one possible count for each allocated message buffer.
*/
sem_post(&fifo->cf_sem);
err = OK;
}
return err;
}
/************************************************************************************
* Name: can_txdone
*
* Description:
* Called from the CAN interrupt handler at the completion of a send operation.
*
* Parameters:
* dev - The specifi CAN device
* hdr - The 16-bit CAN header
* data - An array contain the CAN data.
*
* Return:
* OK on success; a negated errno on failure.
*
************************************************************************************/
int can_txdone(FAR struct can_dev_s *dev)
{
int ret = -ENOENT;
/* Verify that the xmit FIFO is not empty */
if (dev->cd_xmit.cf_head != dev->cd_xmit.cf_tail)
{
/* Remove the message at the head of the xmit FIFO */
if (++dev->cd_xmit.cf_head >= CONFIG_CAN_FIFOSIZE)
{
dev->cd_xmit.cf_head = 0;
}
/* Send the next message in the FIFO */
ret = can_xmit(dev);
if (ret == OK)
{
/* Inform any waiting threads that new xmit space is available */
ret = sem_post(&dev->cd_xmit.cf_sem);
}
}
return ret;
}