nuttx/arch/arm/src/stm32/stm32_spi.c

1683 lines
50 KiB
C

/************************************************************************************
* arm/arm/src/stm32/stm32_spi.c
*
* Copyright (C) 2009-2013, 2016 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
/************************************************************************************
* The external functions, stm32_spi1/2/3select and stm32_spi1/2/3status must be
* provided by board-specific logic. They are implementations of the select
* and status methods of the SPI interface defined by struct spi_ops_s (see
* include/nuttx/spi/spi.h). All other methods (including stm32_spibus_initialize())
* are provided by common STM32 logic. To use this common SPI logic on your
* board:
*
* 1. Provide logic in stm32_boardinitialize() to configure SPI chip select
* pins.
* 2. Provide stm32_spi1/2/3select() and stm32_spi1/2/3status() functions in your
* board-specific logic. These functions will perform chip selection and
* status operations using GPIOs in the way your board is configured.
* 3. Add a calls to stm32_spibus_initialize() in your low level application
* initialization logic
* 4. The handle returned by stm32_spibus_initialize() may then be used to bind the
* SPI driver to higher level logic (e.g., calling
* mmcsd_spislotinitialize(), for example, will bind the SPI driver to
* the SPI MMC/SD driver).
*
****************************************************c********************************/
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <semaphore.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/spi/spi.h>
#include <arch/board/board.h>
#include "up_internal.h"
#include "up_arch.h"
#include "chip.h"
#include "stm32.h"
#include "stm32_gpio.h"
#include "stm32_dma.h"
#include "stm32_spi.h"
#if defined(CONFIG_STM32_SPI1) || defined(CONFIG_STM32_SPI2) || defined(CONFIG_STM32_SPI3) || \
defined(CONFIG_STM32_SPI4) || defined(CONFIG_STM32_SPI5) || defined(CONFIG_STM32_SPI6)
/************************************************************************************
* Pre-processor Definitions
************************************************************************************/
/* Configuration ********************************************************************/
/* SPI interrupts */
#ifdef CONFIG_STM32_SPI_INTERRUPTS
# error "Interrupt driven SPI not yet supported"
#endif
/* Can't have both interrupt driven SPI and SPI DMA */
#if defined(CONFIG_STM32_SPI_INTERRUPTS) && defined(CONFIG_STM32_SPI_DMA)
# error "Cannot enable both interrupt mode and DMA mode for SPI"
#endif
/* SPI DMA priority */
#ifdef CONFIG_STM32_SPI_DMA
# if defined(CONFIG_SPI_DMAPRIO)
# define SPI_DMA_PRIO CONFIG_SPI_DMAPRIO
# elif defined(CONFIG_STM32_STM32F10XX) || defined(CONFIG_STM32_STM32L15XX)
# define SPI_DMA_PRIO DMA_CCR_PRIMED
# elif defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
# define SPI_DMA_PRIO DMA_SCR_PRIMED
# else
# error "Unknown STM32 DMA"
# endif
# if defined(CONFIG_STM32_STM32F10XX) || defined(CONFIG_STM32_STM32L15XX)
# if (SPI_DMA_PRIO & ~DMA_CCR_PL_MASK) != 0
# error "Illegal value for CONFIG_SPI_DMAPRIO"
# endif
# elif defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
# if (SPI_DMA_PRIO & ~DMA_SCR_PL_MASK) != 0
# error "Illegal value for CONFIG_SPI_DMAPRIO"
# endif
# else
# error "Unknown STM32 DMA"
# endif
#endif
/* DMA channel configuration */
#if defined(CONFIG_STM32_STM32F10XX) || defined(CONFIG_STM32_STM32F30XX) || \
defined(CONFIG_STM32_STM32L15XX)
# define SPI_RXDMA16_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_16BITS|DMA_CCR_PSIZE_16BITS|DMA_CCR_MINC )
# define SPI_RXDMA8_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_8BITS |DMA_CCR_MINC )
# define SPI_RXDMA16NULL_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_16BITS )
# define SPI_RXDMA8NULL_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_8BITS )
# define SPI_TXDMA16_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_16BITS|DMA_CCR_PSIZE_16BITS|DMA_CCR_MINC|DMA_CCR_DIR)
# define SPI_TXDMA8_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_8BITS |DMA_CCR_MINC|DMA_CCR_DIR)
# define SPI_TXDMA16NULL_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_16BITS |DMA_CCR_DIR)
# define SPI_TXDMA8NULL_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_8BITS |DMA_CCR_DIR)
#elif defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
# define SPI_RXDMA16_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_16BITS|DMA_SCR_PSIZE_16BITS|DMA_SCR_MINC|DMA_SCR_DIR_P2M)
# define SPI_RXDMA8_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_8BITS |DMA_SCR_MINC|DMA_SCR_DIR_P2M)
# define SPI_RXDMA16NULL_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_16BITS |DMA_SCR_DIR_P2M)
# define SPI_RXDMA8NULL_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_8BITS |DMA_SCR_DIR_P2M)
# define SPI_TXDMA16_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_16BITS|DMA_SCR_PSIZE_16BITS|DMA_SCR_MINC|DMA_SCR_DIR_M2P)
# define SPI_TXDMA8_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_8BITS |DMA_SCR_MINC|DMA_SCR_DIR_M2P)
# define SPI_TXDMA16NULL_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_16BITS |DMA_SCR_DIR_M2P)
# define SPI_TXDMA8NULL_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_8BITS |DMA_SCR_DIR_M2P)
#else
# error "Unknown STM32 DMA"
#endif
/************************************************************************************
* Private Types
************************************************************************************/
struct stm32_spidev_s
{
struct spi_dev_s spidev; /* Externally visible part of the SPI interface */
uint32_t spibase; /* SPIn base address */
uint32_t spiclock; /* Clocking for the SPI module */
#ifdef CONFIG_STM32_SPI_INTERRUPTS
uint8_t spiirq; /* SPI IRQ number */
#endif
#ifdef CONFIG_STM32_SPI_DMA
volatile uint8_t rxresult; /* Result of the RX DMA */
volatile uint8_t txresult; /* Result of the RX DMA */
uint8_t rxch; /* The RX DMA channel number */
uint8_t txch; /* The TX DMA channel number */
DMA_HANDLE rxdma; /* DMA channel handle for RX transfers */
DMA_HANDLE txdma; /* DMA channel handle for TX transfers */
sem_t rxsem; /* Wait for RX DMA to complete */
sem_t txsem; /* Wait for TX DMA to complete */
uint32_t txccr; /* DMA control register for TX transfers */
uint32_t rxccr; /* DMA control register for RX transfers */
#endif
sem_t exclsem; /* Held while chip is selected for mutual exclusion */
uint32_t frequency; /* Requested clock frequency */
uint32_t actual; /* Actual clock frequency */
int8_t nbits; /* Width of word in bits (8 or 16) */
uint8_t mode; /* Mode 0,1,2,3 */
};
/************************************************************************************
* Private Function Prototypes
************************************************************************************/
/* Helpers */
static inline uint16_t spi_getreg(FAR struct stm32_spidev_s *priv, uint8_t offset);
static inline void spi_putreg(FAR struct stm32_spidev_s *priv, uint8_t offset,
uint16_t value);
static inline uint16_t spi_readword(FAR struct stm32_spidev_s *priv);
static inline void spi_writeword(FAR struct stm32_spidev_s *priv, uint16_t byte);
static inline bool spi_16bitmode(FAR struct stm32_spidev_s *priv);
/* DMA support */
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmarxwait(FAR struct stm32_spidev_s *priv);
static void spi_dmatxwait(FAR struct stm32_spidev_s *priv);
static inline void spi_dmarxwakeup(FAR struct stm32_spidev_s *priv);
static inline void spi_dmatxwakeup(FAR struct stm32_spidev_s *priv);
static void spi_dmarxcallback(DMA_HANDLE handle, uint8_t isr, void *arg);
static void spi_dmatxcallback(DMA_HANDLE handle, uint8_t isr, void *arg);
static void spi_dmarxsetup(FAR struct stm32_spidev_s *priv,
FAR void *rxbuffer, FAR void *rxdummy, size_t nwords);
static void spi_dmatxsetup(FAR struct stm32_spidev_s *priv,
FAR const void *txbuffer, FAR const void *txdummy, size_t nwords);
static inline void spi_dmarxstart(FAR struct stm32_spidev_s *priv);
static inline void spi_dmatxstart(FAR struct stm32_spidev_s *priv);
#endif
/* SPI methods */
static int spi_lock(FAR struct spi_dev_s *dev, bool lock);
static uint32_t spi_setfrequency(FAR struct spi_dev_s *dev, uint32_t frequency);
static void spi_setmode(FAR struct spi_dev_s *dev, enum spi_mode_e mode);
static void spi_setbits(FAR struct spi_dev_s *dev, int nbits);
static uint16_t spi_send(FAR struct spi_dev_s *dev, uint16_t wd);
static void spi_exchange(FAR struct spi_dev_s *dev, FAR const void *txbuffer,
FAR void *rxbuffer, size_t nwords);
#ifndef CONFIG_SPI_EXCHANGE
static void spi_sndblock(FAR struct spi_dev_s *dev, FAR const void *txbuffer,
size_t nwords);
static void spi_recvblock(FAR struct spi_dev_s *dev, FAR void *rxbuffer,
size_t nwords);
#endif
/* Initialization */
static void spi_bus_initialize(FAR struct stm32_spidev_s *priv);
/************************************************************************************
* Private Data
************************************************************************************/
#ifdef CONFIG_STM32_SPI1
static const struct spi_ops_s g_sp1iops =
{
.lock = spi_lock,
.select = stm32_spi1select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
#ifdef CONFIG_SPI_HWFEATURES
.hwfeatures = 0, /* Not supported */
#endif
.status = stm32_spi1status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi1cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi1register, /* Provided externally */
#else
.registercallback = 0, /* Not implemented */
#endif
};
static struct stm32_spidev_s g_spi1dev =
{
.spidev = { &g_sp1iops },
.spibase = STM32_SPI1_BASE,
.spiclock = STM32_PCLK2_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI1,
#endif
#ifdef CONFIG_STM32_SPI_DMA
.rxch = DMACHAN_SPI1_RX,
.txch = DMACHAN_SPI1_TX,
#endif
};
#endif
#ifdef CONFIG_STM32_SPI2
static const struct spi_ops_s g_sp2iops =
{
.lock = spi_lock,
.select = stm32_spi2select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
.status = stm32_spi2status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi2cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi2register, /* provided externally */
#else
.registercallback = 0, /* not implemented */
#endif
};
static struct stm32_spidev_s g_spi2dev =
{
.spidev = { &g_sp2iops },
.spibase = STM32_SPI2_BASE,
.spiclock = STM32_PCLK1_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI2,
#endif
#ifdef CONFIG_STM32_SPI_DMA
.rxch = DMACHAN_SPI2_RX,
.txch = DMACHAN_SPI2_TX,
#endif
};
#endif
#ifdef CONFIG_STM32_SPI3
static const struct spi_ops_s g_sp3iops =
{
.lock = spi_lock,
.select = stm32_spi3select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
.status = stm32_spi3status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi3cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi3register, /* provided externally */
#else
.registercallback = 0, /* not implemented */
#endif
};
static struct stm32_spidev_s g_spi3dev =
{
.spidev = { &g_sp3iops },
.spibase = STM32_SPI3_BASE,
.spiclock = STM32_PCLK1_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI3,
#endif
#ifdef CONFIG_STM32_SPI_DMA
.rxch = DMACHAN_SPI3_RX,
.txch = DMACHAN_SPI3_TX,
#endif
};
#endif
#ifdef CONFIG_STM32_SPI4
static const struct spi_ops_s g_sp4iops =
{
.lock = spi_lock,
.select = stm32_spi4select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
.status = stm32_spi4status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi4cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi4register, /* provided externally */
#else
.registercallback = 0, /* not implemented */
#endif
};
static struct stm32_spidev_s g_spi4dev =
{
.spidev = { &g_sp4iops },
.spibase = STM32_SPI4_BASE,
.spiclock = STM32_PCLK2_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI4,
#endif
#ifdef CONFIG_STM32_SPI_DMA
.rxch = DMACHAN_SPI4_RX,
.txch = DMACHAN_SPI4_TX,
#endif
};
#endif
#ifdef CONFIG_STM32_SPI5
static const struct spi_ops_s g_sp5iops =
{
.lock = spi_lock,
.select = stm32_spi5select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
.status = stm32_spi5status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi5cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi5register, /* provided externally */
#else
.registercallback = 0, /* not implemented */
#endif
};
static struct stm32_spidev_s g_spi5dev =
{
.spidev = { &g_sp5iops },
.spibase = STM32_SPI5_BASE,
.spiclock = STM32_PCLK2_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI5,
#endif
#ifdef CONFIG_STM32_SPI_DMA
.rxch = DMACHAN_SPI5_RX,
.txch = DMACHAN_SPI5_TX,
#endif
};
#endif
#ifdef CONFIG_STM32_SPI6
static const struct spi_ops_s g_sp6iops =
{
.lock = spi_lock,
.select = stm32_spi6select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
.status = stm32_spi6status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi3cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi6register, /* provided externally */
#else
.registercallback = 0, /* not implemented */
#endif
};
static struct stm32_spidev_s g_spi6dev =
{
.spidev = { &g_sp6iops },
.spibase = STM32_SPI6_BASE,
.spiclock = STM32_PCLK2_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI6,
#endif
#ifdef CONFIG_STM32_SPI_DMA
.rxch = DMACHAN_SPI6_RX,
.txch = DMACHAN_SPI6_TX,
#endif
};
#endif
/************************************************************************************
* Public Data
************************************************************************************/
/************************************************************************************
* Private Functions
************************************************************************************/
/************************************************************************************
* Name: spi_getreg
*
* Description:
* Get the contents of the SPI register at offset
*
* Input Parameters:
* priv - private SPI device structure
* offset - offset to the register of interest
*
* Returned Value:
* The contents of the 16-bit register
*
************************************************************************************/
static inline uint16_t spi_getreg(FAR struct stm32_spidev_s *priv, uint8_t offset)
{
return getreg16(priv->spibase + offset);
}
/************************************************************************************
* Name: spi_putreg
*
* Description:
* Write a 16-bit value to the SPI register at offset
*
* Input Parameters:
* priv - private SPI device structure
* offset - offset to the register of interest
* value - the 16-bit value to be written
*
* Returned Value:
* The contents of the 16-bit register
*
************************************************************************************/
static inline void spi_putreg(FAR struct stm32_spidev_s *priv, uint8_t offset, uint16_t value)
{
putreg16(value, priv->spibase + offset);
}
/************************************************************************************
* Name: spi_readword
*
* Description:
* Read one byte from SPI
*
* Input Parameters:
* priv - Device-specific state data
*
* Returned Value:
* Byte as read
*
************************************************************************************/
static inline uint16_t spi_readword(FAR struct stm32_spidev_s *priv)
{
/* Wait until the receive buffer is not empty */
while ((spi_getreg(priv, STM32_SPI_SR_OFFSET) & SPI_SR_RXNE) == 0);
/* Then return the received byte */
return spi_getreg(priv, STM32_SPI_DR_OFFSET);
}
/************************************************************************************
* Name: spi_writeword
*
* Description:
* Write one byte to SPI
*
* Input Parameters:
* priv - Device-specific state data
* byte - Byte to send
*
* Returned Value:
* None
*
************************************************************************************/
static inline void spi_writeword(FAR struct stm32_spidev_s *priv, uint16_t word)
{
/* Wait until the transmit buffer is empty */
while ((spi_getreg(priv, STM32_SPI_SR_OFFSET) & SPI_SR_TXE) == 0);
/* Then send the byte */
spi_putreg(priv, STM32_SPI_DR_OFFSET, word);
}
/************************************************************************************
* Name: spi_16bitmode
*
* Description:
* Check if the SPI is operating in 16-bit mode
*
* Input Parameters:
* priv - Device-specific state data
*
* Returned Value:
* true: 16-bit mode, false: 8-bit mode
*
************************************************************************************/
static inline bool spi_16bitmode(FAR struct stm32_spidev_s *priv)
{
return ((spi_getreg(priv, STM32_SPI_CR1_OFFSET) & SPI_CR1_DFF) != 0);
}
/************************************************************************************
* Name: spi_dmarxwait
*
* Description:
* Wait for DMA to complete.
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmarxwait(FAR struct stm32_spidev_s *priv)
{
/* Take the semaphore (perhaps waiting). If the result is zero, then the DMA
* must not really have completed???
*/
while (sem_wait(&priv->rxsem) != 0 || priv->rxresult == 0)
{
/* The only case that an error should occur here is if the wait was awakened
* by a signal.
*/
ASSERT(errno == EINTR);
}
}
#endif
/************************************************************************************
* Name: spi_dmatxwait
*
* Description:
* Wait for DMA to complete.
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmatxwait(FAR struct stm32_spidev_s *priv)
{
/* Take the semaphore (perhaps waiting). If the result is zero, then the DMA
* must not really have completed???
*/
while (sem_wait(&priv->txsem) != 0 || priv->txresult == 0)
{
/* The only case that an error should occur here is if the wait was awakened
* by a signal.
*/
ASSERT(errno == EINTR);
}
}
#endif
/************************************************************************************
* Name: spi_dmarxwakeup
*
* Description:
* Signal that DMA is complete
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static inline void spi_dmarxwakeup(FAR struct stm32_spidev_s *priv)
{
(void)sem_post(&priv->rxsem);
}
#endif
/************************************************************************************
* Name: spi_dmatxwakeup
*
* Description:
* Signal that DMA is complete
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static inline void spi_dmatxwakeup(FAR struct stm32_spidev_s *priv)
{
(void)sem_post(&priv->txsem);
}
#endif
/************************************************************************************
* Name: spi_dmarxcallback
*
* Description:
* Called when the RX DMA completes
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmarxcallback(DMA_HANDLE handle, uint8_t isr, void *arg)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)arg;
/* Wake-up the SPI driver */
priv->rxresult = isr | 0x080; /* OR'ed with 0x80 to assure non-zero */
spi_dmarxwakeup(priv);
}
#endif
/************************************************************************************
* Name: spi_dmatxcallback
*
* Description:
* Called when the RX DMA completes
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmatxcallback(DMA_HANDLE handle, uint8_t isr, void *arg)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)arg;
/* Wake-up the SPI driver */
priv->txresult = isr | 0x080; /* OR'ed with 0x80 to assure non-zero */
spi_dmatxwakeup(priv);
}
#endif
/************************************************************************************
* Name: spi_dmarxsetup
*
* Description:
* Setup to perform RX DMA
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmarxsetup(FAR struct stm32_spidev_s *priv, FAR void *rxbuffer,
FAR void *rxdummy, size_t nwords)
{
/* 8- or 16-bit mode? */
if (spi_16bitmode(priv))
{
/* 16-bit mode -- is there a buffer to receive data in? */
if (rxbuffer)
{
priv->rxccr = SPI_RXDMA16_CONFIG;
}
else
{
rxbuffer = rxdummy;
priv->rxccr = SPI_RXDMA16NULL_CONFIG;
}
}
else
{
/* 8-bit mode -- is there a buffer to receive data in? */
if (rxbuffer)
{
priv->rxccr = SPI_RXDMA8_CONFIG;
}
else
{
rxbuffer = rxdummy;
priv->rxccr = SPI_RXDMA8NULL_CONFIG;
}
}
/* Configure the RX DMA */
stm32_dmasetup(priv->rxdma, priv->spibase + STM32_SPI_DR_OFFSET,
(uint32_t)rxbuffer, nwords, priv->rxccr);
}
#endif
/************************************************************************************
* Name: spi_dmatxsetup
*
* Description:
* Setup to perform TX DMA
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmatxsetup(FAR struct stm32_spidev_s *priv, FAR const void *txbuffer,
FAR const void *txdummy, size_t nwords)
{
/* 8- or 16-bit mode? */
if (spi_16bitmode(priv))
{
/* 16-bit mode -- is there a buffer to transfer data from? */
if (txbuffer)
{
priv->txccr = SPI_TXDMA16_CONFIG;
}
else
{
txbuffer = txdummy;
priv->txccr = SPI_TXDMA16NULL_CONFIG;
}
}
else
{
/* 8-bit mode -- is there a buffer to transfer data from? */
if (txbuffer)
{
priv->txccr = SPI_TXDMA8_CONFIG;
}
else
{
txbuffer = txdummy;
priv->txccr = SPI_TXDMA8NULL_CONFIG;
}
}
/* Setup the TX DMA */
stm32_dmasetup(priv->txdma, priv->spibase + STM32_SPI_DR_OFFSET,
(uint32_t)txbuffer, nwords, priv->txccr);
}
#endif
/************************************************************************************
* Name: spi_dmarxstart
*
* Description:
* Start RX DMA
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static inline void spi_dmarxstart(FAR struct stm32_spidev_s *priv)
{
priv->rxresult = 0;
stm32_dmastart(priv->rxdma, spi_dmarxcallback, priv, false);
}
#endif
/************************************************************************************
* Name: spi_dmatxstart
*
* Description:
* Start TX DMA
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static inline void spi_dmatxstart(FAR struct stm32_spidev_s *priv)
{
priv->txresult = 0;
stm32_dmastart(priv->txdma, spi_dmatxcallback, priv, false);
}
#endif
/************************************************************************************
* Name: spi_modifycr1
*
* Description:
* Clear and set bits in the CR1 register
*
* Input Parameters:
* priv - Device-specific state data
* clrbits - The bits to clear
* setbits - The bits to set
*
* Returned Value:
* None
*
************************************************************************************/
static void spi_modifycr1(FAR struct stm32_spidev_s *priv, uint16_t setbits, uint16_t clrbits)
{
uint16_t cr1;
cr1 = spi_getreg(priv, STM32_SPI_CR1_OFFSET);
cr1 &= ~clrbits;
cr1 |= setbits;
spi_putreg(priv, STM32_SPI_CR1_OFFSET, cr1);
}
/************************************************************************************
* Name: spi_lock
*
* Description:
* On SPI busses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the busses for a sequence of
* transfers. The bus should be locked before the chip is selected. After
* locking the SPI bus, the caller should then also call the setfrequency,
* setbits, and setmode methods to make sure that the SPI is properly
* configured for the device. If the SPI buss is being shared, then it
* may have been left in an incompatible state.
*
* Input Parameters:
* dev - Device-specific state data
* lock - true: Lock spi bus, false: unlock SPI bus
*
* Returned Value:
* None
*
************************************************************************************/
static int spi_lock(FAR struct spi_dev_s *dev, bool lock)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
if (lock)
{
/* Take the semaphore (perhaps waiting) */
while (sem_wait(&priv->exclsem) != 0)
{
/* The only case that an error should occur here is if the wait was awakened
* by a signal.
*/
ASSERT(errno == EINTR);
}
}
else
{
(void)sem_post(&priv->exclsem);
}
return OK;
}
/************************************************************************************
* Name: spi_setfrequency
*
* Description:
* Set the SPI frequency.
*
* Input Parameters:
* dev - Device-specific state data
* frequency - The SPI frequency requested
*
* Returned Value:
* Returns the actual frequency selected
*
************************************************************************************/
static uint32_t spi_setfrequency(FAR struct spi_dev_s *dev, uint32_t frequency)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
uint16_t setbits;
uint32_t actual;
/* Limit to max possible (if STM32_SPI_CLK_MAX is defined in board.h) */
if (frequency > STM32_SPI_CLK_MAX)
{
frequency = STM32_SPI_CLK_MAX;
}
/* Has the frequency changed? */
if (frequency != priv->frequency)
{
/* Choices are limited by PCLK frequency with a set of divisors */
if (frequency >= priv->spiclock >> 1)
{
/* More than fPCLK/2. This is as fast as we can go */
setbits = SPI_CR1_FPCLCKd2; /* 000: fPCLK/2 */
actual = priv->spiclock >> 1;
}
else if (frequency >= priv->spiclock >> 2)
{
/* Between fPCLCK/2 and fPCLCK/4, pick the slower */
setbits = SPI_CR1_FPCLCKd4; /* 001: fPCLK/4 */
actual = priv->spiclock >> 2;
}
else if (frequency >= priv->spiclock >> 3)
{
/* Between fPCLCK/4 and fPCLCK/8, pick the slower */
setbits = SPI_CR1_FPCLCKd8; /* 010: fPCLK/8 */
actual = priv->spiclock >> 3;
}
else if (frequency >= priv->spiclock >> 4)
{
/* Between fPCLCK/8 and fPCLCK/16, pick the slower */
setbits = SPI_CR1_FPCLCKd16; /* 011: fPCLK/16 */
actual = priv->spiclock >> 4;
}
else if (frequency >= priv->spiclock >> 5)
{
/* Between fPCLCK/16 and fPCLCK/32, pick the slower */
setbits = SPI_CR1_FPCLCKd32; /* 100: fPCLK/32 */
actual = priv->spiclock >> 5;
}
else if (frequency >= priv->spiclock >> 6)
{
/* Between fPCLCK/32 and fPCLCK/64, pick the slower */
setbits = SPI_CR1_FPCLCKd64; /* 101: fPCLK/64 */
actual = priv->spiclock >> 6;
}
else if (frequency >= priv->spiclock >> 7)
{
/* Between fPCLCK/64 and fPCLCK/128, pick the slower */
setbits = SPI_CR1_FPCLCKd128; /* 110: fPCLK/128 */
actual = priv->spiclock >> 7;
}
else
{
/* Less than fPCLK/128. This is as slow as we can go */
setbits = SPI_CR1_FPCLCKd256; /* 111: fPCLK/256 */
actual = priv->spiclock >> 8;
}
spi_modifycr1(priv, 0, SPI_CR1_SPE);
spi_modifycr1(priv, setbits, SPI_CR1_BR_MASK);
spi_modifycr1(priv, SPI_CR1_SPE, 0);
/* Save the frequency selection so that subsequent reconfigurations will be
* faster.
*/
spiinfo("Frequency %d->%d\n", frequency, actual);
priv->frequency = frequency;
priv->actual = actual;
}
return priv->actual;
}
/************************************************************************************
* Name: spi_setmode
*
* Description:
* Set the SPI mode. see enum spi_mode_e for mode definitions
*
* Input Parameters:
* dev - Device-specific state data
* mode - The SPI mode requested
*
* Returned Value:
* Returns the actual frequency selected
*
************************************************************************************/
static void spi_setmode(FAR struct spi_dev_s *dev, enum spi_mode_e mode)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
uint16_t setbits;
uint16_t clrbits;
spiinfo("mode=%d\n", mode);
/* Has the mode changed? */
if (mode != priv->mode)
{
/* Yes... Set CR1 appropriately */
switch (mode)
{
case SPIDEV_MODE0: /* CPOL=0; CPHA=0 */
setbits = 0;
clrbits = SPI_CR1_CPOL | SPI_CR1_CPHA;
break;
case SPIDEV_MODE1: /* CPOL=0; CPHA=1 */
setbits = SPI_CR1_CPHA;
clrbits = SPI_CR1_CPOL;
break;
case SPIDEV_MODE2: /* CPOL=1; CPHA=0 */
setbits = SPI_CR1_CPOL;
clrbits = SPI_CR1_CPHA;
break;
case SPIDEV_MODE3: /* CPOL=1; CPHA=1 */
setbits = SPI_CR1_CPOL | SPI_CR1_CPHA;
clrbits = 0;
break;
default:
return;
}
spi_modifycr1(priv, 0, SPI_CR1_SPE);
spi_modifycr1(priv, setbits, clrbits);
spi_modifycr1(priv, SPI_CR1_SPE, 0);
/* Save the mode so that subsequent re-configurations will be faster */
priv->mode = mode;
}
}
/************************************************************************************
* Name: spi_setbits
*
* Description:
* Set the number of bits per word.
*
* Input Parameters:
* dev - Device-specific state data
* nbits - The number of bits requested
*
* Returned Value:
* None
*
************************************************************************************/
static void spi_setbits(FAR struct spi_dev_s *dev, int nbits)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
uint16_t setbits;
uint16_t clrbits;
spiinfo("nbits=%d\n", nbits);
/* Has the number of bits changed? */
if (nbits != priv->nbits)
{
/* Yes... Set CR1 appropriately */
switch (nbits)
{
case -8:
setbits = SPI_CR1_LSBFIRST;
clrbits = SPI_CR1_DFF;
break;
case 8:
setbits = 0;
clrbits = SPI_CR1_DFF | SPI_CR1_LSBFIRST;
break;
case -16:
setbits = SPI_CR1_DFF | SPI_CR1_LSBFIRST;
clrbits = 0;
break;
case 16:
setbits = SPI_CR1_DFF;
clrbits = SPI_CR1_LSBFIRST;
break;
default:
return;
}
spi_modifycr1(priv, 0, SPI_CR1_SPE);
spi_modifycr1(priv, setbits, clrbits);
spi_modifycr1(priv, SPI_CR1_SPE, 0);
/* Save the selection so the subsequence re-configurations will be faster */
priv->nbits = nbits;
}
}
/************************************************************************************
* Name: spi_send
*
* Description:
* Exchange one word on SPI
*
* Input Parameters:
* dev - Device-specific state data
* wd - The word to send. the size of the data is determined by the
* number of bits selected for the SPI interface.
*
* Returned Value:
* response
*
************************************************************************************/
static uint16_t spi_send(FAR struct spi_dev_s *dev, uint16_t wd)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
uint32_t regval;
uint16_t ret;
DEBUGASSERT(priv && priv->spibase);
spi_writeword(priv, wd);
ret = spi_readword(priv);
/* Check and clear any error flags (Reading from the SR clears the error flags) */
regval = spi_getreg(priv, STM32_SPI_SR_OFFSET);
spiinfo("Sent: %04x Return: %04x Status: %02x\n", wd, ret, regval);
UNUSED(regval);
return ret;
}
/************************************************************************************
* Name: spi_exchange (no DMA). aka spi_exchange_nodma
*
* Description:
* Exchange a block of data on SPI without using DMA
*
* Input Parameters:
* dev - Device-specific state data
* txbuffer - A pointer to the buffer of data to be sent
* rxbuffer - A pointer to a buffer in which to receive data
* nwords - the length of data to be exchaned in units of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into uint16_t's
*
* Returned Value:
* None
*
************************************************************************************/
#if !defined(CONFIG_STM32_SPI_DMA) || defined(CONFIG_STM32_DMACAPABLE)
#if !defined(CONFIG_STM32_SPI_DMA)
static void spi_exchange(FAR struct spi_dev_s *dev, FAR const void *txbuffer,
FAR void *rxbuffer, size_t nwords)
#else
static void spi_exchange_nodma(FAR struct spi_dev_s *dev, FAR const void *txbuffer,
FAR void *rxbuffer, size_t nwords)
#endif
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
DEBUGASSERT(priv && priv->spibase);
spiinfo("txbuffer=%p rxbuffer=%p nwords=%d\n", txbuffer, rxbuffer, nwords);
/* 8- or 16-bit mode? */
if (spi_16bitmode(priv))
{
/* 16-bit mode */
const uint16_t *src = (const uint16_t *)txbuffer;
uint16_t *dest = (uint16_t *)rxbuffer;
uint16_t word;
while (nwords-- > 0)
{
/* Get the next word to write. Is there a source buffer? */
if (src)
{
word = *src++;
}
else
{
word = 0xffff;
}
/* Exchange one word */
word = spi_send(dev, word);
/* Is there a buffer to receive the return value? */
if (dest)
{
*dest++ = word;
}
}
}
else
{
/* 8-bit mode */
const uint8_t *src = (const uint8_t *)txbuffer;
uint8_t *dest = (uint8_t *)rxbuffer;
uint8_t word;
while (nwords-- > 0)
{
/* Get the next word to write. Is there a source buffer? */
if (src)
{
word = *src++;
}
else
{
word = 0xff;
}
/* Exchange one word */
word = (uint8_t)spi_send(dev, (uint16_t)word);
/* Is there a buffer to receive the return value? */
if (dest)
{
*dest++ = word;
}
}
}
}
#endif /* !CONFIG_STM32_SPI_DMA || CONFIG_STM32_DMACAPABLE */
/****************************************************************************
* Name: spi_exchange (with DMA capability)
*
* Description:
* Exchange a block of data on SPI using DMA
*
* Input Parameters:
* dev - Device-specific state data
* txbuffer - A pointer to the buffer of data to be sent
* rxbuffer - A pointer to a buffer in which to receive data
* nwords - the length of data to be exchanged in units of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into uint16_t's
*
* Returned Value:
* None
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_exchange(FAR struct spi_dev_s *dev, FAR const void *txbuffer,
FAR void *rxbuffer, size_t nwords)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
#ifdef CONFIG_STM32_DMACAPABLE
if ((txbuffer && !stm32_dmacapable((uint32_t)txbuffer, nwords, priv->txccr)) ||
(rxbuffer && !stm32_dmacapable((uint32_t)rxbuffer, nwords, priv->rxccr)))
{
/* Unsupported memory region, fall back to non-DMA method. */
spi_exchange_nodma(dev, txbuffer, rxbuffer, nwords);
}
else
#endif
{
static uint16_t rxdummy = 0xffff;
static const uint16_t txdummy = 0xffff;
spiinfo("txbuffer=%p rxbuffer=%p nwords=%d\n", txbuffer, rxbuffer, nwords);
DEBUGASSERT(priv && priv->spibase);
/* Setup DMAs */
spi_dmarxsetup(priv, rxbuffer, &rxdummy, nwords);
spi_dmatxsetup(priv, txbuffer, &txdummy, nwords);
/* Start the DMAs */
spi_dmarxstart(priv);
spi_dmatxstart(priv);
/* Then wait for each to complete */
spi_dmarxwait(priv);
spi_dmatxwait(priv);
}
}
#endif /* CONFIG_STM32_SPI_DMA */
/****************************************************************************
* Name: spi_sndblock
*
* Description:
* Send a block of data on SPI
*
* Input Parameters:
* dev - Device-specific state data
* txbuffer - A pointer to the buffer of data to be sent
* nwords - the length of data to send from the buffer in number of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into uint16_t's
*
* Returned Value:
* None
*
************************************************************************************/
#ifndef CONFIG_SPI_EXCHANGE
static void spi_sndblock(FAR struct spi_dev_s *dev, FAR const void *txbuffer, size_t nwords)
{
spiinfo("txbuffer=%p nwords=%d\n", txbuffer, nwords);
return spi_exchange(dev, txbuffer, NULL, nwords);
}
#endif
/************************************************************************************
* Name: spi_recvblock
*
* Description:
* Receive a block of data from SPI
*
* Input Parameters:
* dev - Device-specific state data
* rxbuffer - A pointer to the buffer in which to recieve data
* nwords - the length of data that can be received in the buffer in number
* of words. The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into uint16_t's
*
* Returned Value:
* None
*
************************************************************************************/
#ifndef CONFIG_SPI_EXCHANGE
static void spi_recvblock(FAR struct spi_dev_s *dev, FAR void *rxbuffer, size_t nwords)
{
spiinfo("rxbuffer=%p nwords=%d\n", rxbuffer, nwords);
return spi_exchange(dev, NULL, rxbuffer, nwords);
}
#endif
/************************************************************************************
* Name: spi_bus_initialize
*
* Description:
* Initialize the selected SPI bus in its default state (Master, 8-bit, mode 0, etc.)
*
* Input Parameter:
* priv - private SPI device structure
*
* Returned Value:
* None
*
************************************************************************************/
static void spi_bus_initialize(FAR struct stm32_spidev_s *priv)
{
uint16_t setbits;
uint16_t clrbits;
/* Configure CR1. Default configuration:
* Mode 0: CPHA=0 and CPOL=0
* Master: MSTR=1
* 8-bit: DFF=0
* MSB tranmitted first: LSBFIRST=0
* Replace NSS with SSI & SSI=1: SSI=1 SSM=1 (prevents MODF error)
* Two lines full duplex: BIDIMODE=0 BIDIOIE=(Don't care) and RXONLY=0
*/
clrbits = SPI_CR1_CPHA | SPI_CR1_CPOL | SPI_CR1_BR_MASK | SPI_CR1_LSBFIRST |
SPI_CR1_RXONLY | SPI_CR1_DFF | SPI_CR1_BIDIOE | SPI_CR1_BIDIMODE;
setbits = SPI_CR1_MSTR | SPI_CR1_SSI | SPI_CR1_SSM;
spi_modifycr1(priv, setbits, clrbits);
priv->frequency = 0;
priv->nbits = 8;
priv->mode = SPIDEV_MODE0;
/* Select a default frequency of approx. 400KHz */
spi_setfrequency((FAR struct spi_dev_s *)priv, 400000);
/* CRCPOLY configuration */
spi_putreg(priv, STM32_SPI_CRCPR_OFFSET, 7);
/* Initialize the SPI semaphore that enforces mutually exclusive access */
sem_init(&priv->exclsem, 0, 1);
/* Initialize the SPI semaphores that is used to wait for DMA completion */
#ifdef CONFIG_STM32_SPI_DMA
sem_init(&priv->rxsem, 0, 0);
sem_init(&priv->txsem, 0, 0);
/* Get DMA channels. NOTE: stm32_dmachannel() will always assign the DMA channel.
* if the channel is not available, then stm32_dmachannel() will block and wait
* until the channel becomes available. WARNING: If you have another device sharing
* a DMA channel with SPI and the code never releases that channel, then the call
* to stm32_dmachannel() will hang forever in this function! Don't let your
* design do that!
*/
priv->rxdma = stm32_dmachannel(priv->rxch);
priv->txdma = stm32_dmachannel(priv->txch);
DEBUGASSERT(priv->rxdma && priv->txdma);
spi_putreg(priv, STM32_SPI_CR2_OFFSET, SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN);
#endif
/* Enable spi */
spi_modifycr1(priv, SPI_CR1_SPE, 0);
}
/************************************************************************************
* Public Functions
************************************************************************************/
/************************************************************************************
* Name: stm32_spibus_initialize
*
* Description:
* Initialize the selected SPI bus
*
* Input Parameter:
* Port number (for hardware that has mutiple SPI interfaces)
*
* Returned Value:
* Valid SPI device structure reference on succcess; a NULL on failure
*
************************************************************************************/
FAR struct spi_dev_s *stm32_spibus_initialize(int bus)
{
FAR struct stm32_spidev_s *priv = NULL;
irqstate_t flags = enter_critical_section();
#ifdef CONFIG_STM32_SPI1
if (bus == 1)
{
/* Select SPI1 */
priv = &g_spi1dev;
/* Only configure if the bus is not already configured */
if ((spi_getreg(priv, STM32_SPI_CR1_OFFSET) & SPI_CR1_SPE) == 0)
{
/* Configure SPI1 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI1_SCK);
stm32_configgpio(GPIO_SPI1_MISO);
stm32_configgpio(GPIO_SPI1_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
}
}
else
#endif
#ifdef CONFIG_STM32_SPI2
if (bus == 2)
{
/* Select SPI2 */
priv = &g_spi2dev;
/* Only configure if the bus is not already configured */
if ((spi_getreg(priv, STM32_SPI_CR1_OFFSET) & SPI_CR1_SPE) == 0)
{
/* Configure SPI2 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI2_SCK);
stm32_configgpio(GPIO_SPI2_MISO);
stm32_configgpio(GPIO_SPI2_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
}
}
else
#endif
#ifdef CONFIG_STM32_SPI3
if (bus == 3)
{
/* Select SPI3 */
priv = &g_spi3dev;
/* Only configure if the bus is not already configured */
if ((spi_getreg(priv, STM32_SPI_CR1_OFFSET) & SPI_CR1_SPE) == 0)
{
/* Configure SPI3 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI3_SCK);
stm32_configgpio(GPIO_SPI3_MISO);
stm32_configgpio(GPIO_SPI3_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
}
}
else
#endif
#ifdef CONFIG_STM32_SPI4
if (bus == 4)
{
/* Select SPI4 */
priv = &g_spi4dev;
/* Only configure if the bus is not already configured */
if ((spi_getreg(priv, STM32_SPI_CR1_OFFSET) & SPI_CR1_SPE) == 0)
{
/* Configure SPI4 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI4_SCK);
stm32_configgpio(GPIO_SPI4_MISO);
stm32_configgpio(GPIO_SPI4_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
}
}
else
#endif
#ifdef CONFIG_STM32_SPI5
if (bus == 5)
{
/* Select SPI5 */
priv = &g_spi5dev;
/* Only configure if the bus is not already configured */
if ((spi_getreg(priv, STM32_SPI_CR1_OFFSET) & SPI_CR1_SPE) == 0)
{
/* Configure SPI5 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI5_SCK);
stm32_configgpio(GPIO_SPI5_MISO);
stm32_configgpio(GPIO_SPI5_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
}
}
else
#endif
#ifdef CONFIG_STM32_SPI6
if (bus == 6)
{
/* Select SPI6 */
priv = &g_spi6dev;
/* Only configure if the bus is not already configured */
if ((spi_getreg(priv, STM32_SPI_CR1_OFFSET) & SPI_CR1_SPE) == 0)
{
/* Configure SPI6 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI6_SCK);
stm32_configgpio(GPIO_SPI6_MISO);
stm32_configgpio(GPIO_SPI6_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
}
}
else
#endif
{
spierr("ERROR: Unsupbused SPI bus: %d\n", bus);
return NULL;
}
leave_critical_section(flags);
return (FAR struct spi_dev_s *)priv;
}
#endif /* CONFIG_STM32_SPI1 || CONFIG_STM32_SPI2 || CONFIG_STM32_SPI3 || CONFIG_STM32_SPI4 || CONFIG_STM32_SPI5 || CONFIG_STM32_SPI6 */