nuttx/arch/risc-v/src/common/riscv_sigdeliver.c
Ville Juven 3b5c0c885f riscv/swint: Give the full tcb to the context switch routine
Why? The tcb can contain info that is needed by the context switch
routine. One example is lazy-FPU handling; the integer registers can
be stored into the stack, because they are always stored & restored.

Lazy-FPU however needs a non-volatile location to store the FPU registers
as the save feature will skip saving a clean FPU, but the restore must
always restore the FPU registers if the thread uses FPU.
2023-07-31 07:48:53 -07:00

168 lines
5.0 KiB
C

/****************************************************************************
* arch/risc-v/src/common/riscv_sigdeliver.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <inttypes.h>
#include <stdint.h>
#include <sched.h>
#include <syscall.h>
#include <assert.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/board.h>
#include <arch/board/board.h>
#include "sched/sched.h"
#include "riscv_internal.h"
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: riscv_sigdeliver
*
* Description:
* This is the a signal handling trampoline. When a signal action was
* posted. The task context was mucked with and forced to branch to this
* location with interrupts disabled.
*
****************************************************************************/
void riscv_sigdeliver(void)
{
struct tcb_s *rtcb = this_task();
uintptr_t *regs = rtcb->xcp.saved_regs;
#ifdef CONFIG_SMP
/* In the SMP case, we must terminate the critical section while the signal
* handler executes, but we also need to restore the irqcount when the
* we resume the main thread of the task.
*/
int16_t saved_irqcount;
enter_critical_section();
#endif
board_autoled_on(LED_SIGNAL);
sinfo("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
DEBUGASSERT(rtcb->xcp.sigdeliver != NULL);
retry:
#ifdef CONFIG_SMP
/* In the SMP case, up_schedule_sigaction(0) will have incremented
* 'irqcount' in order to force us into a critical section. Save the
* pre-incremented irqcount.
*/
saved_irqcount = rtcb->irqcount;
DEBUGASSERT(saved_irqcount >= 1);
/* Now we need call leave_critical_section() repeatedly to get the irqcount
* to zero, freeing all global spinlocks that enforce the critical section.
*/
do
{
leave_critical_section(regs[REG_INT_CTX]);
}
while (rtcb->irqcount > 0);
#endif /* CONFIG_SMP */
#ifndef CONFIG_SUPPRESS_INTERRUPTS
/* Then make sure that interrupts are enabled. Signal handlers must always
* run with interrupts enabled.
*/
up_irq_enable();
#endif
/* Deliver the signals */
((sig_deliver_t)rtcb->xcp.sigdeliver)(rtcb);
/* Output any debug messages BEFORE restoring errno (because they may
* alter errno), then disable interrupts again and restore the original
* errno that is needed by the user logic (it is probably EINTR).
*/
sinfo("Resuming EPC: %" PRIxREG " INT_CTX: %" PRIxREG "\n",
regs[REG_EPC], regs[REG_INT_CTX]);
#ifdef CONFIG_SMP
/* Restore the saved 'irqcount' and recover the critical section
* spinlocks.
*/
DEBUGASSERT(rtcb->irqcount == 0);
while (rtcb->irqcount < saved_irqcount)
{
enter_critical_section();
}
#endif
#ifndef CONFIG_SUPPRESS_INTERRUPTS
up_irq_save();
#endif
if (!sq_empty(&rtcb->sigpendactionq) &&
(rtcb->flags & TCB_FLAG_SIGNAL_ACTION) == 0)
{
goto retry;
}
/* Modify the saved return state with the actual saved values in the
* TCB. This depends on the fact that nested signal handling is
* not supported. Therefore, these values will persist throughout the
* signal handling action.
*
* Keeping this data in the TCB resolves a security problem in protected
* and kernel mode: The regs[] array is visible on the user stack and
* could be modified by a hostile program.
*/
rtcb->xcp.sigdeliver = NULL; /* Allows next handler to be scheduled */
/* Then restore the correct state for this thread of
* execution.
*/
board_autoled_off(LED_SIGNAL);
#ifdef CONFIG_SMP
/* We need to keep the IRQ lock until task switching */
rtcb->irqcount++;
leave_critical_section(regs[REG_INT_CTX]);
rtcb->irqcount--;
#endif
rtcb->xcp.regs = regs;
riscv_fullcontextrestore(rtcb);
}