nuttx/arch/arm/src/efm32/efm32_spi.c
Sebastien Lorquet c56c6f7ccc ARM arch changes
2017-04-28 18:23:29 +02:00

1777 lines
50 KiB
C

/****************************************************************************
* arm/arm/src/efm32/efm32_spi.c
*
* Copyright (C) 2014, 2016 Gregory Nutt. All rights reserved.
* Copyright (C) 2014 Bouteville Pierre-Noel. All rights reserved.
* Authors: Gregory Nutt <gnutt@nuttx.org>
* Bouteville Pierre-Noel <pnb990@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <semaphore.h>
#include <errno.h>
#include <assert.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/wdog.h>
#include <nuttx/clock.h>
#include <nuttx/semaphore.h>
#include <nuttx/spi/spi.h>
#include <arch/board/board.h>
#include "up_internal.h"
#include "up_arch.h"
#include "chip.h"
#include "chip/efm32_usart.h"
#include "efm32_config.h"
#include "efm32_dma.h"
#include "efm32_lowputc.h"
#include "efm32_spi.h"
#include "efm32_gpio.h"
#ifdef HAVE_SPI_DEVICE
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* SPI DMA */
#ifndef CONFIG_EFM32_SPI_DMA_TIMEO_NSEC
# define CONFIG_EFM32_SPI_DMA_TIMEO_NSEC 500
#endif
#ifndef CONFIG_EFM32_SPI_DMA_MINSIZE
# define CONFIG_EFM32_SPI_DMA_MINSIZE 16
#endif
/* DMA definitions **********************************************************/
#define SPI_DMA8_CONFIG (EFM32_DMA_XFERSIZE_BYTE| EFM32_DMA_MEMINCR)
#define SPI_DMA8NULL_CONFIG (EFM32_DMA_XFERSIZE_BYTE | EFM32_DMA_NOINCR)
#define SPI_DMA16_CONFIG (EFM32_DMA_XFERSIZE_HWORD | EFM32_DMA_MEMINCR)
#define SPI_DMA16NULL_CONFIG (EFM32_DMA_XFERSIZE_HWORD | EFM32_DMA_NOINCR)
/****************************************************************************
* Private Types
****************************************************************************/
/* This type constant configuration one SPI peripheral */
struct efm32_spidev_s;
struct efm32_spiconfig_s
{
uintptr_t base; /* USART base address */
#ifdef CONFIG_EFM32_SPI_DMA
dma_config_t rxconfig; /* RX DMA configuration */
dma_config_t txconfig; /* TX DMA configuration */
#endif
/* SPI-specific methods */
void (*select)(struct spi_dev_s *dev, uint32_t devid,
bool selected);
uint8_t (*status)(struct spi_dev_s *dev, uint32_t devid);
#ifdef CONFIG_SPI_CMDDATA
int (*cmddata)(struct spi_dev_s *dev, uint32_t devid, bool cmd);
#endif
};
/* This type represents the state of one SPI peripheral */
struct efm32_spidev_s
{
const struct spi_ops_s *spidev; /* Externally visible SPI interface */
const struct efm32_spiconfig_s *config; /* Constant SPI hardware configuration */
#ifdef CONFIG_EFM32_SPI_DMA
WDOG_ID wdog; /* Timer to catch hung DMA */
volatile uint8_t rxresult; /* Result of the RX DMA */
volatile uint8_t txresult; /* Result of the TX DMA */
DMA_HANDLE rxdmach; /* RX DMA channel handle */
DMA_HANDLE txdmach; /* TX DMA channel handle */
sem_t rxdmasem; /* Wait for RX DMA to complete */
sem_t txdmasem; /* Wait for TX DMA to complete */
#endif
sem_t exclsem; /* Supports mutually exclusive access */
uint32_t frequency; /* Requested clock frequency */
uint32_t actual; /* Actual clock frequency */
uint8_t mode; /* Mode 0,1,2,3 */
uint8_t nbits; /* Width of word in bits (4-16) */
bool lsbfirst; /* True: Bit order is LSB first */
bool initialized; /* True: Already initialized */
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Low level SPI access */
static uint32_t spi_getreg(const struct efm32_spiconfig_s *config,
unsigned int regoffset);
static void spi_putreg(const struct efm32_spiconfig_s *config,
unsigned int regoffset, uint32_t regval);
static void spi_rxflush(const struct efm32_spiconfig_s *config);
static void spi_wait_status(const struct efm32_spiconfig_s *config,
uint32_t mask, uint32_t match);
/* DMA support */
#ifdef CONFIG_EFM32_SPI_DMA
static void spi_dma_timeout(int argc, uint32_t arg1, ...);
static void spi_dmarxwait(struct efm32_spidev_s *priv);
static void spi_dmatxwait(struct efm32_spidev_s *priv);
static inline void spi_dmarxwakeup(struct efm32_spidev_s *priv);
static inline void spi_dmatxwakeup(struct efm32_spidev_s *priv);
static void spi_dmarxcallback(DMA_HANDLE handle, uint8_t status,
void *arg);
static void spi_dmatxcallback(DMA_HANDLE handle, uint8_t status,
void *arg);
static void spi_dmarxsetup(struct efm32_spidev_s *priv,
void *rxbuffer, void *rxdummy, size_t nwords);
static void spi_dmatxsetup(struct efm32_spidev_s *priv,
const void *txbuffer, const void *txdummy,
size_t nwords);
static inline void spi_dmarxstart(FAR struct efm32_spidev_s *priv);
static inline void spi_dmatxstart(FAR struct efm32_spidev_s *priv);
#endif
/* SPI methods */
static int spi_lock(struct spi_dev_s *dev, bool lock);
static void spi_select(struct spi_dev_s *dev, uint32_t devid,
bool selected);
static uint32_t spi_setfrequency(struct spi_dev_s *dev,
uint32_t frequency);
static void spi_setmode(struct spi_dev_s *dev, enum spi_mode_e mode);
static void spi_setbits(struct spi_dev_s *dev, int nbits);
#ifdef CONFIG_SPI_HWFEATURES
static int spi_hwfeatures(FAR struct spi_dev_s *dev,
spi_hwfeatures_t features);
#endif
static uint8_t spi_status(struct spi_dev_s *dev, uint32_t devid);
#ifdef CONFIG_SPI_CMDDATA
static int spi_cmddata(struct spi_dev_s *dev, uint32_t devid,
bool cmd);
#endif
static uint16_t spi_send(struct spi_dev_s *dev, uint16_t wd);
static void spi_exchange(struct spi_dev_s *dev, const void *txbuffer,
void *rxbuffer, size_t nwords);
#ifndef CONFIG_SPI_EXCHANGE
static void spi_sndblock(struct spi_dev_s *dev, const void *txbuffer,
size_t nwords);
static void spi_recvblock(struct spi_dev_s *dev, void *rxbuffer,
size_t nwords);
#endif
/* Initialization */
static int spi_portinitialize(struct efm32_spidev_s *priv);
/****************************************************************************
* Private Data
****************************************************************************/
/* Common SPI operations */
static const struct spi_ops_s g_spiops =
{
.lock = spi_lock,
.select = spi_select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
#ifdef CONFIG_SPI_HWFEATURES
.hwfeatures = spi_hwfeatures,
#endif
.status = spi_status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = spi_cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
.registercallback = 0,
};
#ifdef CONFIG_EFM32_USART0_ISSPI
/* Support for SPI on USART0 */
static struct efm32_spidev_s g_spi0dev;
static const struct efm32_spiconfig_s g_spi0config =
{
.base = EFM32_USART0_BASE,
#ifdef CONFIG_EFM32_SPI_DMA
.rxconfig = EFM32_DMA_SIGSEL(_DMA_CH_CTRL_SIGSEL_USART0RXDATAV) |
EFM32_DMA_SOURCSEL(_DMA_CH_CTRL_SOURCESEL_USART0) |
EFM32_DMA_SINGLE,
.txconfig = EFM32_DMA_SIGSEL(_DMA_CH_CTRL_SIGSEL_USART0TXBL) |
EFM32_DMA_SOURCSEL(_DMA_CH_CTRL_SOURCESEL_USART0) |
EFM32_DMA_SINGLE,
#endif
.select = efm32_spi0_select,
.status = efm32_spi0_status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = efm32_spi0_cmddata,
#endif
};
#endif /* CONFIG_EFM32_USART0_ISSPI */
#ifdef CONFIG_EFM32_USART1_ISSPI
/* Support for SPI on USART1 */
static struct efm32_spidev_s g_spi1dev;
static const struct efm32_spiconfig_s g_spi1config =
{
.base = EFM32_USART1_BASE,
#ifdef CONFIG_EFM32_SPI_DMA
.rxconfig = EFM32_DMA_SIGSEL(_DMA_CH_CTRL_SIGSEL_USART1RXDATAV) |
EFM32_DMA_SOURCSEL(_DMA_CH_CTRL_SOURCESEL_USART1) |
EFM32_DMA_SINGLE,
.txconfig = EFM32_DMA_SIGSEL(_DMA_CH_CTRL_SIGSEL_USART1TXBL) |
EFM32_DMA_SOURCSEL(_DMA_CH_CTRL_SOURCESEL_USART1) |
EFM32_DMA_SINGLE,
#endif
.select = efm32_spi1_select,
.status = efm32_spi1_status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = efm32_spi1_cmddata,
#endif
};
#endif /* CONFIG_EFM32_USART1_ISSPI */
#ifdef CONFIG_EFM32_USART2_ISSPI
/* Support for SPI on USART2 */
static struct efm32_spidev_s g_spi2dev;
static const struct efm32_spiconfig_s g_spi2config =
{
.base = EFM32_USART2_BASE,
#ifdef CONFIG_EFM32_SPI_DMA
.rxconfig = EFM32_DMA_SIGSEL(_DMA_CH_CTRL_SIGSEL_USART2RXDATAV) |
EFM32_DMA_SOURCSEL(_DMA_CH_CTRL_SOURCESEL_USART2) |
EFM32_DMA_SINGLE,
.txconfig = EFM32_DMA_SIGSEL(_DMA_CH_CTRL_SIGSEL_USART2TXBL) |
EFM32_DMA_SOURCSEL(_DMA_CH_CTRL_SOURCESEL_USART2) |
EFM32_DMA_SINGLE,
#endif
.select = efm32_spi2_select,
.status = efm32_spi2_status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = efm32_spi2_cmddata,
#endif
};
#endif /* CONFIG_EFM32_USART2_ISSPI */
/****************************************************************************
* Public Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: spi_getreg
*
* Description:
* Read the contents of one SPI register
*
* Input Parameters:
* config - Device-specific configuration data
* regoffset - Offset to the SPI register
*
* Returned Value:
* Value read from the SPI register
*
****************************************************************************/
static uint32_t spi_getreg(const struct efm32_spiconfig_s *config,
unsigned int regoffset)
{
uintptr_t regaddr = config->base + regoffset;
return getreg32(regaddr);
}
/****************************************************************************
* Name: spi_putreg
*
* Description:
* Write a value to one SPI register
*
* Input Parameters:
* config - Device-specific configuration data
* regoffset - Offset to the SPI register
* regval - The value to be written
*
* Returned Value:
* None
*
****************************************************************************/
static void spi_putreg(const struct efm32_spiconfig_s *config,
unsigned int regoffset, uint32_t regval)
{
uintptr_t regaddr = config->base + regoffset;
putreg32(regval, regaddr);
}
/****************************************************************************
* Name: spi_rxflush
*
* Description:
* Flush any garbage from the RX buffer
*
****************************************************************************/
static void spi_rxflush(const struct efm32_spiconfig_s *config)
{
/* Loop while data is available */
while ((spi_getreg(config, EFM32_USART_STATUS_OFFSET) & USART_STATUS_RXDATAV) != 0)
{
/* Read and discard the data */
(void)spi_getreg(config, EFM32_USART_RXDATA_OFFSET);
}
}
/****************************************************************************
* Name: spi_wait_status
*
* Description:
* Poll until the SPI status under the mask is equal to the mask value.
*
****************************************************************************/
static void spi_wait_status(const struct efm32_spiconfig_s *config,
uint32_t mask, uint32_t match)
{
while ((spi_getreg(config, EFM32_USART_STATUS_OFFSET) & mask) != match);
}
/****************************************************************************
* Name: spi_dma_timeout
*
* Description:
* Invoked when a DMA timeout occurs
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static void spi_dma_timeout(int argc, uint32_t arg1, ...)
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)((uintptr_t)arg1);
/* Mark DMA timeout error and wakeup form RX and TX waiters */
DEBUGASSERT(priv->rxresult == EINPROGRESS || priv->txresult == EINPROGRESS);
if (priv->rxresult == EINPROGRESS)
{
priv->rxresult = ETIMEDOUT;
spi_dmarxwakeup(priv);
}
if (priv->txresult == EINPROGRESS)
{
priv->txresult = ETIMEDOUT;
spi_dmatxwakeup(priv);
}
}
#endif
/****************************************************************************
* Name: spi_dmarxwait
*
* Description:
* Wait for RX DMA to complete.
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static void spi_dmarxwait(struct efm32_spidev_s *priv)
{
irqstate_t flags;
/* Take the semaphore (perhaps waiting). */
flags = enter_critical_section();
while (sem_wait(&priv->rxdmasem) != 0)
{
/* The only case that an error should occur here is if the wait was
* awakened by a signal.
*/
DEBUGASSERT(errno == EINTR);
}
/* Cancel the timeout only if both the RX and TX transfers have completed */
DEBUGASSERT(priv->rxresult != EINPROGRESS);
if (priv->txresult != EINPROGRESS)
{
wd_cancel(priv->wdog);
}
leave_critical_section(flags);
}
#endif
/****************************************************************************
* Name: spi_dmatxwait
*
* Description:
* Wait for DMA to complete.
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static void spi_dmatxwait(struct efm32_spidev_s *priv)
{
irqstate_t flags;
/* Take the semaphore (perhaps waiting). */
flags = enter_critical_section();
while (sem_wait(&priv->txdmasem) != 0)
{
/* The only case that an error should occur here is if the wait was
* awakened by a signal.
*/
DEBUGASSERT(errno == EINTR);
}
/* Cancel the timeout only if both the RX and TX transfers have completed */
DEBUGASSERT(priv->txresult != EINPROGRESS);
if (priv->rxresult != EINPROGRESS)
{
wd_cancel(priv->wdog);
}
leave_critical_section(flags);
}
#endif
/****************************************************************************
* Name: spi_dmarxwakeup
*
* Description:
* Signal that DMA is complete
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static inline void spi_dmarxwakeup(struct efm32_spidev_s *priv)
{
(void)sem_post(&priv->rxdmasem);
}
#endif
/****************************************************************************
* Name: spi_dmatxwakeup
*
* Description:
* Signal that DMA is complete
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static inline void spi_dmatxwakeup(struct efm32_spidev_s *priv)
{
(void)sem_post(&priv->txdmasem);
}
#endif
/****************************************************************************
* Name: spi_dmarxcallback
*
* Description:
* Called when the RX DMA completes
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static void spi_dmarxcallback(DMA_HANDLE handle, uint8_t status, void *arg)
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)arg;
DEBUGASSERT(priv && status != EINPROGRESS);
/* Wake-up the SPI driver */
priv->rxresult = status;
spi_dmarxwakeup(priv);
}
#endif
/****************************************************************************
* Name: spi_dmatxcallback
*
* Description:
* Called when the RX DMA completes
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static void spi_dmatxcallback(DMA_HANDLE handle, uint8_t status, void *arg)
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)arg;
DEBUGASSERT(priv && status != EINPROGRESS);
/* Wake-up the SPI driver */
priv->txresult = status;
spi_dmatxwakeup(priv);
}
#endif
/****************************************************************************
* Name: spi_dmarxsetup
*
* Description:
* Setup to perform RX DMA
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static void spi_dmarxsetup(struct efm32_spidev_s *priv, void *rxbuffer,
void *rxdummy, size_t nwords)
{
const struct efm32_spiconfig_s *config = priv->config;
dma_config_t dmaconfig = config->rxconfig;
size_t nbytes;
/* 8- or 16-bit mode? */
if (priv->nbits > 8)
{
/* 16-bit mode -- is there a buffer to receive data in? */
if (rxbuffer)
{
dmaconfig |= SPI_DMA16_CONFIG;
}
else
{
rxbuffer = rxdummy;
dmaconfig |= SPI_DMA16NULL_CONFIG;
}
nbytes = nwords << 1;
}
else
{
/* 8-bit mode -- is there a buffer to receive data in? */
if (rxbuffer)
{
dmaconfig |= SPI_DMA8_CONFIG;
}
else
{
rxbuffer = rxdummy;
dmaconfig |= SPI_DMA8NULL_CONFIG;
}
nbytes = nwords;
}
/* Configure the RX DMA */
efm32_rxdmasetup(priv->rxdmach, config->base + EFM32_USART_RXDATA_OFFSET,
(uintptr_t)rxbuffer, nbytes, dmaconfig);
}
#endif
/****************************************************************************
* Name: spi_dmatxsetup
*
* Description:
* Setup to perform TX DMA
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static void spi_dmatxsetup(struct efm32_spidev_s *priv, const void *txbuffer,
const void *txdummy, size_t nwords)
{
const struct efm32_spiconfig_s *config = priv->config;
dma_config_t dmaconfig = config->txconfig;
size_t nbytes;
/* 8- or 16-bit mode? */
if (priv->nbits > 8)
{
/* 16-bit mode -- is there a buffer to receive data in? */
if (txbuffer)
{
dmaconfig |= SPI_DMA16_CONFIG;
}
else
{
txbuffer = txdummy;
dmaconfig |= SPI_DMA16NULL_CONFIG;
}
nbytes = nwords << 1;
}
else
{
/* 8-bit mode -- is there a buffer to receive data in? */
if (txbuffer)
{
dmaconfig |= SPI_DMA8_CONFIG;
}
else
{
txbuffer = txdummy;
dmaconfig |= SPI_DMA8NULL_CONFIG;
}
nbytes = nwords;
}
/* Configure the RX DMA */
efm32_txdmasetup(priv->txdmach, config->base + EFM32_USART_TXDATA_OFFSET,
(uintptr_t)txbuffer, nbytes, dmaconfig);
}
#endif
/****************************************************************************
* Name: spi_dmarxstart
*
* Description:
* Start RX DMA
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static void spi_dmarxstart(FAR struct efm32_spidev_s *priv)
{
priv->rxresult = EINPROGRESS;
efm32_dmastart(priv->rxdmach, spi_dmarxcallback, priv);
}
#endif
/****************************************************************************
* Name: spi_dmatxstart
*
* Description:
* Start TX DMA
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static inline void spi_dmatxstart(FAR struct efm32_spidev_s *priv)
{
priv->txresult = EINPROGRESS;
efm32_dmastart(priv->txdmach, spi_dmatxcallback, priv);
}
#endif
/****************************************************************************
* Name: spi_lock
*
* Description:
* On SPI buses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected. After
* locking the SPI bus, the caller should then also call the setfrequency,
* setbits, and setmode methods to make sure that the SPI is properly
* configured for the device. If the SPI bus is being shared, then it
* may have been left in an incompatible state.
*
* Input Parameters:
* dev - Device-specific state data
* lock - true: Lock spi bus, false: unlock SPI bus
*
* Returned Value:
* None
*
****************************************************************************/
static int spi_lock(struct spi_dev_s *dev, bool lock)
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)dev;
if (lock)
{
/* Take the semaphore (perhaps waiting) */
while (sem_wait(&priv->exclsem) != 0)
{
/* The only case that an error should occur here is if the wait
* was awakened by a signal.
*/
DEBUGASSERT(errno == EINTR);
}
}
else
{
(void)sem_post(&priv->exclsem);
}
return OK;
}
/****************************************************************************
* Name: spi_select
*
* Description:
* Enable/disable the SPI chip select.
*
* Input Parameters:
* dev - Device-specific state data
* devid - Identifies the device to select
* selected - true: slave selected, false: slave de-selected
*
* Returned Value:
* None
*
****************************************************************************/
static void spi_select(struct spi_dev_s *dev, uint32_t devid,
bool selected)
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)dev;
const struct efm32_spiconfig_s *config;
DEBUGASSERT(priv && priv->config);
config = priv->config;
DEBUGASSERT(config->select);
/* Defer to the board chip select logic */
config->select(dev, devid, selected);
}
/****************************************************************************
* Name: spi_setfrequency
*
* Description:
* Set the SPI frequency.
*
* Input Parameters:
* dev - Device-specific state data
* frequency - The SPI frequency requested
*
* Returned Value:
* Returns the actual frequency selected
*
****************************************************************************/
static uint32_t spi_setfrequency(struct spi_dev_s *dev, uint32_t frequency)
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)dev;
const struct efm32_spiconfig_s *config;
uint32_t clkdiv;
uint32_t actual;
DEBUGASSERT(priv && priv->config);
config = priv->config;
/* Has the frequency changed? */
if (frequency == priv->frequency)
{
/* No... just return the actual frequency from the last calcualtion */
actual = priv->actual;
}
else
{
/* We want to use integer division to avoid forcing in float division
* utils, and yet keep rounding effect errors to a minimum.
*
* CLKDIV in synchronous mode is given by:
*
* CLKDIV = 256 * (fHFPERCLK/(2 * br) - 1)
* or
* CLKDIV = (256 * fHFPERCLK)/(2 * br) - 256 = (128 * fHFPERCLK)/br - 256
*
* The basic problem with integer division in the above formula is that
* the dividend (128 * fHFPERCLK) may become higher than max 32 bit
* integer. Yet, we want to evaluate dividend first before dividing in
* order to get as small rounding effects as possible. We do not want
* to make too harsh restrictions on max fHFPERCLK value either.
*
* One can possibly factorize 128 and br. However, since the last
* 6 bits of CLKDIV are don't care, we can base our integer arithmetic
* on the below formula without loosing any extra precision:
*
* CLKDIV / 64 = (2 * fHFPERCLK)/br - 4
*
* and calculate 1/64 of CLKDIV first. This allows for fHFPERCLK
* up to 2GHz without overflowing a 32 bit value!
*/
/* Calculate and set CLKDIV with fractional bits */
clkdiv = (2 * BOARD_HFPERCLK_FREQUENCY + (frequency - 1)) / frequency;
clkdiv = 64 * (clkdiv - 4);
/* Make sure we don't use fractional bits by rounding CLKDIV up (and
* thus reducing baudrate, not increasing baudrate above.
* specified value).
*/
clkdiv = (clkdiv + 0xc0) & 0xffffff00;
/* Verify that resulting clock divider is within limits */
DEBUGASSERT(clkdiv <= _USART_CLKDIV_MASK);
clkdiv &= _USART_CLKDIV_DIV_MASK;
spi_putreg(config, EFM32_USART_CLKDIV_OFFSET, clkdiv);
/* The actual frequency is then given by:
*
* br = fHFPERCLK / (2 * (1 + CLKDIV / 256))
* = 128 * fHFPERCLK / (256 + CLKDIV)
*/
actual = (BOARD_HFPERCLK_FREQUENCY << 7) / (256 + clkdiv);
spiinfo("frequency=%u actual=%u\n", frequency, actual);
/* Save the frequency selection so that subsequent reconfigurations
* will be faster.
*/
priv->frequency = frequency;
priv->actual = actual;
}
return actual;
}
/****************************************************************************
* Name: spi_setmode
*
* Description:
* Set the SPI mode. see enum spi_mode_e for mode definitions
*
* Input Parameters:
* dev - Device-specific state data
* mode - The SPI mode requested
*
* Returned Value:
* Returns void
*
****************************************************************************/
static void spi_setmode(struct spi_dev_s *dev, enum spi_mode_e mode)
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)dev;
const struct efm32_spiconfig_s *config;
uint32_t setting;
uint32_t regval;
spiinfo("mode=%d\n", mode);
DEBUGASSERT(priv && priv->config);
config = priv->config;
/* Has the mode changed? */
if (mode != priv->mode)
{
setting = 0;
switch (mode)
{
case SPIDEV_MODE0: /* CPOL=0; CPHA=0 */
setting = USART_CTRL_CLKPOL_IDLELOW | USART_CTRL_CLKPHA_SAMPLELEADING;
break;
case SPIDEV_MODE1: /* CPOL=0; CPHA=1 */
setting = USART_CTRL_CLKPOL_IDLELOW | USART_CTRL_CLKPHA_SAMPLETRAILING;
break;
case SPIDEV_MODE2: /* CPOL=1; CPHA=0 */
setting = USART_CTRL_CLKPOL_IDLEHIGH | USART_CTRL_CLKPHA_SAMPLELEADING;
break;
case SPIDEV_MODE3: /* CPOL=1; CPHA=1 */
setting = USART_CTRL_CLKPOL_IDLEHIGH | USART_CTRL_CLKPHA_SAMPLETRAILING;
break;
default:
return;
}
regval = spi_getreg(config, EFM32_USART_CTRL_OFFSET);
regval &= ~(_USART_CTRL_CLKPOL_MASK | _USART_CTRL_CLKPHA_MASK);
regval |= setting;
spi_putreg(config, EFM32_USART_CTRL_OFFSET, regval);
/* Save the mode so that subsequent re-configurations will be faster */
priv->mode = mode;
}
}
/****************************************************************************
* Name: spi_setbits
*
* Description:
* Set the number of bits per word.
*
* Input Parameters:
* dev - Device-specific state data
* nbits - The number of bits requested
*
* Returned Value:
* None
*
****************************************************************************/
static void spi_setbits(struct spi_dev_s *dev, int nbits)
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)dev;
const struct efm32_spiconfig_s *config;
uint32_t regval;
uint32_t setting;
spiinfo("nbits=%d\n", nbits);
DEBUGASSERT(priv && priv->config);
config = priv->config;
/* Has the number of bits changed? */
if (nbits != priv->nbits)
{
/* Select the new number of bits */
switch (nbits)
{
case 4:
setting = USART_FRAME_DATABITS_FOUR;
break;
case 5:
setting = USART_FRAME_DATABITS_FIVE;
break;
case 6:
setting = USART_FRAME_DATABITS_SIX;
break;
case 7:
setting = USART_FRAME_DATABITS_SEVEN;
break;
case 8:
setting = USART_FRAME_DATABITS_EIGHT;
break;
case 9:
setting = USART_FRAME_DATABITS_NINE;
break;
case 10:
setting = USART_FRAME_DATABITS_TEN;
break;
case 11:
setting = USART_FRAME_DATABITS_ELEVEN;
break;
case 12:
setting = USART_FRAME_DATABITS_TWELVE;
break;
case 13:
setting = USART_FRAME_DATABITS_THIRTEEN;
break;
case 14:
setting = USART_FRAME_DATABITS_FOURTEEN;
break;
case 15:
setting = USART_FRAME_DATABITS_FIFTEEN;
break;
case 16:
setting = USART_FRAME_DATABITS_SIXTEEN;
break;
default:
return;
}
regval = spi_getreg(config, EFM32_USART_FRAME_OFFSET);
regval &= _USART_FRAME_DATABITS_MASK;
regval |= setting;
spi_putreg(config, EFM32_USART_FRAME_OFFSET, regval);
/* Save the selection so the subsequence re-configurations will be
* faster
*/
priv->nbits = nbits;
}
}
/****************************************************************************
* Name: spi_hwfeatures
*
* Description:
* Set hardware-specific feature flags.
*
* Input Parameters:
* dev - Device-specific state data
* features - H/W feature flags
*
* Returned Value:
* Zero (OK) if the selected H/W features are enabled; A negated errno
* value if any H/W feature is not supportable.
*
****************************************************************************/
#ifdef CONFIG_SPI_HWFEATURES
static int spi_hwfeatures(FAR struct spi_dev_s *dev, spi_hwfeatures_t features)
{
#ifdef CONFIG_SPI_BITORDER
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)dev;
const struct efm32_spiconfig_s *config;
uint32_t regval;
bool lsbfirst;
spiinfo("features=%08x\n", features);
DEBUGASSERT(priv && priv->config);
config = priv->config;
/* Bit order is encoded by the sign of nbits */
lsbfirst = ((features & HWFEAT_LSBFIRST) != 0);
/* Has the number of bits or the bit order changed? */
if (lsbfirst != priv->lsbfirst)
{
/* Set the new bit order */
regval = spi_getreg(config, EFM32_USART_CTRL_OFFSET);
if (lsbfirst)
{
regval &= ~USART_CTRL_MSBF;
}
else
{
regval |= USART_CTRL_MSBF;
}
spi_putreg(config, EFM32_USART_CTRL_OFFSET, regval);
/* Save the selection so the subsequence re-configurations will be
* faster
*/
priv->lsbfirst = lsbfirst;
}
/* Other H/W features are not supported */
return ((features & ~HWFEAT_LSBFIRST) == 0) ? OK : -ENOSYS;
#else
return -ENOSYS;
#endif
}
#endif
/****************************************************************************
* Name: spi_status
*
* Description:
* Get SPI/MMC status. Optional.
*
* Input Parameters:
* dev - Device-specific state data
* devid - Identifies the device to report status on
*
* Returned Value:
* Returns a bitset of status values (see SPI_STATUS_* defines)
*
****************************************************************************/
static uint8_t spi_status(struct spi_dev_s *dev, uint32_t devid)
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)dev;
const struct efm32_spiconfig_s *config;
DEBUGASSERT(priv && priv->config);
config = priv->config;
/* Defer to the board chip status logic */
return config->status(dev, devid);
}
/****************************************************************************
* Name: spi_cmddata
*
* Description:
* Some devices require and additional out-of-band bit to specify if the
* next word sent to the device is a command or data. This is typical, for
* example, in "9-bit" displays where the 9th bit is the CMD/DATA bit.
* This function provides selection of command or data.
*
* This "latches" the CMD/DATA state. It does not have to be called before
* every word is transferred; only when the CMD/DATA state changes. This
* method is required if CONFIG_SPI_CMDDATA is selected in the NuttX
* configuration
*
* Input Parameters:
* dev - Device-specific state data
* cmd - TRUE: The following word is a command; FALSE: the following words
* are data.
*
* Returned Value:
* OK unless an error occurs. Then a negated errno value is returned
*
****************************************************************************/
#ifdef CONFIG_SPI_CMDDATA
static int spi_cmddata(struct spi_dev_s *dev, uint32_t devid,
bool cmd);
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)dev;
const struct efm32_spiconfig_s *config;
DEBUGASSERT(priv && priv->config);
config = priv->config;
DEBUGASSERT(config->cmddata);
/* Defer to the board chip cmd/data logic */
return config->cmddata(dev, devid, cmd);
}
#endif
/****************************************************************************
* Name: spi_send
*
* Description:
* Exchange one word on SPI
*
* Input Parameters:
* dev - Device-specific state data
* wd - The word to send. the size of the data is determined by the
* number of bits selected for the SPI interface.
*
* Returned Value:
* Response
*
****************************************************************************/
static uint16_t spi_send(struct spi_dev_s *dev, uint16_t wd)
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)dev;
const struct efm32_spiconfig_s *config;
uint16_t ret;
DEBUGASSERT(priv && priv->config);
config = priv->config;
/* Wait until there is space in the TX buffer */
spi_wait_status(config, _USART_STATUS_TXBL_MASK, USART_STATUS_TXBL);
/* Flush any unread data */
spi_rxflush(config);
/* Write the data */
spi_putreg(config, EFM32_USART_TXDATA_OFFSET, (uint32_t)wd);
/* Wait for receive data to be available */
spi_wait_status(config, _USART_STATUS_RXDATAV_MASK, USART_STATUS_RXDATAV);
ret = (uint16_t)spi_getreg(config, EFM32_USART_RXDATA_OFFSET);
spiinfo("Sent: %04x Return: %04x \n", wd, ret);
return ret;
}
/****************************************************************************
* Name: spi_exchange (no DMA). aka spi_exchange_nodma
*
* Description:
* Exchange a block of data on SPI without using DMA
*
* Input Parameters:
* dev - Device-specific state data
* txbuffer - A pointer to the buffer of data to be sent
* rxbuffer - A pointer to a buffer in which to receive data
* nwords - the length of data to be exchanged in units of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into
* uint16_t's
*
* Returned Value:
* None
*
****************************************************************************/
#if defined(CONFIG_EFM32_SPI_DMA) && CONFIG_EFM32_SPI_DMA_MINSIZE > 0
static void spi_exchange_nodma(struct spi_dev_s *dev, const void *txbuffer,
void *rxbuffer, size_t nwords)
#else
static void spi_exchange(struct spi_dev_s *dev, const void *txbuffer,
void *rxbuffer, size_t nwords)
#endif
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)dev;
const struct efm32_spiconfig_s *config;
size_t unrecvd;
size_t unsent;
DEBUGASSERT(priv && priv->config);
config = priv->config;
spiinfo("txbuffer=%p rxbuffer=%p nwords=%d\n", txbuffer, rxbuffer, nwords);
/* Flush any unread data */
spi_rxflush(config);
/* 8- or 16-bit mode? */
if (priv->nbits > 8)
{
/* 16-bit mode */
const uint16_t *src = (const uint16_t *)txbuffer;
uint16_t *dest = (uint16_t *)rxbuffer;
uint16_t word;
unrecvd = nwords;
unsent = nwords;
while (unrecvd > 0)
{
/* REVISIT: Could this cause RX data overruns??? */
/* Send data if there is space in the TX buffer. */
if ((spi_getreg(config, EFM32_USART_STATUS_OFFSET) & USART_STATUS_TXBL) != 0 &&
unsent > 0)
{
/* Get the next word to write. Is there a source buffer? */
if (src)
{
word = *src++;
}
else
{
word = 0xffff;
}
/* Send one word */
spi_putreg(config, EFM32_USART_TXDATA_OFFSET, (uint32_t)word);
unsent--;
}
/* Receive data if there is data available */
if ((spi_getreg(config, EFM32_USART_STATUS_OFFSET) & USART_STATUS_RXDATAV) != 0 &&
unrecvd > 0)
{
/* Receive the data */
word = (uint16_t)spi_getreg(config, EFM32_USART_RXDATA_OFFSET);
unrecvd--;
/* Is there a buffer to receive the return value? */
if (dest)
{
*dest++ = word;
}
}
}
}
else
{
/* 8-bit mode */
const uint8_t *src = (const uint8_t *)txbuffer;
uint8_t *dest = (uint8_t *)rxbuffer;
uint8_t word;
unrecvd = nwords;
unsent = nwords;
while (unrecvd > 0)
{
/* REVISIT: Could this cause RX data overruns??? */
/* Send data if there is space in the TX buffer. */
if ((spi_getreg(config, EFM32_USART_STATUS_OFFSET) & USART_STATUS_TXBL) != 0 &&
unsent > 0)
{
/* Get the next word to write. Is there a source buffer? */
if (src)
{
word = *src++;
}
else
{
word = 0xff;
}
/* Send one word */
spi_putreg(config, EFM32_USART_TXDATA_OFFSET, (uint32_t)word);
unsent--;
}
/* Receive data if there is data available */
if ((spi_getreg(config, EFM32_USART_STATUS_OFFSET) & USART_STATUS_RXDATAV) != 0 &&
unrecvd > 0)
{
/* Receive the data */
word = (uint8_t)spi_getreg(config, EFM32_USART_RXDATA_OFFSET);
unrecvd--;
/* Is there a buffer to receive the return value? */
if (dest)
{
*dest++ = word;
}
}
}
}
DEBUGASSERT(unsent == 0);
}
/****************************************************************************
* Name: spi_exchange (with DMA capability)
*
* Description:
* Exchange a block of data on SPI using DMA
*
* Input Parameters:
* dev - Device-specific state data
* txbuffer - A pointer to the buffer of data to be sent
* rxbuffer - A pointer to a buffer in which to receive data
* nwords - The length of data to be exchanged in units of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into
* uint16_t's
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_EFM32_SPI_DMA
static void spi_exchange(struct spi_dev_s *dev, const void *txbuffer,
void *rxbuffer, size_t nwords)
{
struct efm32_spidev_s *priv = (struct efm32_spidev_s *)dev;
static uint16_t rxdummy = 0xffff;
static const uint16_t txdummy = 0xffff;
irqstate_t flags;
uint64_t ticks;
int ret;
DEBUGASSERT(priv && priv->config);
#if CONFIG_EFM32_SPI_DMA_MINSIZE > 0
if (nwords <= CONFIG_EFM32_SPI_DMA_MINSIZE)
{
/* Small transfer, fall back to non-DMA method. */
spi_exchange_nodma(dev, txbuffer, rxbuffer, nwords);
}
else
#endif
{
spiinfo("txbuffer=%p rxbuffer=%p nwords=%d\n",
txbuffer, rxbuffer, nwords);
/* Pre-calculate the timeout value */
ticks = (CONFIG_EFM32_SPI_DMA_TIMEO_NSEC * nwords) / NSEC_PER_TICK;
if (ticks < 1)
{
ticks = 1;
}
/* Setup DMAs */
spi_dmarxsetup(priv, rxbuffer, &rxdummy, nwords);
spi_dmatxsetup(priv, txbuffer, &txdummy, nwords);
/* Start the DMAs */
flags = enter_critical_section();
spi_dmarxstart(priv);
spi_dmatxstart(priv);
/* Start a timer to catch hung DMA transfers. Timeout will be canceled
* when both RX and TX transfers complete.
*/
ret = wd_start(priv->wdog, (int)ticks, spi_dma_timeout, 1, (uint32_t)priv);
if (ret < 0)
{
spierr("ERROR: Failed to start timeout\n");
}
/* Then wait for each to complete. TX should complete first */
spi_dmatxwait(priv);
spi_dmarxwait(priv);
leave_critical_section(flags);
}
}
#endif /* CONFIG_EFM32_SPI_DMA */
/****************************************************************************
* Name: spi_sndblock
*
* Description:
* Send a block of data on SPI
*
* Input Parameters:
* dev - Device-specific state data
* txbuffer - A pointer to the buffer of data to be sent
* nwords - The length of data to send from the buffer in number of
* words. The wordsize is determined by the number of
* bits-per-word selected for the SPI interface. If nbits
* <= 8, the data is packed into uint8_t's; if nbits >8, the
* data is packed into uint16_t's
*
* Returned Value:
* None
*
****************************************************************************/
#ifndef CONFIG_SPI_EXCHANGE
static void spi_sndblock(struct spi_dev_s *dev, const void *txbuffer,
size_t nwords)
{
spiinfo("txbuffer=%p nwords=%d\n", txbuffer, nwords);
return spi_exchange(dev, txbuffer, NULL, nwords);
}
#endif
/****************************************************************************
* Name: spi_recvblock
*
* Description:
* Receive a block of data from SPI
*
* Input Parameters:
* dev - Device-specific state data
* rxbuffer - A pointer to the buffer in which to recieve data
* nwords - The length of data that can be received in the buffer in
* number of words. The wordsize is determined by the number
* of bits-per-word selected for the SPI interface. If nbits
* <= 8, the data is packed into uint8_t's; if nbits >8, the
* data is packed into uint16_t's
*
* Returned Value:
* None
*
****************************************************************************/
#ifndef CONFIG_SPI_EXCHANGE
static void spi_recvblock(struct spi_dev_s *dev, void *rxbuffer,
size_t nwords)
{
spiinfo("rxbuffer=%p nwords=%d\n", rxbuffer, nwords);
return spi_exchange(dev, NULL, rxbuffer, nwords);
}
#endif
/****************************************************************************
* Name: spi_portinitialize
*
* Description:
* Initialize the selected SPI port in its default state (Master, 8-bit,
* mode 0, etc.)
*
* Input Parameter:
* priv - private SPI device structure
*
* Returned Value:
* None
*
****************************************************************************/
static int spi_portinitialize(struct efm32_spidev_s *priv)
{
const struct efm32_spiconfig_s *config = priv->config;
uint32_t regval;
/* Initialize USART registers to HW reset state. */
efm32_uart_reset(config->base);
/* NOTES:
*
* 1. USART GPIO pins were configured in efm32_lowsetup(). Chip select
* pins must be configured by board specific logic before
* efm32_spibus_initialize() is called.
* 2. Clocking for the USART as also enabled in efm32_lowsetup();
*/
/* Set bits for synchronous mode */
regval = _USART_CTRL_RESETVALUE | USART_CTRL_SYNC | USART_CTRL_CLKPOL_IDLELOW |
USART_CTRL_CLKPHA_SAMPLELEADING;
/* MSB First, 8 bits */
regval &= ~_USART_FRAME_DATABITS_MASK;
regval |= USART_FRAME_DATABITS_EIGHT | USART_CTRL_MSBF;
spi_putreg(config, EFM32_USART_CTRL_OFFSET, regval);
priv->frequency = 0;
priv->mode = SPIDEV_MODE0;
priv->nbits = 8;
priv->lsbfirst = false;
/* Select a default frequency of approx. 400KHz */
spi_setfrequency((struct spi_dev_s *)priv, 400000);
/* Master mode */
spi_putreg(config, EFM32_USART_CMD_OFFSET, USART_CMD_MASTEREN);
/* Initialize the SPI semaphore that enforces mutually exclusive access */
sem_init(&priv->exclsem, 0, 1);
#ifdef CONFIG_EFM32_SPI_DMA
/* Allocate two DMA channels... one for the RX and one for the TX side of
* the transfer.
*/
priv->rxdmach = efm32_dmachannel();
if (!priv->rxdmach)
{
spierr("ERROR: Failed to allocate the RX DMA channel for SPI port: %d\n",
port);
goto errout;
}
priv->txdmach = efm32_dmachannel();
if (!priv->txdmach)
{
spierr("ERROR: Failed to allocate the TX DMA channel for SPI port: %d\n",
port);
goto errout_with_rxdmach;
}
/* Allocate a timer to catch hung DMA transfers */
priv->wdog = wd_create();
if (!priv->wdog)
{
spierr("ERROR: Failed to create a timer for SPI port: %d\n", port);
goto errout_with_txdmach;
}
/* Initialized semaphores used to wait for DMA completion */
(void)sem_init(&priv->rxdmasem, 0, 0);
(void)sem_init(&priv->txdmasem, 0, 0);
/* These semaphores are used for signaling and, hence, should not have
* priority inheritance enabled.
*/
sem_setprotocol(&priv->rxdmasem, SEM_PRIO_NONE);
sem_setprotocol(&priv->txdmasem, SEM_PRIO_NONE);
#endif
/* Enable SPI */
spi_putreg(config, EFM32_USART_CMD_OFFSET, USART_CMD_RXEN | USART_CMD_TXEN);
return OK;
#ifdef CONFIG_EFM32_SPI_DMA
errout_with_txdmach:
efm32_dmafree(priv->txdmach);
priv->txdmach = NULL;
errout_with_rxdmach:
efm32_dmafree(priv->rxdmach);
priv->rxdmach = NULL;
errout:
return -EBUSY;
#endif
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: efm32_spibus_initialize
*
* Description:
* Initialize the selected SPI port
*
* Input Parameter:
* port - SPI port number to initialize. One of {0,1,2}
*
* Returned Value:
* Valid SPI device structure reference on success; a NULL on failure
*
****************************************************************************/
struct spi_dev_s *efm32_spibus_initialize(int port)
{
const struct efm32_spiconfig_s *config;
struct efm32_spidev_s *priv;
irqstate_t flags;
int ret;
#ifdef CONFIG_EFM32_USART0_ISSPI
if (port == 0)
{
priv = &g_spi0dev;
config = &g_spi0config;
if (!priv->initialized)
{
efm32_configgpio(BOARD_SPI0_CLK);
efm32_configgpio(BOARD_SPI0_MOSI);
efm32_configgpio(BOARD_SPI0_MISO);
}
}
else
#endif
#ifdef CONFIG_EFM32_USART1_ISSPI
if (port == 1)
{
priv = &g_spi1dev;
config = &g_spi1config;
if (!priv->initialized)
{
efm32_configgpio(BOARD_SPI1_CLK);
efm32_configgpio(BOARD_SPI1_MOSI);
efm32_configgpio(BOARD_SPI1_MISO);
}
}
else
#endif
#ifdef CONFIG_EFM32_USART2_ISSPI
if (port == 2)
{
priv = &g_spi2dev;
config = &g_spi2config;
if (!priv->initialized)
{
efm32_configgpio(BOARD_SPI2_CLK);
efm32_configgpio(BOARD_SPI2_MOSI);
efm32_configgpio(BOARD_SPI2_MISO);
}
}
else
#endif
{
spierr("ERROR: Unsupported SPI port: %d\n", port);
return NULL;
}
/* Has this port been initialized yet? */
if (!priv->initialized)
{
/* No, then initialize it now */
flags = enter_critical_section();
/* Initialize the state structure */
priv->spidev = &g_spiops;
priv->config = config;
/* Initialize the SPI device */
ret = spi_portinitialize(priv);
if (ret < 0)
{
spierr("ERROR: Failed to initialize SPI port %d\n", port);
leave_critical_section(flags);
return NULL;
}
/* Now we are initialized */
priv->initialized = true;
leave_critical_section(flags);
}
return (struct spi_dev_s *)priv;
}
#endif /* HAVE_SPI_DEVICE */