900 lines
41 KiB
Plaintext
900 lines
41 KiB
Plaintext
README
|
||
^^^^^^
|
||
|
||
This README discusses issues unique to NuttX configurations for the
|
||
Atmel SAMD20 Xplained Pro development board. This board features the
|
||
ATSAMD20J18A MCU.
|
||
|
||
The SAMD20 Xplained Pro Starter Kit may be bundled with three modules:
|
||
|
||
1) I/O1 - An MMC/SD card slot, PWM LED control, ADC light sensor, USART
|
||
loopback, TWI AT30TSE758 Temperature sensor.
|
||
2) OLED1 - An OLED plus 3 additional switches and 3 additional LEDs
|
||
3) PROTO1 - A prototyping board with logic on board (other than power-related
|
||
logic).
|
||
|
||
Contents
|
||
^^^^^^^^
|
||
|
||
- Modules
|
||
- Development Environment
|
||
- GNU Toolchain Options
|
||
- IDEs
|
||
- NuttX EABI "buildroot" Toolchain
|
||
- LEDs
|
||
- Serial Consoles
|
||
- Atmel Studio 6.1
|
||
- SAMD20 Xplained Pro-specific Configuration Options
|
||
- Configurations
|
||
|
||
Modules
|
||
^^^^^^^
|
||
The SAMD20 Xplained Pro Starter Kit is bundled with four modules:
|
||
|
||
I/O1
|
||
----
|
||
The primary function of this module is to provide SD card support, but
|
||
the full list of modules features include:
|
||
|
||
- microSD card connector (SPI interface)
|
||
- PWM (LED control)
|
||
- ADC (light sensor)
|
||
- USART loopback
|
||
- TWI AT30TSE758 Temperature sensor with EEPROM
|
||
|
||
SPI is available on two of the SAMD20 Xplained connectors, EXT1 and EXT2.
|
||
They mate with the I/O1 connector as indicated in this table.
|
||
|
||
I/O1 CONNECTOR
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
I/O1 EXT1 EXT2 Other use of either pin
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
1 ID 1 1 Communication line to ID chip on
|
||
extension board.
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
2 GND 2 GND 2 GND
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
3 LIGHTSENSOR 3 PB00 AIN[8] 3 PA10 AIN[18]
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
4 LP_OUT 4 PB01 AIN[9] 4 PA11 AIN[19]
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
5 GPIO1 5 PB06 GPIO 5 PA20 GPIO
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
6 GPIO2 6 PB07 GPIO 6 PA21 GPIO
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
7 LED 7 PB02 TC6/WO[0] 7 PA22 TC4/WO[0]
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
8 LP_IN 8 PB03 TC6/WO[1] 8 PA23 TC4/WO[1]
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
9 TEMP_ALERT 9 PB04 EXTINT[4] 9 PB14 EXTINT[14]
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
10 microSD_DETECT 10 PB05 GPIO 10 PB15 GPIO
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
11 TWI SDA 11 PA08 SERCOM2 PAD[0] 11 PA08 SERCOM2 PAD[0] EXT1, EXT2, EXT3 and EDBG
|
||
I<>C SDA I<>C SDA
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
12 TWI SCL 12 PA09 SERCOM2 PAD[1] 12 PA09 SERCOM2 PAD[1] EXT2, EXT3 and EDBG
|
||
I<>C SCL I<>C SCL
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
13 USART RX 13 PB09 SERCOM4 PAD[1] 13 PB13 SERCOM4 PAD[1] The SERCOM4 module is shared between
|
||
USART RX USART RX EXT1, 2 and 3 USART's, but uses
|
||
different pins
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
14 USART TX 14 PB08 SERCOM4 PAD[0] 14 PB12 SERCOM4 PAD[0] The SERCOM4 module is shared between
|
||
USART TX USART TX EXT1, 2 and 3 USART's, but uses
|
||
different pins
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
15 microSD_SS 15 PA05 SERCOM0 PAD[1] 15 PA17 SERCOM1 PAD[1]
|
||
SPI SS SPI SS
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
16 SPI_MOSI 16 PA06 SERCOM0 PAD[2] 16 PA18 SERCOM1 PAD[2]
|
||
SPI MOSI SPI MOSI
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
17 SPI_MISO 17 PA04 SERCOM0 PAD[0] 17 PA16 SERCOM1 PAD[0]
|
||
SPI MISO SPI MISO
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
18 SPI_SCK 18 PA07 SERCOM0 PAD[3] 18 PA19 SERCOM1 PAD[3]
|
||
SPI SCK SPI SCK
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
19 GND 19 GND GND
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
20 VCC 20 VCC VCC
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
|
||
The mapping between the I/O1 pins and the SD connector are shown in the
|
||
following table.
|
||
|
||
SD Card Connection
|
||
------------------
|
||
I/O1 SD PIN Description
|
||
---- ---- --- -------------------------------------------------
|
||
D2 1 Data line 2 (not used)
|
||
15 D3 2 Data line 3. Active low chip select, pulled high
|
||
16 CMD 3 Command line, connected to SPI_MOSI.
|
||
20 VDD 4
|
||
18 CLK 5 Clock line, connected to SPI_SCK.
|
||
2/19 GND 6
|
||
17 D0 7 Data line 0, connected to SPI_MISO.
|
||
D1 8 Data line 1 (not used)
|
||
10 SW_A 9 Card detect
|
||
2/19 SW_B 10 GND
|
||
|
||
Card Detect
|
||
-----------
|
||
When a microSD card is put into the connector SW_A and SW_B are short-
|
||
circuited. SW_A is connected to the microSD_DETECT signal. To use this
|
||
as a card indicator remember to enable internal pullup in the target
|
||
device.
|
||
|
||
GPIOs
|
||
-----
|
||
So all that is required to connect the SD is configure the SPI
|
||
|
||
--- ------------------ ---------------------- -------------------------------------
|
||
PIN EXT1 EXT2 Description
|
||
--- ------------------ ---------------------- -------------------------------------
|
||
15 PA05 SERCOM0 PAD[1] 15 PA17 SERCOM1 PAD[1] Active low chip select OUTPUT, pulled
|
||
SPI SS SPI SS high on board.
|
||
--- ------------------ ---------------------- -------------------------------------
|
||
10 PB05 GPIO 10 PB15 GPIO Active low card detect INPUT, must
|
||
use internal pull-up.
|
||
--- ------------------ ---------------------- -------------------------------------
|
||
|
||
Configuration Options:
|
||
----------------------
|
||
CONFIG_SAMD20_XPLAINED_IOMODULE=y : Informs the system that the
|
||
I/O1 module is installed
|
||
CONFIG_SAMD20_XPLAINED_IOMODULE_EXT1=y : The module is installed in EXT1
|
||
CONFIG_SAMD20_XPLAINED_IOMODULE_EXT2=y : The mdoule is installed in EXT2
|
||
|
||
See the set-up in the discussion of the nsh configuration below for other
|
||
required configuration options.
|
||
|
||
NOTE: As of this writing, only the SD card slot is supported in the I/O1
|
||
module.
|
||
|
||
OLED1
|
||
-----
|
||
This module provides an OLED plus 3 additional switches and 3 additional
|
||
LEDs.
|
||
|
||
OLED1 CONNECTOR
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
OLED1 EXT1 EXT2 Other use of either pin
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
1 ID 1 1 Communication line to ID chip on
|
||
extension board.
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
2 GND 2 GND 2 GND
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
3 BUTTON2 3 PB00 AIN[8] 3 PA10 AIN[18]
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
4 BUTTON3 4 PB01 AIN[9] 4 PA11 AIN[19]
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
5 DATA_CMD_SEL 5 PB06 GPIO 5 PA20 GPIO
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
6 LED3 6 PB07 GPIO 6 PA21 GPIO
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
7 LED1 7 PB02 TC6/WO[0] 7 PA22 TC4/WO[0]
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
8 LED2 8 PB03 TC6/WO[1] 8 PA23 TC4/WO[1]
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
9 BUTTON1 9 PB04 EXTINT[4] 9 PB14 EXTINT[14]
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
10 DISPLAY_RESET 10 PB05 GPIO 10 PB15 GPIO
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
11 N/C 11 PA08 SERCOM2 PAD[0] 11 PA08 SERCOM2 PAD[0] EXT1, EXT2, EXT3 and EDBG
|
||
I<>C SDA I<>C SDA
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
12 N/C 12 PA09 SERCOM2 PAD[1] 12 PA09 SERCOM2 PAD[1] EXT2, EXT3 and EDBG
|
||
I<>C SCL I<>C SCL
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
13 N/C 13 PB09 SERCOM4 PAD[1] 13 PB13 SERCOM4 PAD[1] The SERCOM4 module is shared between
|
||
USART RX USART RX EXT1, 2 and 3 USART's, but uses
|
||
different pins
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
14 N/C 14 PB08 SERCOM4 PAD[0] 14 PB12 SERCOM4 PAD[0] The SERCOM4 module is shared between
|
||
USART TX USART TX EXT1, 2 and 3 USART's, but uses
|
||
different pins
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
15 DISPLAY_SS 15 PA05 SERCOM0 PAD[1] 15 PA17 SERCOM1 PAD[1]
|
||
SPI SS SPI SS
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
16 SPI_MOSI 16 PA06 SERCOM0 PAD[2] 16 PA18 SERCOM1 PAD[2]
|
||
SPI MOSI SPI MOSI
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
17 N/C 17 PA04 SERCOM0 PAD[0] 17 PA16 SERCOM1 PAD[0]
|
||
SPI MISO SPI MISO
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
18 SPI_SCK 18 PA07 SERCOM0 PAD[3] 18 PA19 SERCOM1 PAD[3]
|
||
SPI SCK SPI SCK
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
19 GND 19 GND GND
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
20 VCC 20 VCC VCC
|
||
----------------- ---------------------- ---------------------- ------------------------------------
|
||
|
||
Configuration Options:
|
||
----------------------
|
||
CONFIG_SAMD20_XPLAINED_OLED1MODULE=y : Informs the system that the
|
||
I/O1 module is installed
|
||
CONFIG_SAMD20_XPLAINED_OLED1MODULE_EXT1=y : The module is installed in EXT1
|
||
CONFIG_SAMD20_XPLAINED_OLED1MODULE_EXT2=y : The mdoule is installed in EXT2
|
||
|
||
See the set-up in the discussion of the nsh configuration below for other
|
||
required configuration options.
|
||
|
||
PROTO1
|
||
------
|
||
A prototyping board with logic on board (other than power-related logic).
|
||
There is no built-in support for the PROTO1 module.
|
||
|
||
Development Environment
|
||
^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
Either Linux or Cygwin on Windows can be used for the development environment.
|
||
The source has been built only using the GNU toolchain (see below). Other
|
||
toolchains will likely cause problems. Testing was performed using the Cygwin
|
||
environment.
|
||
|
||
GNU Toolchain Options
|
||
^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
The NuttX make system has been modified to support the following different
|
||
toolchain options.
|
||
|
||
1. The CodeSourcery GNU toolchain,
|
||
2. The devkitARM GNU toolchain, ok
|
||
4. The NuttX buildroot Toolchain (see below).
|
||
|
||
All testing has been conducted using the NuttX buildroot toolchain. To use
|
||
the CodeSourcery, devkitARM or Raisonance GNU toolchain, you simply need to
|
||
add one of the following configuration options to your .config (or defconfig)
|
||
file:
|
||
|
||
CONFIG_ARMV6M_TOOLCHAIN_CODESOURCERYW=y : CodeSourcery under Windows
|
||
CONFIG_ARMV6M_TOOLCHAIN_CODESOURCERYL=y : CodeSourcery under Linux
|
||
CONFIG_ARMV6M_TOOLCHAIN_ATOLLIC=y : Atollic toolchain for Windos
|
||
CONFIG_ARMV6M_TOOLCHAIN_DEVKITARM=y : devkitARM under Windows
|
||
CONFIG_ARMV6M_TOOLCHAIN_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default)
|
||
CONFIG_ARMV6M_TOOLCHAIN_GNU_EABIL=y : Generic GCC ARM EABI toolchain for Linux
|
||
CONFIG_ARMV6M_TOOLCHAIN_GNU_EABIW=y : Generic GCC ARM EABI toolchain for Windows
|
||
|
||
If you are not using CONFIG_ARMV6M_TOOLCHAIN_BUILDROOT, then you may also
|
||
have to modify the PATH in the setenv.h file if your make cannot find the tools.
|
||
|
||
NOTE about Windows native toolchains
|
||
------------------------------------
|
||
|
||
The CodeSourcery (for Windows), Atollic, and devkitARM toolchains are
|
||
Windows native toolchains. The CodeSourcery (for Linux), NuttX buildroot,
|
||
and, perhaps, the generic GCC toolchains are Cygwin and/or Linux native
|
||
toolchains. There are several limitations to using a Windows based
|
||
toolchain in a Cygwin environment. The three biggest are:
|
||
|
||
1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
|
||
performed automatically in the Cygwin makefiles using the 'cygpath' utility
|
||
but you might easily find some new path problems. If so, check out 'cygpath -w'
|
||
|
||
2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links
|
||
are used in Nuttx (e.g., include/arch). The make system works around these
|
||
problems for the Windows tools by copying directories instead of linking them.
|
||
But this can also cause some confusion for you: For example, you may edit
|
||
a file in a "linked" directory and find that your changes had no effect.
|
||
That is because you are building the copy of the file in the "fake" symbolic
|
||
directory. If you use a Windows toolchain, you should get in the habit of
|
||
making like this:
|
||
|
||
make clean_context all
|
||
|
||
An alias in your .bashrc file might make that less painful.
|
||
|
||
3. Dependencies are not made when using Windows versions of the GCC. This is
|
||
because the dependencies are generated using Windows pathes which do not
|
||
work with the Cygwin make.
|
||
|
||
MKDEP = $(TOPDIR)/tools/mknulldeps.sh
|
||
|
||
NOTE 1: The CodeSourcery toolchain (2009q1) does not work with default optimization
|
||
level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with
|
||
-Os.
|
||
|
||
NOTE 2: The devkitARM toolchain includes a version of MSYS make. Make sure that
|
||
the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
|
||
path or will get the wrong version of make.
|
||
|
||
IDEs
|
||
^^^^
|
||
|
||
NuttX is built using command-line make. It can be used with an IDE, but some
|
||
effort will be required to create the project (There is a simple RIDE project
|
||
in the RIDE subdirectory).
|
||
|
||
Makefile Build
|
||
--------------
|
||
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
|
||
simply use the NuttX makefile to build the system. That is almost for free
|
||
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
|
||
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
|
||
there is a lot of help on the internet).
|
||
|
||
Native Build
|
||
------------
|
||
Here are a few tips before you start that effort:
|
||
|
||
1) Select the toolchain that you will be using in your .config file
|
||
2) Start the NuttX build at least one time from the Cygwin command line
|
||
before trying to create your project. This is necessary to create
|
||
certain auto-generated files and directories that will be needed.
|
||
3) Set up include pathes: You will need include/, arch/arm/src/sam34,
|
||
arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
|
||
4) All assembly files need to have the definition option -D __ASSEMBLY__
|
||
on the command line.
|
||
|
||
Startup files will probably cause you some headaches. The NuttX startup file
|
||
is arch/arm/src/sam34/sam_vectors.S. You may need to build NuttX
|
||
one time from the Cygwin command line in order to obtain the pre-built
|
||
startup object needed by RIDE.
|
||
|
||
NuttX EABI "buildroot" Toolchain
|
||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
A GNU GCC-based toolchain is assumed. The files */setenv.sh should
|
||
be modified to point to the correct path to the Cortex-M0 GCC toolchain (if
|
||
different from the default in your PATH variable).
|
||
|
||
If you have no Cortex-M0 toolchain, one can be downloaded from the NuttX
|
||
SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/).
|
||
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
||
|
||
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
||
|
||
cd tools
|
||
./configure.sh samd20-xplained/<sub-dir>
|
||
|
||
2. Download the latest buildroot package into <some-dir>
|
||
|
||
3. unpack the buildroot tarball. The resulting directory may
|
||
have versioning information on it like buildroot-x.y.z. If so,
|
||
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
||
|
||
4. cd <some-dir>/buildroot
|
||
|
||
5. cp configs/cortexm0-eabi-defconfig-4.6.3 .config
|
||
|
||
6. make oldconfig
|
||
|
||
7. make
|
||
|
||
8. Edit setenv.h, if necessary, so that the PATH variable includes
|
||
the path to the newly built binaries.
|
||
|
||
See the file configs/README.txt in the buildroot source tree. That has more
|
||
details PLUS some special instructions that you will need to follow if you are
|
||
building a Cortex-M0 toolchain for Cygwin under Windows.
|
||
|
||
LEDs
|
||
^^^^
|
||
There is one yellow LED available on the SAM D20 Xplained Pro board that
|
||
can be turned on and off. The LED can be activated by driving the connected
|
||
PA14 I/O line to GND.
|
||
|
||
When CONFIG_ARCH_LEDS is defined in the NuttX configuration, NuttX will
|
||
control the LED as follows:
|
||
|
||
SYMBOL Meaning LED0
|
||
------------------- ----------------------- ------
|
||
LED_STARTED NuttX has been started OFF
|
||
LED_HEAPALLOCATE Heap has been allocated OFF
|
||
LED_IRQSENABLED Interrupts enabled OFF
|
||
LED_STACKCREATED Idle stack created ON
|
||
LED_INIRQ In an interrupt N/C
|
||
LED_SIGNAL In a signal handler N/C
|
||
LED_ASSERTION An assertion failed N/C
|
||
LED_PANIC The system has crashed FLASH
|
||
|
||
Thus is LED is statically on, NuttX has successfully booted and is,
|
||
apparently, running normally. If LED is flashing at approximately
|
||
2Hz, then a fatal error has been detected and the system has halted.
|
||
|
||
Serial Consoles
|
||
^^^^^^^^^^^^^^^
|
||
|
||
SERCOM4
|
||
------
|
||
|
||
SERCOM4 is available on connectors EXT1, EXT2, and EXT3, but using
|
||
different PORT pins:
|
||
|
||
PIN EXT1 EXT2 EXT3 GPIO Function
|
||
---- ---- ---- ---- ------------------
|
||
13 PB09 PB13 PB11 SERCOM4 / USART RX
|
||
14 PB08 PB12 PB12 SERCOM4 / USART TX
|
||
19 GND GND GND N/A
|
||
20 VCC VCC VCC N/A
|
||
|
||
There are options available in the NuttX configuration to select which
|
||
connector SERCOM4 is on: SAMD20_XPLAINED_USART4_EXTn, where n=1, 2, or 3.
|
||
|
||
If you have a TTL to RS-232 converter then this is the most convenient
|
||
serial console to use (because you don't lose the console device each time
|
||
you lose the USB connection). It is the default in all of these
|
||
configurations. An option is to use the virtual COM port.
|
||
|
||
Virtual COM Port
|
||
----------------
|
||
|
||
The SAMD20 Xplained Pro contains an Embedded Debugger (EDBG) that can be
|
||
used to program and debug the ATSAMD20J18A using Serial Wire Debug (SWD).
|
||
The Embedded debugger also include a Virtual COM port interface over
|
||
SERCOM3. Virtual COM port connections:
|
||
|
||
PA24 SERCOM3 / USART TXD
|
||
PA25 SERCOM3 / USART RXD
|
||
|
||
Atmel Studio 6.1
|
||
^^^^^^^^^^^^^^^^
|
||
|
||
Loading Code into FLASH:
|
||
-----------------------
|
||
Tools menus: Tool -> Device Programming.
|
||
|
||
Debugging the NuttX Object File
|
||
-------------------------------
|
||
1) Rename object file from nutt to nuttx.elf. That is an extension that
|
||
will be recognized by the file menu.
|
||
|
||
2) File menu: File -> Open -> Open object file for debugging
|
||
- Select nuttx.elf object file
|
||
- Select AT91SAMD20J18
|
||
- Select files for symbols as desired
|
||
- Select debugger
|
||
|
||
3) Debug menu: Debug -> Start debugging and break
|
||
- This will reload the nuttx.elf file into FLASH
|
||
|
||
SAMD20 Xplained Pro-specific Configuration Options
|
||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
|
||
be set to:
|
||
|
||
CONFIG_ARCH=arm
|
||
|
||
CONFIG_ARCH_family - For use in C code:
|
||
|
||
CONFIG_ARCH_ARM=y
|
||
|
||
CONFIG_ARCH_architecture - For use in C code:
|
||
|
||
CONFIG_ARCH_CORTEXM0=y
|
||
|
||
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
|
||
|
||
CONFIG_ARCH_CHIP="samd"
|
||
|
||
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
|
||
chip:
|
||
|
||
CONFIG_ARCH_CHIP_SAMD
|
||
CONFIG_ARCH_CHIP_SAMD20
|
||
CONFIG_ARCH_CHIP_ATSAMD20J18
|
||
|
||
CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
|
||
hence, the board that supports the particular chip or SoC.
|
||
|
||
CONFIG_ARCH_BOARD=samd20-xplained (for the SAMD20 Xplained Pro development board)
|
||
|
||
CONFIG_ARCH_BOARD_name - For use in C code
|
||
|
||
CONFIG_ARCH_BOARD_SAMD20_XPLAINED=y
|
||
|
||
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
|
||
of delay loops
|
||
|
||
CONFIG_ENDIAN_BIG - define if big endian (default is little
|
||
endian)
|
||
|
||
CONFIG_RAM_SIZE - Describes the installed DRAM (SRAM in this case):
|
||
|
||
CONFIG_RAM_SIZE=0x00010000 (64KB)
|
||
|
||
CONFIG_RAM_START - The start address of installed DRAM
|
||
|
||
CONFIG_RAM_START=0x20000000
|
||
|
||
CONFIG_ARCH_IRQPRIO - The SAMD20 supports interrupt prioritization
|
||
|
||
CONFIG_ARCH_IRQPRIO=y
|
||
|
||
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
|
||
have LEDs
|
||
|
||
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
|
||
stack. If defined, this symbol is the size of the interrupt
|
||
stack in bytes. If not defined, the user task stacks will be
|
||
used during interrupt handling.
|
||
|
||
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
|
||
|
||
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
|
||
|
||
CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
|
||
cause a 100 second delay during boot-up. This 100 second delay
|
||
serves no purpose other than it allows you to calibratre
|
||
CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure
|
||
the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
|
||
the delay actually is 100 seconds.
|
||
|
||
Individual subsystems can be enabled:
|
||
|
||
CONFIG_SAMD_WDT - Watchdog Timer"
|
||
CONFIG_SAMD_RTC - Real Time Counter"
|
||
CONFIG_SAMD_NVMCTRL - Non-Volatile Memory Controller"
|
||
CONFIG_SAMD_EVSYS - Event System"
|
||
CONFIG_SAMD_SERCOM0 - Serial Communication Interface 0"
|
||
CONFIG_SAMD_SERCOM1 - Serial Communication Interface 1"
|
||
CONFIG_SAMD_SERCOM2 - Serial Communication Interface 2"
|
||
CONFIG_SAMD_SERCOM3 - Serial Communication Interface 3"
|
||
CONFIG_SAMD_SERCOM4 - Serial Communication Interface 4"
|
||
CONFIG_SAMD_SERCOM5 - Serial Communication Interface 5"
|
||
CONFIG_SAMD_TC0 - Timer/Counter 0"
|
||
CONFIG_SAMD_TC1 - Timer/Counter 1"
|
||
CONFIG_SAMD_TC2 - Timer/Counter 2"
|
||
CONFIG_SAMD_TC3 - Timer/Counter 3"
|
||
CONFIG_SAMD_TC4 - Timer/Counter 4"
|
||
CONFIG_SAMD_TC5 - Timer/Counter 5"
|
||
CONFIG_SAMD_TC6 - Timer/Counter 6"
|
||
CONFIG_SAMD_TC7 - Timer/Counter 6"
|
||
CONFIG_SAMD_ADC - Analog-to-Digital Converter"
|
||
CONFIG_SAMD_AC - Analog Comparator"
|
||
CONFIG_SAMD_DAC - Digital-to-Analog Converter"
|
||
CONFIG_SAMD_PTC - Peripheral Touch Controller"
|
||
|
||
Some subsystems can be configured to operate in different ways. The drivers
|
||
need to know how to configure the subsystem.
|
||
|
||
CONFIG_SAMD_SERCOM0_ISI2C, CONFIG_SAMD_SERCOM0_ISSPI, or CONFIG_SAMD_SERCOM0_ISUSART
|
||
CONFIG_SAMD_SERCOM1_ISI2C, CONFIG_SAMD_SERCOM1_ISSPI, or CONFIG_SAMD_SERCOM1_ISUSART
|
||
CONFIG_SAMD_SERCOM2_ISI2C, CONFIG_SAMD_SERCOM2_ISSPI, or CONFIG_SAMD_SERCOM2_ISUSART
|
||
CONFIG_SAMD_SERCOM3_ISI2C, CONFIG_SAMD_SERCOM3_ISSPI, or CONFIG_SAMD_SERCOM3_ISUSART
|
||
CONFIG_SAMD_SERCOM4_ISI2C, CONFIG_SAMD_SERCOM4_ISSPI, or CONFIG_SAMD_SERCOM4_ISUSART
|
||
CONFIG_SAMD_SERCOM5_ISI2C, CONFIG_SAMD_SERCOM5_ISSPI, or CONFIG_SAMD_SERCOM5_ISUSART
|
||
|
||
SAT91SAMD20 specific device driver settings
|
||
|
||
CONFIG_USARTn_SERIAL_CONSOLE - selects the USARTn (n=0,1,2,..5) for the
|
||
console and ttys0 (default is the USART4).
|
||
CONFIG_USARTn_RXBUFSIZE - Characters are buffered as received.
|
||
This specific the size of the receive buffer
|
||
CONFIG_USARTn_TXBUFSIZE - Characters are buffered before
|
||
being sent. This specific the size of the transmit buffer
|
||
CONFIG_USARTn_BAUD - The configure BAUD of the USART. Must be
|
||
CONFIG_USARTn_BITS - The number of bits. Must be either 7 or 8.
|
||
CONFIG_USARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
|
||
CONFIG_USARTn_2STOP - Two stop bits
|
||
|
||
Configurations
|
||
^^^^^^^^^^^^^^
|
||
|
||
Each SAMD20 Xplained Pro configuration is maintained in a sub-directory and
|
||
can be selected as follow:
|
||
|
||
cd tools
|
||
./configure.sh samd20-xplained/<subdir>
|
||
cd -
|
||
. ./setenv.sh
|
||
|
||
Before sourcing the setenv.sh file above, you should examine it and perform
|
||
edits as necessary so that BUILDROOT_BIN is the correct path to the directory
|
||
than holds your toolchain binaries.
|
||
|
||
And then build NuttX by simply typing the following. At the conclusion of
|
||
the make, the nuttx binary will reside in an ELF file called, simply, nuttx.
|
||
|
||
make
|
||
|
||
The <subdir> that is provided above as an argument to the tools/configure.sh
|
||
must be is one of the following.
|
||
|
||
NOTE: These configurations use the mconf-based configuration tool. To
|
||
change any of these configurations using that tool, you should:
|
||
|
||
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
|
||
and misc/tools/
|
||
|
||
b. Execute 'make menuconfig' in nuttx/ in order to start the
|
||
reconfiguration process.
|
||
|
||
NOTES:
|
||
|
||
1. These configurations use the mconf-based configuration tool. To
|
||
change any of these configurations using that tool, you should:
|
||
|
||
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
|
||
and misc/tools/
|
||
|
||
b. Execute 'make menuconfig' in nuttx/ in order to start the
|
||
reconfiguration process.
|
||
|
||
2. Unless stated otherwise, all configurations generate console
|
||
output of on SERCOM4 which is available on EXT1, EXT2, or EXT3 (see
|
||
the section "Serial Consoles" above). The virtual COM port could
|
||
be used, instead, by reconfiguring to use SERCOM3 instead of
|
||
SERCOM4:
|
||
|
||
System Type -> SAMD Peripheral Support
|
||
CONFIG_SAMD_SERCOM3=y : Enable one or both
|
||
CONFIG_SAMD_SERCOM4=n
|
||
|
||
Device Drivers -> Serial Driver Support -> Serial Console
|
||
CONFIG_USART4_SERIAL_CONSOLE=y : Select only one for the console
|
||
CONFIG_USART4_SERIAL_CONSOLE=n
|
||
|
||
Device Drivers -> Serial Driver Support -> SERCOM3 Configuration
|
||
CONFIG_USART3_2STOP=0
|
||
CONFIG_USART3_BAUD=115200
|
||
CONFIG_USART3_BITS=8
|
||
CONFIG_USART3_PARITY=0
|
||
CONFIG_USART3_RXBUFSIZE=256
|
||
CONFIG_USART3_TXBUFSIZE=256
|
||
|
||
Device Drivers -> Serial Driver Support -> SERCOM4 Configuration
|
||
CONFIG_USART4_2STOP=0
|
||
CONFIG_USART4_BAUD=115200
|
||
CONFIG_USART4_BITS=8
|
||
CONFIG_USART4_PARITY=0
|
||
CONFIG_USART4_RXBUFSIZE=256
|
||
CONFIG_USART4_TXBUFSIZE=256
|
||
|
||
Board Selection -> USART4 Connection
|
||
CONFIG_SAMD20_XPLAINED_USART4_EXT1=n : Pick on if USART4 used
|
||
CONFIG_SAMD20_XPLAINED_USART4_EXT2=n
|
||
CONFIG_SAMD20_XPLAINED_USART4_EXT3=y
|
||
|
||
3. Unless otherwise stated, the configurations are setup for
|
||
Cygwin under Windows:
|
||
|
||
Build Setup:
|
||
CONFIG_HOST_WINDOWS=y : Windows Host
|
||
CONFIG_WINDOWS_CYGWIN=y : Cygwin environment on windoes
|
||
|
||
4. These configurations use the CodeSourcery toolchain. But
|
||
that is easily reconfigured:
|
||
|
||
System Type -> Toolchain:
|
||
CONFIG_ARMV6M_TOOLCHAIN_CODESOURCERYW=y
|
||
|
||
Any re-configuration should be done before making NuttX or else the
|
||
subsequent 'make' will fail. If you have already attempted building
|
||
NuttX then you will have to 1) 'make distclean' to remove the old
|
||
configuration, 2) 'cd tools; ./configure.sh sam3u-ek/ksnh' to start
|
||
with a fresh configuration, and 3) perform the configuration changes
|
||
above.
|
||
|
||
Also, make sure that your PATH variable has the new path to your
|
||
Atmel tools. Try 'which arm-none-eabi-gcc' to make sure that you
|
||
are selecting the right tool. setenv.sh is available for you to
|
||
use to set or PATH variable. The path in the that file may not,
|
||
however, be correct for your installation.
|
||
|
||
See also the "NOTE about Windows native toolchains" in the section
|
||
called "GNU Toolchain Options" above.
|
||
|
||
Configuration sub-directories
|
||
-----------------------------
|
||
|
||
nsh:
|
||
This configuration directory will built the NuttShell. See NOTES above
|
||
and below:
|
||
|
||
NOTES:
|
||
|
||
1. This configuration is set up to build on Windows using the Cygwin
|
||
environment using the CodeSourcery toolchain. This can be easily
|
||
changed as described above under "Configurations."
|
||
|
||
2. By default, this configuration provides a serial console on SERCOM4
|
||
via EXT3. If you would prefer to use the EDBG serial COM port or
|
||
would prefer to use SERCOM4 on EXT1 or EXT2, you will need to
|
||
reconfigure the SERCOM as described under "Configurations". See
|
||
also the section entitle "Serial Consoles" above.
|
||
|
||
3. NOTE: If you get a compilation error like:
|
||
|
||
libxx_new.cxx:74:40: error: 'operator new' takes type 'size_t'
|
||
('unsigned int') as first parameter [-fper
|
||
|
||
Sometimes NuttX and your toolchain will disagree on the underlying
|
||
type of size_t; sometimes it is an 'unsigned int' and sometimes it is
|
||
an 'unsigned long int'. If this error occurs, then you may need to
|
||
toggle the value of CONFIG_CXX_NEWLONG.
|
||
|
||
4. If the I/O1 module is connected to the SAMD20 Xplained Pro, then
|
||
support for the SD card slot can be enabled by making the following
|
||
changes to the configuration. These changes assume that the I/O1
|
||
modules is connected in EXT1. Most of the modifications necessary
|
||
to work with the I/O1 in a different connector are obvious.. except
|
||
for the selection of SERCOM SPI support:
|
||
|
||
EXT1: SPI is provided through SERCOM0
|
||
EXT2: SPI is provided through SERCOM1
|
||
EXT3: SPI is provided through SERCOM5
|
||
|
||
File Systems:
|
||
CONFIG_FS_FAT=y : Enable the FAT file system
|
||
CONFIG_FAT_LCNAMES=y : Enable upper/lower case 8.3 file names (Optional, see below)
|
||
CONFIG_FAT_LFN=y : Enable long file named (Optional, see below)
|
||
CONFIG_FAT_MAXFNAME=32 : Maximum supported file name length
|
||
|
||
There are issues related to patents that Microsoft holds on FAT long
|
||
file name technologies. See the top level COPYING file for further
|
||
details.
|
||
|
||
System Type -> Peripherals:
|
||
CONFIG_SAMD_SERCOM0=y : Use SERCOM0 if the I/O is in EXT1
|
||
CONFIG_SAMD_SERCOM0_ISSPI=y : Configure SERCOM0 as an SPI master
|
||
|
||
Device Drivers
|
||
CONFIG_SPI=y : Enable SPI support
|
||
CONFIG_SPI_EXCHANGE=y : The exchange() method is supported
|
||
CONFIG_SPI_OWNBUS=y : Smaller code if this is the only SPI device
|
||
|
||
CONFIG_MMCSD=y : Enable MMC/SD support
|
||
CONFIG_MMCSD_NSLOTS=1 : Only one MMC/SD card slot
|
||
CONFIG_MMCSD_MULTIBLOCK_DISABLE=n : Should not need to disable multi-block transfers
|
||
CONFIG_MMCSD_MMCSUPPORT=n : May interfere with some SD cards
|
||
CONFIG_MMCSD_HAVECARDDETECT=y : I/O1 module as a card detect GPIO
|
||
CONFIG_MMCSD_SPI=y : Use the SPI interface to the MMC/SD card
|
||
CONFIG_MMCSD_SPICLOCK=20000000 : This is a guess for the optimal MMC/SD frequency
|
||
CONFIG_MMCSD_SPIMODE=0 : Mode 0 is required
|
||
|
||
Board Selection -> Common Board Options
|
||
CONFIG_NSH_MMCSDSLOTNO=0 : Only one MMC/SD slot, slot 0
|
||
CONFIG_NSH_MMCSDSPIPORTNO=0 : Use port=0 -> SERCOM0 if the I/O1 is in EXT1
|
||
|
||
Board Selection -> SAMD20 Xplained Pro Modules
|
||
CONFIG_SAMD20_XPLAINED_IOMODULE=y : I/O1 module is connected
|
||
CONFIG_SAMD20_XPLAINED_IOMODULE_EXT1=y : I/O1 modules is in EXT1
|
||
|
||
Application Configuration -> NSH Library
|
||
CONFIG_NSH_ARCHINIT=y : Board has architecture-specific initialization
|
||
|
||
NOTE: If you enable the I/O1 this configuration with SERCOM4 as the
|
||
console and with the I/O1 module in EXT1, you *must* remove USART
|
||
jumper. Otherwise, you have lookpack on SERCOM4 and NSH will *not*
|
||
behave very well (since its outgoing prompts also appear as incoming
|
||
commands).
|
||
|
||
STATUS: As of 2013-6-18, this configuration appears completely
|
||
functional. Testing, however, has been very light. Example:
|
||
|
||
NuttShell (NSH) NuttX-6.34
|
||
nsh> mount -t vfat /dev/mmcsd0 /mnt/stuff
|
||
nsh> ls /mnt/stuff
|
||
/mnt/stuff:
|
||
nsh> echo "This is a test" >/mnt/stuff/atest.txt
|
||
nsh> ls /mnt/stuff
|
||
/mnt/stuff:
|
||
atest.txt
|
||
nsh> cat /mnt/stuff/atest.txt
|
||
This is a test
|
||
nsh>
|
||
|
||
5. If the OLED1 module is connected to the SAMD20 Xplained Pro, then
|
||
support for the OLED display can be enabled by making the following
|
||
changes to the configuration. These changes assume that the I/O1
|
||
modules is connected in EXT1. Most of the modifications necessary
|
||
to work with the I/O1 in a different connector are obvious.. except
|
||
for the selection of SERCOM SPI support:
|
||
|
||
EXT1: SPI is provided through SERCOM0
|
||
EXT2: SPI is provided through SERCOM1
|
||
EXT3: SPI is provided through SERCOM5
|
||
|
||
System Type -> Peripherals:
|
||
CONFIG_SAMD_SERCOM1=y : Use SERCOM1 if the I/O is in EXT2
|
||
CONFIG_SAMD_SERCOM1_ISSPI=y : Configure SERCOM1 as an SPI master
|
||
|
||
Device Drivers -> SPI
|
||
CONFIG_SPI=y : Enable SPI support
|
||
CONFIG_SPI_EXCHANGE=y : The exchange() method is supported
|
||
CONFIG_SPI_CMDDATA=y : CMD/DATA support is required
|
||
CONFIG_SPI_OWNBUS=y : Smaller code if this is the only SPI device
|
||
|
||
Device Drivers -> LCDs
|
||
CONFIG_LCD=y : Enable LCD support
|
||
CONFIG_LCD_MAXCONTRAST=255 : Maximum contrast value
|
||
CONFIG_LCD_LANDSCAPE=y : Landscape orientation (see below*)
|
||
CONFIG_LCD_UG2832HSWEG04=y : Enable support for the OLED
|
||
CONFIG_LCD_SSD1306_SPIMODE=0 : SPI Mode 0
|
||
CONFIG_LCD_SSD1306_SPIMODE=3500000 : Pick an SPI frequency
|
||
|
||
Board Selection -> SAMD20 Xplained Pro Modules
|
||
CONFIG_SAMD20_XPLAINED_OLED1MODULE=y : OLED1 module is connected
|
||
CONFIG_SAMD20_XPLAINED_OLED1MODULE_EXT2=y : OLED1 modules is in EXT2
|
||
|
||
The NX graphics subsystem also needs to be configured:
|
||
|
||
CONFIG_NX=y : Enable graphics support
|
||
CONFIG_NX_LCDDRIVER=y : Using an LCD driver
|
||
CONFIG_NX_NPLANES=1 : With a single color plane
|
||
CONFIG_NX_WRITEONLY=n : You can read from the LCD (see below**)
|
||
CONFIG_NX_DISABLE_2BPP=y : Disable all resolutions except 1BPP
|
||
CONFIG_NX_DISABLE_4BPP=y
|
||
CONFIG_NX_DISABLE_8BPP=y
|
||
CONFIG_NX_DISABLE_16BPP=y
|
||
CONFIG_NX_DISABLE_24BPP=y
|
||
CONFIG_NX_DISABLE_32BPP=y
|
||
CONFIG_NX_PACKEDMSFIRST=y : LSB packed first (shouldn't matter)
|
||
CONFIG_NXTK_BORDERWIDTH=2 : Use a small border
|
||
CONFIG_NXTK_DEFAULT_BORDERCOLORS=y : Default border colors
|
||
CONFIG_NXFONTS_CHARBITS=7 : 7-bit fonts
|
||
CONFIG_NXFONT_SANS17X23B=y : Pick a font (any that will fit)
|
||
|
||
* This orientation will put the buttons "above" the LCD. The
|
||
reverse landscape configuration (CONFIG_LCD_RLANDSCAPE) will
|
||
"flip" the display so that the buttons are "below" the LCD.
|
||
|
||
** The hardware is write only, but the driver maintains a frame buffer
|
||
to support read and read-write-modiry operations on the LCD.
|
||
Reading from the frame buffer is, however, untested.
|
||
|
||
Then, in order to use the OLED, you will need to build some kind of
|
||
graphics application or use one of the NuttX graphics examples.
|
||
Here, for example, is the setup for the graphic "Hello, World!"
|
||
example:
|
||
|
||
CONFIG_EXAMPLES_NXHELLO=y : Enables the example
|
||
CONFIG_EXAMPLES_NXHELLO_DEFAULT_COLORS=y : Use default colors (see below *)
|
||
CONFIG_EXAMPLES_NXHELLO_DEFAULT_FONT=y : Use the default font
|
||
CONFIG_EXAMPLES_NXHELLO_BPP=1 : One bit per pixel
|
||
CONFIG_EXAMPLES_NXHELLO_EXTERNINIT=y : Special initialization is required.
|
||
|
||
* The OLED is monochrome so the only "colors" are blacka nd white.
|
||
The default "colors" will give you while text on a black background.
|
||
You can override the faults it you want black text on a while background.
|
||
|
||
NOTE: One issue that I have seen with the NXHello example when
|
||
running as an NSH command is that it only works the first time.
|
||
So, after you run the 'nxhello' command one time, you will have to
|
||
reset the board before you run it again.
|
||
|
||
This is clearly some issue with initializing, un-initializing, and
|
||
then re-initializing. If you want to fix this, patches are quite
|
||
welcome.
|
||
|
||
STATUS/ISSUES:
|
||
|
||
1. The FLASH waitstates is set to 2 (see include/board.h). According to
|
||
the data sheet, it should work at 1 but I sometimes see crashes when
|
||
the waitstates are set to one (about half of the time) (2014-2-18).
|
||
|
||
2. Garbage appears on the display sometimes after a reset (maybe 20% of
|
||
the time) or after a power cycle (less after a power cycle). I don't
|
||
understand the cause of of this but most of this can be eliminated by
|
||
simply holding the the reset button longer and releasing it cleanly
|
||
(then it fails maybe 5-10% of the time, maybe because of button
|
||
chatter?) (2014-2-18).
|
||
|
||
- The garbage is not random: It is always the same.
|
||
- This is not effected by BAUD rate. Curiously, the same garbage
|
||
appears at different BAUD settings implying that this may not even
|
||
be clock related???
|
||
- The program seems to be running normally, just producing bad output.
|
||
|
||
3. SPI current hangs so not much progress has been made testing the I/O1
|
||
module. The hang occurs because the SPI is waiting for SYNCBUSY to
|
||
be cleared after enabling the SPI. This even does not happen and so
|
||
causes the hang.
|
||
|
||
Another note: Enabling the SPI on SERCOM0 also seems to interfere
|
||
with the USART output on SERCOM4. Both symptoms imply some clock-
|
||
related issue.
|
||
|
||
The configuration suggests CONFIG_MMCSD_HAVECARDDETECT=y, but as of
|
||
this writing, there is no support for EIC pin interrupts.
|
||
|
||
4. OLED1 module is untested. These instructions were just lifted from
|
||
the SAM4L Xplained Pro README.txt file.
|