nuttx/drivers/audio/cxd56.c
Tobias Johansson 2cce572162 drivers: audio: cxd56: rename queue status
This commit improves the readability for each state

Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
2020-11-06 11:11:27 +09:00

3552 lines
88 KiB
C

/****************************************************************************
* drivers/audio/cxd56.c
*
* Copyright 2019 Sony Semiconductor Solutions Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <errno.h>
#include <fcntl.h>
#include <math.h>
#include <queue.h>
#include <string.h>
#include <nuttx/arch.h>
#include <nuttx/config.h>
#include <nuttx/irq.h>
#include <nuttx/kmalloc.h>
#include <nuttx/mqueue.h>
#include <arch/board/cxd56_clock.h>
#include <arch/board/board.h>
#include <arch/chip/audio.h>
#include "cxd56.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#define REG_BASE 0x0e300000
#define REG_BASE_INT 0xe0045000
#define CXD56_GEN_MASK(len, pos) (((len) == 32) ? 0xffffffff : \
((1 << (len)) - 1) << (pos))
#define CXD56_IRQ1_BIT_MIC (1 << 6) /* AU0 */
#define CXD56_IRQ1_BIT_I2S1 (1 << 7) /* AU1 */
#define CXD56_VOL_MIN -1020
#define CXD56_VOL_MAX 120
#define CXD56_VOL_MUTE (CXD56_VOL_MIN - 1)
#define CXD56_VOL_RANGE ((CXD56_VOL_MAX - CXD56_VOL_MIN) / 2)
#define CXD56_VOL_NX_TO_CXD56(v) ((int)((float)((v) / 1000.0) * CXD56_VOL_RANGE) \
+ CXD56_VOL_MIN + CXD56_VOL_RANGE)
#define CXD56_VOL_WAIT_TIME 20
#define CXD56_VOL_TO_REG(vol) (((vol) / 5) & 0xff)
#define CXD56_VOL_MUTE_REG 0x33
#define CXD56_VOL_MUTE_TIME(vol, cycles) \
(((CXD56_VOL_TO_REG(vol) - CXD56_VOL_MUTE_REG) & 0xff) \
* ((cycles) + 1) * 4 / 48 * 1000)
#define CXD56_IN_CHANNELS_MAX 8
#define CXD56_OUT_CHANNELS_MAX 2
/* Samplerates field is split into low and high byte */
#define CXD56_SUPP_RATES_L (AUDIO_SAMP_RATE_8K | AUDIO_SAMP_RATE_11K | \
AUDIO_SAMP_RATE_16K | AUDIO_SAMP_RATE_22K | \
AUDIO_SAMP_RATE_32K | AUDIO_SAMP_RATE_44K | \
AUDIO_SAMP_RATE_48K)
#define CXD56_SUPP_RATES_H ((AUDIO_SAMP_RATE_96K | AUDIO_SAMP_RATE_128K | \
AUDIO_SAMP_RATE_192K) >> 8)
#define CXD56_SUPP_RATES (CXD56_SUPP_RATES_L | CXD56_SUPP_RATES_H)
/* Mic setting definitions */
#define CXD56_ACA_MIC_AMIC 1 /* Analog MIC */
#define CXD56_MIC_TRANS_CH_24BIT 8
#define CXD56_MIC_TRANS_CH_16BIT 4
#define CXD56_AUDIO_CFG_MIC_MODE_64FS 0
#define CXD56_AUDIO_CFG_MIC_MODE_128FS 1
#define CXD56_MIC_GAIN_MAX 150
#define CXD56_MIC_PGA_GAIN_MAX 60
#define CXD56_MIC_CH_BITNUM 4
#define CXD56_MIC_CH_BITMAP 0xf
#define CXD56_CIC_MIC_CH_NUM 2
/* External XTAL */
#define CXD56_AUD_MCLK_EXT (0u<<16)
/* Oscillator modes */
#define CXD56_ACA_OSC_24_576MHZ 1 /* 24.576MHz */
#define CXD56_ACA_OSC_24_576MHZ_HIRES 2 /* 24.576MHz, Hi-Res */
#define CXD56_ACA_OSC_49_152MHZ 3 /* 49.152MHz */
#define CXD56_ACA_OSC_49_152MHZ_HIRES 4 /* 49.152MHz, Hi-Res */
/* Control IDs for external fw_as_acacontrol */
#define CXD56_ACA_CTL_CHECK_ID 0
#define CXD56_ACA_CTL_POWER_ON_COMMON 1
#define CXD56_ACA_CTL_POWER_ON_INPUT 2
#define CXD56_ACA_CTL_POWER_ON_OUTPUT 3
#define CXD56_ACA_CTL_SET_SERDES 4
#define CXD56_ACA_CTL_SET_SMASTER 5
#define CXD56_ACA_CTL_POWER_OFF_COMMON 6
#define CXD56_ACA_CTL_POWER_OFF_INPUT 7
#define CXD56_ACA_CTL_POWER_OFF_OUTPUT 8
#define CXD56_ACA_CTL_POWER_ON_MICBIAS 9
#define CXD56_ACA_CTL_POWER_OFF_MICBIAS 10
#define CXD56_ACA_CTL_SET_OUTPUT_DEVICE 13
#define CXD56_EXP_REVID 0x20
#define CXD56_EXP_DEVICEID 0x02
#define CXD56_OUT_DEV_OFF (0)
#define CXD56_OUT_DEV_SP (1)
#define CXD56_SMSTR_MODE_FS_16 1
#define CXD56_SMSTR_MODE_FS_32 2
#define CXD56_SMSTR_MCK_FS_512 1
#define CXD56_SMSTR_MCK_FS_1024 2
#define CXD56_SMSTR_CHSEL_NORMAL 1
#define CXD56_SMSTR_PWMMD_BOTH 2
#define CXD56_ACA_OUT_OFF 6
#define CXD56_ACA_PWMOUT_UNKNOWN 0
#define CXD56_ACA_SP_DELAY_SEL_UNKNOWN 0
#define CXD56_ACA_SP_LOOP_MODE_UNKNOWN 0
#define CXD56_ACA_SP_DLY_FREE_UNKNOWN 0
#define CXD56_AUDAT_SEL_MIC1 0
#define CXD56_AUDAT_SEL_MIC2 1
#define CXD56_AUDAT_SEL_MIC3 2
#define CXD56_AUDAT_SEL_MIC4 3
#define CXD56_AUDAT_SEL_BUSIF1 4
#define CXD56_AUDAT_SEL_BUSIF2 4
#define CXD56_DMA_MSTATE_ERR_NO_ENABLE_CH 1
#define CXD56_DMA_MSTATE_ERR_CH1_4_INVALID 2
#define CXD56_DMA_MSTATE_ERR_CH5_8_INVALID 3
#define CXD56_DMA_MSTATE_BUF_EMPTY 3
#define CXD56_DMA_TIMEOUT 10000
#define CXD56_DMA_START_RETRY_CNT 10
#define CXD56_DMA_SMP_WAIT_HIRES 10 /* usec per sample. */
#define CXD56_DMA_SMP_WAIT_NORMALT 40 /* usec per sample. */
#define CXD56_DMA_CMD_FIFO_NOT_FULL 1
#define CXD56_DMA_START_ADDR_MASK 0x3fffffff
/****************************************************************************
* Public Function Prototypes
****************************************************************************/
/* Located in arch/arm/src/cxd56xx/cxd56_clock.c */
extern void cxd56_audio_clock_enable(uint32_t clk, uint32_t div);
extern void cxd56_audio_clock_disable(void);
extern bool cxd56_audio_clock_is_enabled(void);
/* Located in arch/arm/src/cxd56xx/cxd56_farapistub.S */
extern uint32_t fw_as_acacontrol(uint8_t type, uint32_t param);
/****************************************************************************
* Private Types
****************************************************************************/
/* CXD56 Audio register value definition */
struct cxd56_aureg_s
{
uint32_t addr;
uint8_t pos;
uint8_t len;
};
typedef struct cxd56_aureg_s cxd56_aureg_t;
/* DMA interrupt types */
enum cxd56_dma_int_e
{
CXD56_DMA_INT_DONE = 0x01,
CXD56_DMA_INT_ERR = 0x02,
CXD56_DMA_INT_SMP = 0x10,
CXD56_DMA_INT_CMB = 0x20
};
/* Volume setting IDs */
enum cxd56_vol_id_e
{
CXD56_VOL_ID_MIXER_IN1, /* SDIN1_VOL */
CXD56_VOL_ID_MIXER_IN2, /* SDIN2_VOL */
CXD56_VOL_ID_MIXER_OUT /* DAC_VOL */
};
enum cxd56_pulco_ser_mode_id_e
{
CXD56_SER_MODE_UNKNOWN,
CXD56_SER_MODE_8CH, /* 8ch */
CXD56_SER_MODE_4CH, /* 4ch */
CXD56_SER_MODE_MAX_ENTRY
};
enum csd56_pulco_ser_fs_id_e
{
CXD56_SER_FS_UNKNOWN,
CXD56_SER_FS_128, /* 128fs */
CXD56_SER_FS_64, /* 64fs */
CXD56_SER_FS_MAX_ENTRY
};
enum cxd56_pulco_ser_sel_ch_id_e
{
CXD56_SER_SEL_FIX0 = 0,
CXD56_SER_SEL_AMIC1 = 1,
CXD56_SER_SEL_AMIC2 = 2,
CXD56_SER_SEL_AMIC3 = 3,
CXD56_SER_SEL_AMIC4 = 4,
CXD56_SER_SEL_DMIC1 = 5,
CXD56_SER_SEL_DMIC2 = 6,
CXD56_SER_SEL_DMIC3 = 7,
CXD56_SER_SEL_DMIC4 = 8,
CXD56_SER_SEL_DMIC5 = 9,
CXD56_SER_SEL_DMIC6 = 10,
CXD56_SER_SEL_DMIC7 = 11,
CXD56_SER_SEL_DMIC8 = 12,
CXD56_SER_SEL_UNKNOWN = 15,
CXD56_SER_SEL_MAX_ENTRY = 16
};
enum cxd56_sdes_des_sel_out_id_e
{
CXD56_SDES_DES_SEL_UNKNOWN,
CXD56_SDES_DES_SEL_CH1,
CXD56_SDES_DES_SEL_CH2,
CXD56_SDES_DES_SEL_CH3,
CXD56_SDES_DES_SEL_CH4,
CXD56_SDES_DES_SEL_CH5,
CXD56_SDES_DES_SEL_CH6,
CXD56_SDES_DES_SEL_CH7,
CXD56_SDES_DES_SEL_CH8,
CXD56_SDES_DES_SEL_MAX_ENTRY
};
struct cxd56_ser_des_param_s
{
enum cxd56_pulco_ser_mode_id_e ser_mode;
enum csd56_pulco_ser_fs_id_e ser_fs;
union
{
enum cxd56_pulco_ser_sel_ch_id_e in[CXD56_IN_CHANNELS_MAX];
enum cxd56_sdes_des_sel_out_id_e out[CXD56_IN_CHANNELS_MAX];
} sel_ch;
};
enum cxd56_mic_type_e
{
CXD56_AUDIO_CFG_MIC_DEV_NONE = 0,
CXD56_AUDIO_CFG_MIC_DEV_ANALOG,
CXD56_AUDIO_CFG_MIC_DEV_DIGITAL,
CXD56_AUDIO_CFG_MIC_DEV_ANADIG
};
#if 0
/* TODO: Implement mic gain handling */
struct cxd56_audio_mic_gain_s
{
int32_t gain[CXD56_IN_CHANNELS_MAX];
};
#endif
struct cxd56_aca_pwinput_param_s
{
enum cxd56_mic_type_e mic_dev;
uint8_t mic_bias_sel;
uint32_t mic_gain[4];
uint32_t pga_gain[4];
int32_t vgain[4];
};
struct cxd56_aca_pwon_param_s
{
uint8_t osc_mode;
uint8_t mic_dev;
uint8_t gpo_ds;
uint8_t ad_data_ds;
uint8_t dmic_clk_ds;
uint8_t mclk_ds;
};
struct cxd56_aca_smaster_param_s
{
uint8_t mode;
uint8_t mck_fs;
uint8_t pwm_mode;
uint8_t ch_sel;
uint8_t out2dly;
};
struct cxd56_aca_pwoutput_param_s
{
uint8_t out_dev;
uint8_t pwm_out[2];
uint8_t sp_delay;
uint8_t loop_mode;
uint8_t mode;
uint8_t sp_dly_free;
uint8_t sp_spliton;
uint8_t sp_drv;
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Interface functions */
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int cxd56_configure(FAR struct audio_lowerhalf_s *lower,
FAR void *session, FAR const struct audio_caps_s *caps);
static int cxd56_start(FAR struct audio_lowerhalf_s *lower,
FAR void *session);
#ifndef CONFIG_AUDIO_EXCLUDE_STOP
static int cxd56_stop(FAR struct audio_lowerhalf_s *lower,
FAR void *session);
#endif /* CONFIG_AUDIO_EXCLUDE_STOP */
#ifndef CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME
static int cxd56_pause(FAR struct audio_lowerhalf_s *lower,
FAR void *session);
static int cxd56_resume(FAR struct audio_lowerhalf_s *lower,
FAR void *session);
#endif /* CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME */
static int cxd56_reserve(FAR struct audio_lowerhalf_s *lower,
FAR void** session);
static int cxd56_release(FAR struct audio_lowerhalf_s *lower,
FAR void *session);
#else
static int cxd56_configure(FAR struct audio_lowerhalf_s *lower,
FAR const struct audio_caps_s *caps);
static int cxd56_start(FAR struct audio_lowerhalf_s *lower);
#ifndef CONFIG_AUDIO_EXCLUDE_STOP
static int cxd56_stop(FAR struct audio_lowerhalf_s *lower);
#endif /* CONFIG_AUDIO_EXCLUDE_STOP */
#ifndef CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME
static int cxd56_pause(FAR struct audio_lowerhalf_s *lower);
static int cxd56_resume(FAR struct audio_lowerhalf_s *lower);
#endif /* CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME */
static int cxd56_reserve(FAR struct audio_lowerhalf_s *lower);
static int cxd56_release(FAR struct audio_lowerhalf_s *lower);
#endif /* CONFIG_AUDIO_MULTI_SESSION */
static int cxd56_getcaps(FAR struct audio_lowerhalf_s *lower, int type,
FAR struct audio_caps_s *caps);
static int cxd56_shutdown(FAR struct audio_lowerhalf_s *lower);
static int cxd56_enqueuebuffer(FAR struct audio_lowerhalf_s *lower,
FAR struct ap_buffer_s *apb);
static int cxd56_cancelbuffer(FAR struct audio_lowerhalf_s *lower,
FAR struct ap_buffer_s *apb);
static int cxd56_ioctl(FAR struct audio_lowerhalf_s *lower, int cmd,
unsigned long arg);
/* Non-interface functions */
static int cxd56_attach_irq(bool attach);
static void cxd56_enable_irq(bool enable);
static uint32_t cxd56_get_i2s_rate(uint32_t samplerate);
static void cxd56_get_mic_config(uint8_t *count,
uint8_t *dev,
uint8_t *mode);
static void cxd56_init_dma(FAR struct cxd56_dev_s *dev);
static void cxd56_init_i2s1_output(uint8_t bits);
static void cxd56_init_mic_input(uint8_t mic_num, uint8_t bits);
static int cxd56_init_worker(FAR struct audio_lowerhalf_s *lower);
static uint8_t cxd56_get_mic_mode(void);
static int cxd56_power_off(FAR struct cxd56_dev_s *dev);
static int cxd56_power_on(FAR struct cxd56_dev_s *dev);
static int cxd56_power_on_aca(uint32_t samplerate);
static int cxd56_power_on_analog_output(FAR struct cxd56_dev_s *dev);
static void cxd56_audio_power_on_cic(uint8_t mic_in,
uint8_t mic_mode,
uint8_t cic_num,
FAR struct cxd56_audio_mic_gain_s *gain);
static int cxd56_power_on_decim(uint8_t mic_mode, uint16_t samplerate);
static void cxd56_power_on_i2s1(FAR struct cxd56_dev_s *dev);
static int cxd56_power_on_input(FAR struct cxd56_dev_s *dev);
static int cxd56_power_on_micbias(FAR struct cxd56_dev_s *dev);
static int cxd56_start_dma(FAR struct cxd56_dev_s *dev);
static int cxd56_stop_dma(FAR struct cxd56_dev_s *priv);
static void cxd56_set_dma_int_en(bool enabled);
static void cxd56_set_dma_running(cxd56_dmahandle_t handle, bool running);
static void cxd56_set_mic_gains(uint8_t gain,
struct cxd56_aca_pwinput_param_s *param);
static void cxd56_set_mic_out_channel(FAR struct cxd56_dev_s *dev);
static int cxd56_set_volume(enum cxd56_vol_id_e id, int16_t vol);
static void cxd56_swap_buffer_rl(uint32_t addr, uint16_t size);
static void *cxd56_workerthread(pthread_addr_t pvarg);
/****************************************************************************
* Private Data
****************************************************************************/
static struct cxd56_dev_s *g_dev[CXD56_AUDIO_DMA_COUNT] =
{
NULL
};
static uint16_t g_codec_start_count = 0;
static const struct audio_ops_s g_audioops =
{
cxd56_getcaps, /* getcaps */
cxd56_configure, /* configure */
cxd56_shutdown, /* shutdown */
cxd56_start, /* start */
#ifndef CONFIG_AUDIO_EXCLUDE_STOP
cxd56_stop, /* stop */
#endif
#ifndef CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME
cxd56_pause, /* pause */
cxd56_resume, /* resume */
#endif
NULL, /* alloc_buffer */
NULL, /* free_buffer */
cxd56_enqueuebuffer, /* enqueue_buffer */
cxd56_cancelbuffer, /* cancel_buffer */
cxd56_ioctl, /* ioctl */
NULL, /* read */
NULL, /* write */
cxd56_reserve, /* reserve */
cxd56_release /* release */
};
/* AC registers */
const cxd56_aureg_t REG_AC_REVID =
{
REG_BASE + 0x0000, 16, 8
};
const cxd56_aureg_t REG_AC_DEVICEID =
{
REG_BASE + 0x0000, 24, 8
};
const cxd56_aureg_t REG_AC_PDN_AMICEXT =
{
REG_BASE + 0x0100, 4, 1
};
const cxd56_aureg_t REG_AC_PDN_AMIC1 =
{
REG_BASE + 0x0100, 5, 1
};
const cxd56_aureg_t REG_AC_PDN_AMIC2 =
{
REG_BASE + 0x0100, 6, 1
};
const cxd56_aureg_t REG_AC_PDN_DMIC =
{
REG_BASE + 0x0100, 15, 1
};
const cxd56_aureg_t REG_AC_PDN_DSPB =
{
REG_BASE + 0x0100, 16, 1
};
const cxd56_aureg_t REG_AC_PDN_ANC =
{
REG_BASE + 0x0100, 17, 1
};
const cxd56_aureg_t REG_AC_PDN_DNC1 =
{
REG_BASE + 0x0100, 18, 1
};
const cxd56_aureg_t REG_AC_PDN_DNC2 =
{
REG_BASE + 0x0100, 19, 1
};
const cxd56_aureg_t REG_AC_PDN_SMSTR =
{
REG_BASE + 0x0100, 20, 1
};
const cxd56_aureg_t REG_AC_PDN_DSPS2 =
{
REG_BASE + 0x0100, 21, 1
};
const cxd56_aureg_t REG_AC_PDN_DSPS1 =
{
REG_BASE + 0x0100, 22, 1
};
const cxd56_aureg_t REG_AC_PDN_DSPC =
{
REG_BASE + 0x0100, 23, 1
};
const cxd56_aureg_t REG_AC_FS_FS =
{
REG_BASE + 0x0104, 0, 1
};
const cxd56_aureg_t REG_AC_DECIM0_EN =
{
REG_BASE + 0x0104, 16, 1
};
const cxd56_aureg_t REG_AC_DECIM1_EN =
{
REG_BASE + 0x0104, 17, 1
};
const cxd56_aureg_t REG_AC_SDES_EN =
{
REG_BASE + 0x0104, 18, 1
};
const cxd56_aureg_t REG_AC_MCK_AHBMSTR_EN =
{
REG_BASE + 0x0104, 19, 1
};
const cxd56_aureg_t REG_AC_AU_DAT_SEL2 =
{
REG_BASE + 0x0108, 16, 3
};
const cxd56_aureg_t REG_AC_AU_DAT_SEL1 =
{
REG_BASE + 0x0108, 20, 3
};
const cxd56_aureg_t REG_AC_AU_COD_INSEL3 =
{
REG_BASE + 0x0108, 24, 2
};
const cxd56_aureg_t REG_AC_AU_COD_INSEL2 =
{
REG_BASE + 0x0108, 26, 2
};
const cxd56_aureg_t REG_AC_DSR_RATE =
{
REG_BASE + 0x0200, 0, 3
};
const cxd56_aureg_t REG_AC_DIGSFT =
{
REG_BASE + 0x0200, 12, 1
};
const cxd56_aureg_t REG_AC_SRC1 =
{
REG_BASE + 0x0200, 16, 2
};
const cxd56_aureg_t REG_AC_SRC1IN_SEL =
{
REG_BASE + 0x0200, 18, 2
};
const cxd56_aureg_t REG_AC_SRC2IN_SEL =
{
REG_BASE + 0x0200, 22, 2
};
const cxd56_aureg_t REG_AC_DIF1 =
{
REG_BASE + 0x0200, 27, 1
};
const cxd56_aureg_t REG_AC_SD1MASTER =
{
REG_BASE + 0x0200, 29, 1
};
const cxd56_aureg_t REG_AC_SDCK_OUTENX =
{
REG_BASE + 0x0200, 30, 1
};
const cxd56_aureg_t REG_AC_HPF2_MODE =
{
REG_BASE + 0x0204, 0, 2
};
const cxd56_aureg_t REG_AC_CIC2_GAIN_MODE =
{
REG_BASE + 0x0204, 8, 1
};
const cxd56_aureg_t REG_AC_CIC2IN_SEL =
{
REG_BASE + 0x0204, 9, 1
};
const cxd56_aureg_t REG_AC_HPF1_MODE =
{
REG_BASE + 0x0204, 16, 2
};
const cxd56_aureg_t REG_AC_CIC1_GAIN_MODE =
{
REG_BASE + 0x0204, 24, 1
};
const cxd56_aureg_t REG_AC_CIC1IN_SEL =
{
REG_BASE + 0x0204, 25, 1
};
const cxd56_aureg_t REG_AC_ADC_FS =
{
REG_BASE + 0x0204, 28, 2
};
const cxd56_aureg_t REG_AC_HPF4_MODE =
{
REG_BASE + 0x0208, 0, 2
};
const cxd56_aureg_t REG_AC_CIC4IN_SEL =
{
REG_BASE + 0x0208, 9, 1
};
const cxd56_aureg_t REG_AC_HPF3_MODE =
{
REG_BASE + 0x0208, 16, 2
};
const cxd56_aureg_t REG_AC_CIC3IN_SEL =
{
REG_BASE + 0x0208, 25, 1
};
const cxd56_aureg_t REG_AC_CIC1_RGAIN =
{
REG_BASE + 0x020c, 0, 16
};
const cxd56_aureg_t REG_AC_CIC1_LGAIN =
{
REG_BASE + 0x020c, 16, 16
};
const cxd56_aureg_t REG_AC_CIC2_RGAIN =
{
REG_BASE + 0x0210, 0, 16
};
const cxd56_aureg_t REG_AC_CIC2_LGAIN =
{
REG_BASE + 0x0210, 16, 16
};
const cxd56_aureg_t REG_AC_CIC3_RGAIN =
{
REG_BASE + 0x0214, 0, 16
};
const cxd56_aureg_t REG_AC_CIC3_LGAIN =
{
REG_BASE + 0x0214, 16, 16
};
const cxd56_aureg_t REG_AC_CIC4_RGAIN =
{
REG_BASE + 0x0218, 0, 16
};
const cxd56_aureg_t REG_AC_CIC4_LGAIN =
{
REG_BASE + 0x0218, 16, 16
};
const cxd56_aureg_t REG_AC_SPC_EN =
{
REG_BASE + 0x021c, 15, 1
};
const cxd56_aureg_t REG_AC_ALC_EN =
{
REG_BASE + 0x021c, 31, 1
};
const cxd56_aureg_t REG_AC_CS_VOL =
{
REG_BASE + 0x0228, 0, 7
};
const cxd56_aureg_t REG_AC_CS_SIGN =
{
REG_BASE + 0x0228, 7, 1
};
const cxd56_aureg_t REG_AC_SDIN2_VOL =
{
REG_BASE + 0x0228, 16, 8
};
const cxd56_aureg_t REG_AC_SDIN1_VOL =
{
REG_BASE + 0x0228, 24, 8
};
const cxd56_aureg_t REG_AC_SDIN1_EN =
{
REG_BASE + 0x022c, 0, 1
};
const cxd56_aureg_t REG_AC_SDIN2_EN =
{
REG_BASE + 0x022c, 1, 1
};
const cxd56_aureg_t REG_AC_SDOUT1_EN =
{
REG_BASE + 0x022c, 2, 1
};
const cxd56_aureg_t REG_AC_SDOUT2_EN =
{
REG_BASE + 0x022c, 3, 1
};
const cxd56_aureg_t REG_AC_BLF_EN =
{
REG_BASE + 0x022c, 5, 1
};
const cxd56_aureg_t REG_AC_DAC_VOL =
{
REG_BASE + 0x022c, 8, 8
};
const cxd56_aureg_t REG_AC_DNC2_MUTE =
{
REG_BASE + 0x0304, 22, 1
};
const cxd56_aureg_t REG_AC_DNC2_START =
{
REG_BASE + 0x0304, 23, 1
};
const cxd56_aureg_t REG_AC_DNC1_MUTE =
{
REG_BASE + 0x0304, 30, 1
};
const cxd56_aureg_t REG_AC_DNC1_START =
{
REG_BASE + 0x0304, 31, 1
};
const cxd56_aureg_t REG_AC_DCMFS_34 =
{
REG_BASE + 0x0308, 22, 2
};
const cxd56_aureg_t REG_AC_DCMFS =
{
REG_BASE + 0x0308, 30, 2
};
const cxd56_aureg_t REG_AC_NSX2 =
{
REG_BASE + 0x0340, 30, 1
};
const cxd56_aureg_t REG_AC_NSPMUTE =
{
REG_BASE + 0x0340, 31, 1
};
const cxd56_aureg_t REG_AC_NSDD =
{
REG_BASE + 0x0344, 0, 20
};
const cxd56_aureg_t REG_AC_TEST_OUT_SEL0 =
{
REG_BASE + 0x0400, 6, 1
};
const cxd56_aureg_t REG_AC_SER_MODE =
{
REG_BASE + 0x0500, 0, 1
};
const cxd56_aureg_t REG_AC_PDM_OUT_EN =
{
REG_BASE + 0x0500, 16, 1
};
const cxd56_aureg_t REG_AC_FS_CLK_EN =
{
REG_BASE + 0x0500, 24, 1
};
const cxd56_aureg_t REG_AC_SEL_OUT4_R =
{
REG_BASE + 0x0504, 0, 3
};
const cxd56_aureg_t REG_AC_SEL_OUT4_L =
{
REG_BASE + 0x0504, 4, 3
};
const cxd56_aureg_t REG_AC_SEL_OUT3_R =
{
REG_BASE + 0x0504, 8, 3
};
const cxd56_aureg_t REG_AC_SEL_OUT3_L =
{
REG_BASE + 0x0504, 12, 3
};
const cxd56_aureg_t REG_AC_SEL_OUT2_R =
{
REG_BASE + 0x0504, 16, 3
};
const cxd56_aureg_t REG_AC_SEL_OUT2_L =
{
REG_BASE + 0x0504, 20, 3
};
const cxd56_aureg_t REG_AC_SEL_OUT1_R =
{
REG_BASE + 0x0504, 24, 3
};
const cxd56_aureg_t REG_AC_SEL_OUT1_L =
{
REG_BASE + 0x0504, 28, 3
};
const cxd56_aureg_t REG_AC_OUTEN_MIC1L_B =
{
REG_BASE + 0x0580, 0, 1
};
const cxd56_aureg_t REG_AC_OUTEN_MIC1R_B =
{
REG_BASE + 0x0580, 1, 1
};
const cxd56_aureg_t REG_AC_OUTEN_MIC2L_B =
{
REG_BASE + 0x0580, 2, 1
};
const cxd56_aureg_t REG_AC_OUTEN_MIC2R_B =
{
REG_BASE + 0x0580, 3, 1
};
const cxd56_aureg_t REG_AC_OUTEN_MIC1L_A =
{
REG_BASE + 0x0580, 4, 1
};
const cxd56_aureg_t REG_AC_OUTEN_MIC1R_A =
{
REG_BASE + 0x0580, 5, 1
};
const cxd56_aureg_t REG_AC_OUTEN_MIC2L_A =
{
REG_BASE + 0x0580, 6, 1
};
const cxd56_aureg_t REG_AC_OUTEN_MIC2R_A =
{
REG_BASE + 0x0580, 7, 1
};
const cxd56_aureg_t REG_AC_SEL_OUTF =
{
REG_BASE + 0x0580, 16, 2
};
const cxd56_aureg_t REG_AC_SEL_INF =
{
REG_BASE + 0x0580, 20, 1
};
const cxd56_aureg_t REG_AC_SEL_DECIM =
{
REG_BASE + 0x0580, 24, 1
};
const cxd56_aureg_t REG_AC_DEQ_EN =
{
REG_BASE + 0x0600, 31, 1
};
const cxd56_aureg_t REG_AC_LR_SWAP1 =
{
REG_BASE + 0x0678, 0, 1
};
/* BCA registers */
const cxd56_aureg_t REG_MIC_IN_START_ADR =
{
REG_BASE + 0x1000, 0, 30
};
const cxd56_aureg_t REG_MIC_IN_SAMPLE_NO =
{
REG_BASE + 0x1004, 0, 32
};
const cxd56_aureg_t REG_MIC_RTD_TRG =
{
REG_BASE + 0x1008, 0, 3
};
const cxd56_aureg_t REG_MIC_IN_BITWT =
{
REG_BASE + 0x100c, 0, 1
};
const cxd56_aureg_t REG_MIC_CH8_SEL =
{
REG_BASE + 0x1010, 0, 4
};
const cxd56_aureg_t REG_MIC_CH7_SEL =
{
REG_BASE + 0x1010, 4, 4
};
const cxd56_aureg_t REG_MIC_CH6_SEL =
{
REG_BASE + 0x1010, 8, 4
};
const cxd56_aureg_t REG_MIC_CH5_SEL =
{
REG_BASE + 0x1010, 12, 4
};
const cxd56_aureg_t REG_MIC_CH4_SEL =
{
REG_BASE + 0x1010, 16, 4
};
const cxd56_aureg_t REG_MIC_CH3_SEL =
{
REG_BASE + 0x1010, 20, 4
};
const cxd56_aureg_t REG_MIC_CH2_SEL =
{
REG_BASE + 0x1010, 24, 4
};
const cxd56_aureg_t REG_MIC_CH1_SEL =
{
REG_BASE + 0x1010, 28, 4
};
const cxd56_aureg_t REG_MIC_MON_START =
{
REG_BASE + 0x1014, 0, 1
};
const cxd56_aureg_t REG_MIC_MON_ERRSET =
{
REG_BASE + 0x1014, 8, 8
};
const cxd56_aureg_t REG_MIC_MON_MONBUF =
{
REG_BASE + 0x1014, 16, 4
};
const cxd56_aureg_t REG_I2S1_OUT_START_ADR =
{
REG_BASE + 0x10c0, 0, 30
};
const cxd56_aureg_t REG_I2S1_OUT_SAMPLE_NO =
{
REG_BASE + 0x10c4, 0, 32
};
const cxd56_aureg_t REG_I2S1_OUT_RTD_TRG =
{
REG_BASE + 0x10c8, 0, 3
};
const cxd56_aureg_t REG_I2S1_OUT_BITWT =
{
REG_BASE + 0x10cc, 0, 1
};
const cxd56_aureg_t REG_I2S1_OUT_SD1_R_SEL =
{
REG_BASE + 0x10d0, 0, 2
};
const cxd56_aureg_t REG_I2S1_OUT_SD1_L_SEL =
{
REG_BASE + 0x10d0, 4, 2
};
const cxd56_aureg_t REG_I2S1_OUT_MON_START =
{
REG_BASE + 0x10d4, 0, 1
};
const cxd56_aureg_t REG_I2S1_OUT_MON_ERRSET =
{
REG_BASE + 0x10d4, 8, 8
};
const cxd56_aureg_t REG_I2S1_OUT_MON_MONBUF =
{
REG_BASE + 0x10d4, 16, 4
};
const cxd56_aureg_t REG_I2S_ENSEL =
{
REG_BASE + 0x1110, 0, 1
};
const cxd56_aureg_t REG_MIC_INT_CTRL_DONE =
{
REG_BASE + 0x1140, 0, 1
};
const cxd56_aureg_t REG_MIC_INT_CTRL_ERR =
{
REG_BASE + 0x1140, 1, 1
};
const cxd56_aureg_t REG_MIC_INT_CTRL_SMP =
{
REG_BASE + 0x1140, 2, 1
};
const cxd56_aureg_t REG_MIC_INT_CTRL_CMB =
{
REG_BASE + 0x1140, 3, 1
};
const cxd56_aureg_t REG_I2S1_INT_CTRL_DONE =
{
REG_BASE + 0x1144, 0, 1
};
const cxd56_aureg_t REG_I2S1_INT_CTRL_ERR =
{
REG_BASE + 0x1144, 1, 1
};
const cxd56_aureg_t REG_I2S1_INT_CTRL_SMP =
{
REG_BASE + 0x1144, 4, 1
};
const cxd56_aureg_t REG_I2S1_INT_CTRL_CMB =
{
REG_BASE + 0x1144, 5, 1
};
const cxd56_aureg_t REG_MIC_INT_MASK_DONE =
{
REG_BASE + 0x114c, 0, 1
};
const cxd56_aureg_t REG_MIC_INT_MASK_ERR =
{
REG_BASE + 0x114c, 1, 1
};
const cxd56_aureg_t REG_MIC_INT_MASK_CMB =
{
REG_BASE + 0x114c, 3, 1
};
const cxd56_aureg_t REG_I2S1_INT_MASK_DONE =
{
REG_BASE + 0x1150, 0, 1
};
const cxd56_aureg_t REG_I2S1_INT_MASK_ERR =
{
REG_BASE + 0x1150, 1, 1
};
const cxd56_aureg_t REG_I2S1_INT_MASK_SMP =
{
REG_BASE + 0x1150, 4, 1
};
const cxd56_aureg_t REG_I2S1_INT_MASK_CMB =
{
REG_BASE + 0x1150, 5, 1
};
const cxd56_aureg_t REG_INT_M_I2S1_BCL_ERR1 =
{
REG_BASE + 0x1158, 8, 1
};
const cxd56_aureg_t REG_INT_M_I2S1_BCL_ERR2 =
{
REG_BASE + 0x1158, 9, 1
};
const cxd56_aureg_t REG_INT_M_OVF_SMASL =
{
REG_BASE + 0x1158, 17, 1
};
const cxd56_aureg_t REG_INT_M_OVF_SMASR =
{
REG_BASE + 0x1158, 18, 1
};
const cxd56_aureg_t REG_INT_HRESP_ERR =
{
REG_BASE + 0x1160, 0, 1
};
const cxd56_aureg_t REG_CLK_EN_AHBMSTR_MIC =
{
REG_BASE + 0x11f0, 0, 1
};
const cxd56_aureg_t REG_CLK_EN_AHBMSTR_I2S1 =
{
REG_BASE + 0x11f0, 1, 1
};
const cxd56_aureg_t REG_AHB_MASTER_MIC_MASK =
{
REG_BASE + 0x1730, 0, 32
};
const cxd56_aureg_t REG_AHB_MASTER_I2S1_MASK =
{
REG_BASE + 0x1f30, 0, 32
};
/* Interrupt registers */
const cxd56_aureg_t REG_INT_IRQ1 =
{
REG_BASE_INT + 0x30 + 3 * 4, 0, 32
};
const cxd56_aureg_t REG_INT_EN1 =
{
REG_BASE_INT + 0x10 + 3 * 4, 0, 32
};
const cxd56_aureg_t REG_INT_EN1_BITS =
{
REG_BASE_INT + 0x10 + 3 * 4, 6, 4
};
/****************************************************************************
* Private Functions
****************************************************************************/
static uint32_t read_reg_addr(const cxd56_aureg_t *reg)
{
uint32_t mask;
mask = CXD56_GEN_MASK(reg->len, reg->pos);
return (*((volatile uint32_t *)reg->addr) & mask) >> reg->pos;
}
static void write_reg_addr(const cxd56_aureg_t *reg, uint32_t val)
{
uint32_t mask;
uint32_t curr;
mask = CXD56_GEN_MASK(reg->len, reg->pos);
curr = *((volatile uint32_t *)reg->addr) & ~mask;
*((volatile uint32_t *)reg->addr) = curr | ((val << reg->pos) & mask);
}
#define read_reg(reg) (read_reg_addr(&(reg)))
#define read_reg32(reg) (*((volatile uint32_t *)(reg).addr))
#define write_reg(reg, val) (write_reg_addr(&(reg), (val)))
#define write_reg32(reg, val) (*((volatile uint32_t *)(reg).addr) = (val))
static void cxd56_int_clear(cxd56_dmahandle_t handle, uint8_t intbits)
{
if (handle == CXD56_AUDIO_DMA_MIC)
{
if (intbits > CXD56_DMA_INT_ERR)
{
intbits = (intbits & 0x0f) | ((intbits & 0xf0) >> 2);
}
write_reg32(REG_MIC_INT_CTRL_DONE, intbits);
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
write_reg32(REG_I2S1_INT_CTRL_DONE, intbits);
}
}
static void cxd56_int_mask(cxd56_dmahandle_t handle, uint8_t intbits)
{
if (handle == CXD56_AUDIO_DMA_MIC)
{
if (intbits > CXD56_DMA_INT_ERR)
{
intbits = (intbits & 0x0f) | ((intbits & 0xf0) >> 2);
}
intbits |= read_reg32(REG_MIC_INT_MASK_DONE);
write_reg32(REG_MIC_INT_MASK_DONE, intbits);
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
intbits |= read_reg32(REG_I2S1_INT_MASK_DONE);
write_reg32(REG_I2S1_INT_MASK_DONE, intbits);
}
}
static void cxd56_int_unmask(cxd56_dmahandle_t handle, uint8_t intbits)
{
uint32_t curr;
if (handle == CXD56_AUDIO_DMA_MIC)
{
if (intbits > CXD56_DMA_INT_ERR)
{
intbits = (intbits & 0x0f) | ((intbits & 0xf0) >> 2);
}
curr = read_reg32(REG_MIC_INT_MASK_DONE);
write_reg32(REG_MIC_INT_MASK_DONE, curr & ~intbits);
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
curr = read_reg32(REG_I2S1_INT_MASK_DONE);
write_reg32(REG_I2S1_INT_MASK_DONE, curr & ~intbits);
}
}
static void cxd56_int_unmask_ahb(cxd56_dmahandle_t handle)
{
if (handle == CXD56_AUDIO_DMA_MIC)
{
write_reg32(REG_AHB_MASTER_MIC_MASK, 0x00000303);
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
write_reg32(REG_AHB_MASTER_I2S1_MASK, 0x00000202);
}
}
static uint32_t cxd56_int_get_state(cxd56_dmahandle_t handle)
{
if (handle == CXD56_AUDIO_DMA_MIC)
{
return (0x3f & read_reg32(REG_MIC_INT_CTRL_DONE)
& ~(read_reg32(REG_MIC_INT_MASK_DONE)));
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
return (0x3f & read_reg32(REG_I2S1_INT_CTRL_DONE)
& ~(read_reg32(REG_I2S1_INT_MASK_DONE)));
}
return 0;
}
static uint32_t cxd56_int_has_error(cxd56_dmahandle_t handle)
{
if (handle == CXD56_AUDIO_DMA_MIC)
{
return read_reg(REG_MIC_INT_CTRL_ERR);
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
return read_reg(REG_I2S1_INT_CTRL_ERR);
}
return 0;
}
static uint32_t cxd56_int_is_done(cxd56_dmahandle_t handle)
{
if (handle == CXD56_AUDIO_DMA_MIC)
{
return read_reg(REG_MIC_INT_CTRL_DONE);
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
return read_reg(REG_I2S1_INT_CTRL_DONE);
}
return 0;
}
static uint32_t cxd56_int_has_smp(cxd56_dmahandle_t handle)
{
if (handle == CXD56_AUDIO_DMA_MIC)
{
return read_reg(REG_MIC_INT_CTRL_SMP);
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
return read_reg(REG_I2S1_INT_CTRL_SMP);
}
return 0;
}
static uint8_t cxd56_get_mon_buf(cxd56_dmahandle_t handle)
{
if (handle == CXD56_AUDIO_DMA_MIC)
{
return read_reg(REG_MIC_MON_MONBUF);
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
return read_reg(REG_I2S1_OUT_MON_MONBUF);
}
return 0;
}
static uint8_t cxd56_get_mon_err(cxd56_dmahandle_t handle)
{
if (handle == CXD56_AUDIO_DMA_MIC)
{
return read_reg(REG_MIC_MON_ERRSET);
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
return read_reg(REG_I2S1_OUT_MON_ERRSET);
}
return 0;
}
static uint8_t cxd56_dma_is_busy(cxd56_dmahandle_t handle)
{
if (handle == CXD56_AUDIO_DMA_MIC)
{
return read_reg(REG_MIC_RTD_TRG) != CXD56_DMA_CMD_FIFO_NOT_FULL;
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
return read_reg(REG_I2S1_OUT_RTD_TRG) != CXD56_DMA_CMD_FIFO_NOT_FULL;
}
return 0;
}
static void cxd56_reset_channel_sel(cxd56_dmahandle_t handle)
{
uint32_t sel;
if (handle == CXD56_AUDIO_DMA_MIC)
{
sel = read_reg32(REG_MIC_CH8_SEL);
write_reg32(REG_MIC_CH8_SEL, 0xffffffff);
write_reg32(REG_MIC_CH8_SEL, sel);
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
sel = read_reg32(REG_I2S1_OUT_SD1_R_SEL);
write_reg32(REG_I2S1_OUT_SD1_R_SEL, 0xffffffff);
write_reg32(REG_I2S1_OUT_SD1_R_SEL, sel);
}
}
static void cxd56_dma_int_handler(void)
{
uint16_t err_code;
uint32_t int_irq;
uint32_t int_i2s;
uint32_t int_mic;
cxd56_dmahandle_t hdl;
err_code = CXD56_AUDIO_ECODE_DMA_HANDLE_INV;
int_irq = read_reg32(REG_INT_IRQ1);
int_i2s = cxd56_int_get_state(CXD56_AUDIO_DMA_I2S0_DOWN);
int_mic = cxd56_int_get_state(CXD56_AUDIO_DMA_MIC);
if ((int_irq & CXD56_IRQ1_BIT_MIC) && (int_mic != 0))
{
hdl = CXD56_AUDIO_DMA_MIC;
write_reg32(REG_MIC_INT_CTRL_DONE, int_mic);
if (int_mic & (1 << REG_MIC_INT_CTRL_DONE.pos))
{
err_code = CXD56_AUDIO_ECODE_DMA_CMPLT;
}
if (int_mic & (1 << REG_MIC_INT_CTRL_ERR.pos))
{
/* Mask and clear transfer error interrupt */
write_reg(REG_MIC_INT_MASK_ERR, 1);
write_reg(REG_MIC_INT_CTRL_ERR, 1);
err_code = CXD56_AUDIO_ECODE_DMA_TRANS;
}
if (int_mic & (1 << REG_MIC_INT_CTRL_CMB.pos))
{
/* Mask and clear bus error interrupt */
write_reg(REG_MIC_INT_MASK_CMB, 1);
write_reg(REG_MIC_INT_CTRL_CMB, 1);
err_code = CXD56_AUDIO_ECODE_DMA_CMB;
}
}
else if ((int_irq & CXD56_IRQ1_BIT_I2S1) && (int_i2s != 0))
{
hdl = CXD56_AUDIO_DMA_I2S0_DOWN;
write_reg32(REG_I2S1_INT_CTRL_DONE, int_i2s);
if (int_i2s & (1 << REG_I2S1_INT_CTRL_DONE.pos))
{
err_code = CXD56_AUDIO_ECODE_DMA_CMPLT;
}
if (int_i2s & (1 << REG_I2S1_INT_CTRL_ERR.pos))
{
/* Mask and clear transfer error interrupt */
write_reg(REG_I2S1_INT_MASK_ERR, 1);
write_reg(REG_I2S1_INT_CTRL_ERR, 1);
err_code = CXD56_AUDIO_ECODE_DMA_TRANS;
auderr("ERROR: I2S0 transfer failed.\n");
}
if (int_i2s & (1 << REG_I2S1_INT_CTRL_CMB.pos))
{
/* Mask and clear bus error interrupt */
write_reg(REG_I2S1_INT_MASK_CMB, 1);
write_reg(REG_I2S1_INT_CTRL_CMB, 1);
err_code = CXD56_AUDIO_ECODE_DMA_CMB;
auderr("ERROR: I2S0 bus error.\n");
}
}
else
{
audinfo("Unhandled interrupt\n");
return;
}
if (err_code != CXD56_AUDIO_ECODE_DMA_HANDLE_INV)
{
struct audio_msg_s msg;
struct cxd56_dev_s *dev;
irqstate_t flags;
int ret;
dev = g_dev[hdl];
/* Trigger new DMA job */
flags = spin_lock_irqsave();
if (dq_count(&dev->up_runq) > 0)
{
FAR struct ap_buffer_s *apb;
apb = (struct ap_buffer_s *) dq_get(&dev->up_runq);
spin_unlock_irqrestore(flags);
dev->dev.upper(dev->dev.priv, AUDIO_CALLBACK_DEQUEUE, apb, OK);
flags = spin_lock_irqsave();
}
spin_unlock_irqrestore(flags);
if (err_code == CXD56_AUDIO_ECODE_DMA_TRANS)
{
/* Notify end of data */
if (dev->state != CXD56_DEV_STATE_PAUSED)
{
audinfo("DMA_TRANS up_pendq=%d \n",
dq_count(&dev->up_pendq));
msg.msg_id = AUDIO_MSG_STOP;
msg.u.data = 0;
ret = nxmq_send(dev->mq, (FAR const char *)&msg,
sizeof(msg), CONFIG_CXD56_MSG_PRIO);
if (ret != OK)
{
auderr("ERROR: nxmq_send to stop failed (%d)\n", ret);
}
}
}
else if (dev->mq != NULL)
{
/* Request more data */
msg.msg_id = AUDIO_MSG_DATA_REQUEST;
msg.u.data = 0;
ret = nxmq_send(dev->mq, (FAR const char *) &msg,
sizeof(msg), CONFIG_CXD56_MSG_PRIO);
if (ret != OK)
{
auderr("ERROR: nxmq_send to request failed (%d)\n", ret);
}
}
}
}
static int cxd56_attach_irq(bool attach)
{
int ret;
int cur_irq;
const int audio_irqs[4] = {
CXD56_IRQ_AUDIO_0,
CXD56_IRQ_AUDIO_1,
CXD56_IRQ_AUDIO_2,
CXD56_IRQ_AUDIO_3
};
cur_irq = 4;
if (attach)
{
do
{
cur_irq--;
ret = irq_attach(audio_irqs[cur_irq],
(xcpt_t)cxd56_dma_int_handler, NULL);
if (ret != OK)
{
auderr("ERROR: Failed to attach handler to irq %d. (%d)\n",
cur_irq, ret);
return ret;
}
}
while (cur_irq > 0);
}
else
{
do
{
cur_irq--;
ret = irq_detach(audio_irqs[cur_irq]);
if (ret != OK)
{
auderr("ERROR: Failed to detach handler from irq %d. (%d)\n",
cur_irq, ret);
return ret;
}
}
while (cur_irq > 0);
}
return OK;
}
static void cxd56_enable_irq(bool enable)
{
if (enable)
{
up_enable_irq(CXD56_IRQ_AUDIO_0);
up_enable_irq(CXD56_IRQ_AUDIO_1);
up_enable_irq(CXD56_IRQ_AUDIO_2);
}
else
{
up_disable_irq(CXD56_IRQ_AUDIO_0);
up_disable_irq(CXD56_IRQ_AUDIO_1);
up_disable_irq(CXD56_IRQ_AUDIO_2);
}
}
static int cxd56_set_volume(enum cxd56_vol_id_e id, int16_t vol)
{
int ret;
if (vol == CXD56_VOL_MUTE)
{
vol = CXD56_VOL_MUTE_REG;
}
else
{
vol = CXD56_VOL_TO_REG(vol);
}
switch (id)
{
case CXD56_VOL_ID_MIXER_IN1:
write_reg(REG_AC_SDIN1_VOL, vol);
break;
case CXD56_VOL_ID_MIXER_IN2:
write_reg(REG_AC_SDIN2_VOL, vol);
break;
case CXD56_VOL_ID_MIXER_OUT:
write_reg(REG_AC_DAC_VOL, vol);
break;
}
if (vol == CXD56_VOL_MUTE_REG)
{
/* Disable analog out */
ret = fw_as_acacontrol(CXD56_ACA_CTL_SET_OUTPUT_DEVICE,
(uint32_t)CXD56_OUT_DEV_OFF);
if (ret != CXD56_AUDIO_ECODE_OK)
{
auderr("ERROR: Set output device for mute failed (%d)\n", ret);
return -EBUSY;
}
}
else
{
/* Enable analog out */
ret = fw_as_acacontrol(CXD56_ACA_CTL_SET_OUTPUT_DEVICE,
(uint32_t)CXD56_OUT_DEV_SP);
if (ret != CXD56_AUDIO_ECODE_OK)
{
auderr("ERROR: Set output device for volume failed (%d)\n", ret);
return -EBUSY;
}
}
return OK;
}
static void cxd56_init_mic_input(uint8_t mic_num, uint8_t bits)
{
uint8_t i;
cxd56_aureg_t mic_ch_sel[] =
{
REG_MIC_CH1_SEL,
REG_MIC_CH2_SEL,
REG_MIC_CH3_SEL,
REG_MIC_CH4_SEL,
REG_MIC_CH5_SEL,
REG_MIC_CH6_SEL,
REG_MIC_CH7_SEL,
REG_MIC_CH8_SEL
};
if (bits == 16)
{
mic_num = (mic_num > (CXD56_MIC_TRANS_CH_16BIT * 2)) ?
CXD56_MIC_TRANS_CH_16BIT : (mic_num + 1) / 2;
write_reg(REG_MIC_IN_BITWT, 1);
}
else
{
mic_num = (mic_num > CXD56_MIC_TRANS_CH_24BIT) ?
CXD56_MIC_TRANS_CH_24BIT : mic_num;
write_reg(REG_MIC_IN_BITWT, 0);
}
for (i = 0; i < mic_num; i++)
{
write_reg(mic_ch_sel[i], i);
}
for (i = mic_num; i < CXD56_IN_CHANNELS_MAX; i++)
{
write_reg(mic_ch_sel[i], 8);
}
write_reg(REG_CLK_EN_AHBMSTR_MIC, 1);
write_reg(REG_MIC_IN_START_ADR, 0x00000000);
write_reg(REG_MIC_IN_SAMPLE_NO, 0);
}
static void cxd56_init_i2s1_output(uint8_t bits)
{
write_reg(REG_I2S1_OUT_SD1_L_SEL, 1);
write_reg(REG_I2S1_OUT_SD1_R_SEL, 0);
write_reg(REG_I2S1_OUT_BITWT, (bits == 16));
write_reg(REG_CLK_EN_AHBMSTR_I2S1, 1);
write_reg(REG_I2S1_OUT_START_ADR, 0);
write_reg(REG_I2S1_OUT_SAMPLE_NO, 0);
}
static void cxd56_set_dma_int_en(bool enabled)
{
if (enabled)
{
write_reg(REG_INT_EN1_BITS, 0xf);
write_reg(REG_INT_HRESP_ERR, 1);
}
else
{
write_reg32(REG_INT_EN1_BITS, 0x0);
write_reg32(REG_INT_HRESP_ERR, 0);
}
}
static void cxd56_set_dma_running(cxd56_dmahandle_t handle, bool running)
{
if (handle == CXD56_AUDIO_DMA_MIC)
{
write_reg(REG_MIC_RTD_TRG, (running ? 0x01 : 0x04));
}
else if (handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
write_reg(REG_I2S1_OUT_RTD_TRG, (running ? 0x01 : 0x04));
}
}
static void cxd56_init_dma(FAR struct cxd56_dev_s *dev)
{
uint8_t err;
uint8_t ints;
audinfo("cxd56_init_dma: state = %d, hdl = %d.\n",
dev->state,
dev->dma_handle);
dq_clear(&dev->up_pendq);
dq_clear(&dev->up_runq);
ints = CXD56_DMA_INT_DONE | CXD56_DMA_INT_ERR | CXD56_DMA_INT_CMB;
/* Enable DMA */
write_reg(REG_AC_MCK_AHBMSTR_EN, 1);
/* Setup output, bit width etc */
if (dev->dma_handle == CXD56_AUDIO_DMA_MIC)
{
cxd56_set_mic_out_channel(dev);
cxd56_init_mic_input(dev->channels, dev->bitwidth);
}
else
{
cxd56_init_i2s1_output(dev->bitwidth);
}
/* Clear interrupt states */
cxd56_int_clear(dev->dma_handle, ints);
/* Enable interrupts */
cxd56_int_unmask(dev->dma_handle, ints);
cxd56_int_unmask_ahb(dev->dma_handle);
/* Check channel setting. */
err = cxd56_get_mon_err(dev->dma_handle);
if (err == CXD56_DMA_MSTATE_ERR_NO_ENABLE_CH)
{
auderr("ERROR: No enabled channel for %d\n", dev->dma_handle);
}
else if (err == CXD56_DMA_MSTATE_ERR_CH1_4_INVALID)
{
auderr("ERROR: Channel 1-4 invalid for %d\n", dev->dma_handle);
}
else if (err == CXD56_DMA_MSTATE_ERR_CH5_8_INVALID)
{
auderr("ERROR: Channel 5-8 invalid for %d\n", dev->dma_handle);
}
cxd56_set_dma_int_en(true);
}
static uint32_t cxd56_get_i2s_rate(uint32_t samplerate)
{
if (samplerate <= 48000)
{
return 1; /* low */
}
else if (samplerate <= 96000)
{
return 2; /* medium */
}
return 3; /* high */
}
static void cxd56_power_on_i2s1(FAR struct cxd56_dev_s *dev)
{
uint32_t rate;
write_reg(REG_AC_PDN_DSPS1, 0); /* Power on SRC1 */
write_reg(REG_AC_SD1MASTER, CXD56_I2S1_MODE); /* I2S1 mode */
write_reg(REG_AC_DIF1, CXD56_I2S1_FORMAT); /* I2S1 format */
write_reg(REG_AC_LR_SWAP1, CXD56_I2S1_FORMAT);
write_reg(REG_AC_TEST_OUT_SEL0, CXD56_I2S1_BYPASS); /* I2S1 bypass mode */
rate = cxd56_get_i2s_rate(CXD56_I2S1_DATA_RATE);
write_reg(REG_AC_SRC1, rate); /* I2S1 rate */
}
static int cxd56_power_on_aca(uint32_t samplerate)
{
struct cxd56_ser_des_param_s ser_param;
struct cxd56_aca_pwon_param_s pwon_param;
uint8_t mic_mode;
uint8_t mic_sel;
uint8_t i;
if (fw_as_acacontrol(CXD56_ACA_CTL_CHECK_ID, (uint32_t)NULL) != 0)
{
return -ENXIO;
}
if (samplerate > 48000)
{
pwon_param.osc_mode = (CXD56_AUDIO_MCLK == CXD56_XTAL_24_576MHZ ?
CXD56_ACA_OSC_24_576MHZ_HIRES :
CXD56_ACA_OSC_49_152MHZ_HIRES);
}
else
{
pwon_param.osc_mode = (CXD56_AUDIO_MCLK == CXD56_XTAL_24_576MHZ ?
CXD56_ACA_OSC_24_576MHZ :
CXD56_ACA_OSC_49_152MHZ);
}
pwon_param.dmic_clk_ds = CXD56_DMIC_CLK_DS;
pwon_param.ad_data_ds = CXD56_DA_DS;
pwon_param.mic_dev = CXD56_ACA_MIC_AMIC;
pwon_param.mclk_ds = CXD56_MCLKOUT_DS;
pwon_param.gpo_ds = CXD56_GPO_A_DS;
if (fw_as_acacontrol(CXD56_ACA_CTL_POWER_ON_COMMON,
(uint32_t)&pwon_param) != 0)
{
return -EBUSY;
}
/* MIC SETUP */
mic_mode = cxd56_get_mic_mode();
if (CXD56_AUDIO_CFG_MIC_MODE_128FS == mic_mode)
{
ser_param.ser_mode = CXD56_SER_MODE_4CH;
ser_param.ser_fs = CXD56_SER_FS_128;
}
else
{
ser_param.ser_mode = CXD56_SER_MODE_8CH;
ser_param.ser_fs = CXD56_SER_FS_64;
}
for (i = 0; i < CXD56_IN_CHANNELS_MAX; i++)
{
mic_sel = (CXD56_AUDIO_CFG_MIC >> (i * CXD56_MIC_CH_BITNUM)) &
CXD56_MIC_CH_BITMAP;
ser_param.sel_ch.in[i] = (enum cxd56_pulco_ser_sel_ch_id_e)mic_sel;
}
if (fw_as_acacontrol(CXD56_ACA_CTL_SET_SERDES, (uint32_t)&ser_param) != 0)
{
return -EBUSY;
}
return OK;
}
static int cxd56_power_on_analog_output(FAR struct cxd56_dev_s *dev)
{
struct cxd56_aca_smaster_param_s smaster_param;
struct cxd56_aca_pwoutput_param_s pwon_param;
if (dev->samplerate > 48000)
{
smaster_param.mode = CXD56_SMSTR_MODE_FS_32;
smaster_param.mck_fs = CXD56_SMSTR_MCK_FS_1024;
pwon_param.mode = CXD56_SMSTR_MODE_FS_32;
}
else
{
smaster_param.mode = CXD56_SMSTR_MODE_FS_16;
smaster_param.mck_fs = CXD56_SMSTR_MCK_FS_512;
pwon_param.mode = CXD56_SMSTR_MODE_FS_16;
}
smaster_param.ch_sel = CXD56_SMSTR_CHSEL_NORMAL;
smaster_param.out2dly = 0x00;
smaster_param.pwm_mode = CXD56_SMSTR_PWMMD_BOTH;
pwon_param.out_dev = CXD56_ACA_OUT_OFF;
pwon_param.pwm_out[0] = CXD56_ACA_PWMOUT_UNKNOWN;
pwon_param.pwm_out[1] = CXD56_ACA_PWMOUT_UNKNOWN;
pwon_param.sp_delay = CXD56_ACA_SP_DELAY_SEL_UNKNOWN;
pwon_param.loop_mode = CXD56_ACA_SP_LOOP_MODE_UNKNOWN;
pwon_param.sp_dly_free = CXD56_ACA_SP_DLY_FREE_UNKNOWN;
pwon_param.sp_spliton = CXD56_SP_SPLIT_ON;
pwon_param.sp_drv = CXD56_SP_DRIVER;
if (fw_as_acacontrol(CXD56_ACA_CTL_SET_SMASTER,
(uint32_t)&smaster_param) != 0)
{
return -EBUSY;
}
if (fw_as_acacontrol(CXD56_ACA_CTL_POWER_ON_OUTPUT,
(uint32_t)&pwon_param) != 0)
{
return -EBUSY;
}
/* Power on S-Mster. */
write_reg(REG_AC_PDN_SMSTR, 0);
write_reg(REG_AC_NSDD, 0x07fb5);
if (dev->samplerate > 48000 && CXD56_AUDIO_MCLK == CXD56_XTAL_49_152MHZ)
{
write_reg(REG_AC_NSX2, 1);
}
else
{
write_reg(REG_AC_NSX2, 0);
}
/* Set smaster and enable */
write_reg(REG_INT_M_OVF_SMASL, 0);
write_reg(REG_INT_M_OVF_SMASR, 0);
write_reg(REG_AC_NSPMUTE, 0);
cxd56_set_volume(CXD56_AUDIO_VOLID_MIXER_OUT, dev->volume);
return OK;
}
static void cxd56_set_mic_gains(uint8_t gain,
struct cxd56_aca_pwinput_param_s *param)
{
uint8_t i;
uint8_t pga_gain;
uint8_t mic_id = 0;
uint8_t mic_sel = 0;
/* TODO: Replace gain param with array in dev. How to configure? */
for (i = 0; i < CXD56_IN_CHANNELS_MAX; i++)
{
mic_sel = (CXD56_AUDIO_CFG_MIC >> (i * CXD56_MIC_CH_BITNUM)) &
CXD56_MIC_CH_BITMAP;
if ((mic_sel >= 1) && (mic_sel <= 4))
{
mic_id = mic_sel - 1;
param->mic_gain[mic_id] = (gain >= CXD56_MIC_GAIN_MAX) ?
CXD56_MIC_GAIN_MAX :
(gain / 30) * 30;
pga_gain = gain - param->mic_gain[mic_id];
param->pga_gain[mic_id] = (pga_gain >= CXD56_MIC_PGA_GAIN_MAX) ?
CXD56_MIC_PGA_GAIN_MAX : pga_gain;
}
}
}
static void cxd56_get_mic_config(uint8_t *count, uint8_t *dev, uint8_t *mode)
{
uint8_t i;
uint8_t is_dmic;
uint8_t is_amic;
uint8_t mic_sel = 0;
uint8_t mic_count = 0;
*dev = 0;
*mode = 0;
for (i = 0; i < CXD56_IN_CHANNELS_MAX; i++)
{
mic_sel = (CXD56_AUDIO_CFG_MIC >> (i * CXD56_MIC_CH_BITNUM)) &
CXD56_MIC_CH_BITMAP;
if ((mic_sel >= 1) && (mic_sel <= 4))
{
is_amic = true;
mic_count++;
}
else if ((mic_sel >= 5) && (mic_sel <= 12))
{
is_dmic = true;
mic_count++;
}
}
if (is_amic)
{
if (is_dmic)
{
*dev = CXD56_AUDIO_CFG_MIC_DEV_ANADIG;
*mode = CXD56_AUDIO_CFG_MIC_MODE_64FS;
}
else
{
*dev = CXD56_AUDIO_CFG_MIC_DEV_ANALOG;
*mode = CXD56_AUDIO_CFG_MIC_MODE_128FS;
}
}
else
{
if (is_dmic)
{
*dev = CXD56_AUDIO_CFG_MIC_DEV_DIGITAL;
*mode = CXD56_AUDIO_CFG_MIC_MODE_64FS;
}
else
{
*dev = CXD56_AUDIO_CFG_MIC_DEV_NONE;
*mode = CXD56_AUDIO_CFG_MIC_MODE_64FS;
}
}
*count = mic_count;
}
static uint8_t cxd56_get_mic_mode(void)
{
uint8_t count;
uint8_t dev;
uint8_t mode;
cxd56_get_mic_config(&count, &dev, &mode);
return mode;
}
static int cxd56_power_on_micbias(FAR struct cxd56_dev_s *dev)
{
struct timespec start;
if (fw_as_acacontrol(CXD56_ACA_CTL_POWER_ON_MICBIAS, (uint32_t)NULL) != 0)
{
return -EBUSY;
}
/* Set mic boot time */
if (clock_gettime(CLOCK_REALTIME, &start) < 0)
{
dev->mic_boot_start = 0x0ull;
}
else
{
dev->mic_boot_start = (uint64_t)start.tv_sec * 1000 +
(uint64_t)start.tv_nsec / 1000000;
}
return OK;
}
static void cxd56_audio_power_on_cic(uint8_t mic_in,
uint8_t mic_mode,
uint8_t cic_num,
FAR struct cxd56_audio_mic_gain_s *gain)
{
/* Power on CIC. */
if (mic_in == CXD56_AUDIO_CFG_CIC_IN_SEL_CXD)
{
if (cic_num > 3)
{
write_reg(REG_AC_CIC4IN_SEL, 0);
write_reg(REG_AC_HPF4_MODE, 1);
}
if (cic_num > 2)
{
if (read_reg(REG_AC_PDN_AMICEXT) == 1)
{
write_reg(REG_AC_PDN_AMICEXT, 0);
}
write_reg(REG_AC_CIC3IN_SEL, 0);
write_reg(REG_AC_HPF3_MODE, 1);
}
if (cic_num > 1)
{
write_reg(REG_AC_PDN_AMIC2, 0);
write_reg(REG_AC_CIC2IN_SEL, 0);
write_reg(REG_AC_HPF2_MODE, 1);
write_reg(REG_AC_CIC2_GAIN_MODE, 1);
}
if (cic_num > 0)
{
write_reg(REG_AC_PDN_AMIC1, 0);
write_reg(REG_AC_CIC1IN_SEL, 0);
write_reg(REG_AC_HPF1_MODE, 1);
write_reg(REG_AC_CIC1_GAIN_MODE, 1);
}
}
else if(mic_in == CXD56_AUDIO_CFG_CIC_IN_SEL_DMICIF)
{
if (read_reg(REG_AC_PDN_DMIC) == 1)
{
write_reg(REG_AC_PDN_DMIC, 0);
}
if (cic_num > 3)
{
write_reg(REG_AC_CIC4IN_SEL, 1);
write_reg(REG_AC_HPF4_MODE, 1);
}
if (cic_num > 2)
{
write_reg(REG_AC_CIC3IN_SEL, 1);
write_reg(REG_AC_HPF3_MODE, 1);
}
if (cic_num > 1)
{
write_reg(REG_AC_CIC2IN_SEL, 1);
write_reg(REG_AC_HPF2_MODE, 1);
write_reg(REG_AC_CIC2_GAIN_MODE, 1);
}
if (cic_num > 0)
{
write_reg(REG_AC_CIC1IN_SEL, 1);
write_reg(REG_AC_HPF1_MODE, 1);
write_reg(REG_AC_CIC1_GAIN_MODE, 1);
}
}
if (mic_mode == CXD56_AUDIO_CFG_MIC_MODE_128FS)
{
write_reg(REG_AC_ADC_FS, 1);
}
else if (mic_mode == CXD56_AUDIO_CFG_MIC_MODE_64FS)
{
write_reg(REG_AC_ADC_FS, 0);
}
}
static int cxd56_power_on_decim(uint8_t mic_mode, uint16_t samplerate)
{
/* Enable AHBMASTER.
* Because the output of DecimationFilter is input to BusIF.
*/
write_reg(REG_AC_MCK_AHBMSTR_EN, 1);
/* Power on DECIM. */
write_reg(REG_AC_DECIM0_EN, 1);
/* DECIM param */
if ((mic_mode == CXD56_AUDIO_CFG_MIC_MODE_64FS) && (samplerate > 48000))
{
write_reg(REG_AC_SEL_DECIM, 0);
}
else
{
write_reg(REG_AC_SEL_DECIM, 1);
}
if (mic_mode == CXD56_AUDIO_CFG_MIC_MODE_128FS)
{
write_reg(REG_AC_SEL_INF, 1);
write_reg(REG_AC_DCMFS, 2);
write_reg(REG_AC_DCMFS_34, 2);
}
else if (mic_mode == CXD56_AUDIO_CFG_MIC_MODE_64FS)
{
write_reg(REG_AC_SEL_INF, 0);
write_reg(REG_AC_DCMFS, 1);
write_reg(REG_AC_DCMFS_34, 1);
}
else
{
return -EINVAL;
}
if (samplerate <= 48000)
{
write_reg(REG_AC_SEL_OUTF, 0);
}
else
{
write_reg(REG_AC_SEL_OUTF, 2);
}
/* DECIM_SEL */
write_reg(REG_AC_OUTEN_MIC2R_A, ((0x0f >> 3) & 0x01));
write_reg(REG_AC_OUTEN_MIC2L_A, ((0x0f >> 2) & 0x01));
write_reg(REG_AC_OUTEN_MIC1R_A, ((0x0f >> 1) & 0x01));
write_reg(REG_AC_OUTEN_MIC1L_A, ((0x0f >> 0) & 0x01));
write_reg(REG_AC_OUTEN_MIC2R_B, ((0x0f >> 3) & 0x01));
write_reg(REG_AC_OUTEN_MIC2L_B, ((0x0f >> 2) & 0x01));
write_reg(REG_AC_OUTEN_MIC1R_B, ((0x0f >> 1) & 0x01));
write_reg(REG_AC_OUTEN_MIC1L_B, ((0x0f >> 0) & 0x01));
return OK;
}
static void cxd56_set_mic_out_channel(FAR struct cxd56_dev_s *dev)
{
uint8_t i;
uint8_t mic_num;
uint8_t ch_sel[CXD56_IN_CHANNELS_MAX];
mic_num = dev->channels;
if ((dev->bitwidth == 16) &&
(CXD56_DMA_FORMAT == CXD56_DMA_FORMAT_RL))
{
for (i = 0; i < CXD56_IN_CHANNELS_MAX; i++)
{
ch_sel[i] = (i & 1) ? i - 1 : i + 1;
}
}
else
{
for (i = 0; i < CXD56_IN_CHANNELS_MAX; i++)
{
ch_sel[i] = i;
}
}
/* For uneven mic counts, duplicate last channel (e.g. dual mono) */
if ((dev->bitwidth == 16) && ((mic_num & 1) == 1))
{
if (CXD56_DMA_FORMAT == CXD56_DMA_FORMAT_LR)
{
ch_sel[mic_num] = ch_sel[mic_num - 1];
}
else
{
ch_sel[mic_num - 1] = ch_sel[mic_num];
}
}
write_reg(REG_AC_SEL_OUT1_L, ch_sel[0]);
write_reg(REG_AC_SEL_OUT1_R, ch_sel[1]);
write_reg(REG_AC_SEL_OUT2_L, ch_sel[2]);
write_reg(REG_AC_SEL_OUT2_R, ch_sel[3]);
write_reg(REG_AC_SEL_OUT3_L, ch_sel[4]);
write_reg(REG_AC_SEL_OUT3_R, ch_sel[5]);
write_reg(REG_AC_SEL_OUT4_L, ch_sel[6]);
write_reg(REG_AC_SEL_OUT4_R, ch_sel[7]);
}
/****************************************************************************
* Name: cxd56_power_on_input
*
* Description:
* Configure and enable input with selected samplerate and mics.
*
****************************************************************************/
static int cxd56_power_on_input(FAR struct cxd56_dev_s *dev)
{
uint8_t i;
uint8_t cic_num;
uint8_t cic_write_num;
uint8_t mic_dev;
uint8_t mic_mode;
uint8_t mic_num;
uint8_t ret;
uint32_t val;
struct cxd56_audio_mic_gain_s cic_gain;
struct cxd56_aca_pwinput_param_s param;
const cxd56_aureg_t cic_gain_reg[CXD56_IN_CHANNELS_MAX] =
{
REG_AC_CIC1_LGAIN,
REG_AC_CIC1_RGAIN,
REG_AC_CIC2_LGAIN,
REG_AC_CIC2_RGAIN,
REG_AC_CIC3_LGAIN,
REG_AC_CIC3_RGAIN,
REG_AC_CIC4_LGAIN,
REG_AC_CIC4_RGAIN
};
memset((void *)&param, 0, sizeof(param));
cxd56_get_mic_config(&mic_num, &mic_dev, &mic_mode);
param.mic_dev = mic_dev;
if (param.mic_dev == CXD56_AUDIO_CFG_MIC_DEV_ANALOG ||
param.mic_dev == CXD56_AUDIO_CFG_MIC_DEV_ANADIG)
{
cxd56_power_on_micbias(dev);
}
param.mic_bias_sel = CXD56_MIC_BIAS;
/* TODO: Replace hardcoded mic gain with configuration */
cxd56_set_mic_gains(120, &param);
if (fw_as_acacontrol(CXD56_ACA_CTL_POWER_ON_INPUT,
(uint32_t)&param) != 0)
{
return -EBUSY;
}
/* Power on CIC */
cic_num = (mic_num + 1) / CXD56_CIC_MIC_CH_NUM;
for (i = 0; i < CXD56_IN_CHANNELS_MAX; i++)
{
val = (CXD56_AUDIO_CFG_MIC >> (i * CXD56_MIC_CH_BITNUM)) &
CXD56_MIC_CH_BITMAP;
cic_gain.gain[i] = (val > 4) ? param.mic_gain[i] : 0;
}
cic_write_num = (CXD56_IN_CHANNELS_MAX >= (cic_num * 2)) ?
(cic_num * 2) : CXD56_IN_CHANNELS_MAX;
for (i = 0; i < cic_write_num; i++)
{
val = (uint32_t)(pow(10.0f,
((float)cic_gain.gain[i] /
100.0f / 20.0f)) * 0x4000 +
0x4000);
write_reg(cic_gain_reg[i], val);
}
cxd56_audio_power_on_cic(CXD56_AUDIO_CFG_CIC_IN,
mic_mode, cic_num, &cic_gain);
/* Power on decim */
ret = cxd56_power_on_decim(mic_mode, dev->samplerate);
if (ret != OK)
{
auderr("ERROR: Decim power on failed (%d)\n", ret);
}
return ret;
}
static int cxd56_power_on(FAR struct cxd56_dev_s *dev)
{
uint8_t mic_mode;
if (g_codec_start_count == 0)
{
board_audio_i2s_enable();
board_audio_initialize();
/* Power on analog audio */
if (board_aca_power_control(CXD5247_AVDD | CXD5247_DVDD, true) != 0)
{
return -EBUSY;
}
if (!board_aca_power_monitor(CXD5247_AVDD | CXD5247_DVDD))
{
return -EBUSY;
}
cxd56_power_on_aca(dev->samplerate);
cxd56_audio_clock_enable(CXD56_AUD_MCLK_EXT, 0);
/* Power_on_codec */
if (read_reg(REG_AC_REVID) != CXD56_EXP_REVID)
{
auderr("ERROR: Power on REVID mismatch (%x vs. %x)\n",
REG_AC_REVID, CXD56_EXP_REVID);
return -ENXIO;
}
if (read_reg(REG_AC_DEVICEID) != CXD56_EXP_DEVICEID)
{
auderr("ERROR: Power on DEVICEID mismatch (%x vs. %x)\n",
REG_AC_DEVICEID, CXD56_EXP_DEVICEID);
return -ENXIO;
}
/* Power on serializeer */
write_reg(REG_AC_SDES_EN, 1);
/* Set mic mode */
mic_mode = cxd56_get_mic_mode();
if (mic_mode == CXD56_AUDIO_CFG_MIC_MODE_128FS)
{
write_reg(REG_AC_FS_FS, 0);
write_reg(REG_AC_SER_MODE, 1);
write_reg(REG_AC_ADC_FS, 1);
}
else
{
write_reg(REG_AC_FS_FS, 1);
write_reg(REG_AC_SER_MODE, 0);
write_reg(REG_AC_ADC_FS, 0);
}
/* Power on codec */
write_reg(REG_AC_PDN_DSPC, 0);
write_reg(REG_AC_DSR_RATE, 1);
write_reg(REG_AC_DIGSFT, 1);
/* Clear interrupt status of bck_err */
write_reg(REG_INT_M_I2S1_BCL_ERR1, 0);
write_reg(REG_INT_M_I2S1_BCL_ERR2, 0);
cxd56_power_on_i2s1(dev);
/* Enable I2S data input and output of SRC1 */
write_reg(REG_AC_SDIN1_EN, 1);
write_reg(REG_AC_SDOUT1_EN, 1);
/* Enable BCK, LRCK output if master (1). */
write_reg(REG_AC_SDCK_OUTENX, CXD56_I2S1_MODE);
/* Enable serial interface */
write_reg(REG_AC_FS_CLK_EN, 1);
write_reg(REG_AC_PDM_OUT_EN, 1);
/* Initialize data path selection */
write_reg(REG_AC_AU_DAT_SEL1, 4);
write_reg(REG_AC_AU_DAT_SEL2, 4);
write_reg(REG_AC_AU_COD_INSEL2, 2);
write_reg(REG_AC_AU_COD_INSEL3, 3);
write_reg(REG_AC_SRC1IN_SEL, 0);
write_reg(REG_AC_SRC2IN_SEL, 1);
/* Set BCA data rate */
write_reg(REG_I2S_ENSEL, ((dev->samplerate > 48000) ? 1 : 0));
/* Disable DEQ */
write_reg(REG_AC_DEQ_EN, 0);
/* Disable DNC. */
write_reg(REG_AC_DNC1_MUTE, 1);
write_reg(REG_AC_DNC2_MUTE, 1);
write_reg(REG_AC_DNC1_START, 0);
write_reg(REG_AC_DNC2_START, 0);
/* Disable ALC/SPC */
write_reg(REG_AC_ALC_EN, 0);
write_reg(REG_AC_SPC_EN, 0);
/* Disable Clear Stereo */
write_reg(REG_AC_CS_SIGN, 0);
write_reg(REG_AC_CS_VOL, 0x00);
cxd56_attach_irq(true);
cxd56_enable_irq(true);
}
g_codec_start_count++;
return OK;
}
static int cxd56_power_off(FAR struct cxd56_dev_s *dev)
{
/* Disable AHBMASTER. */
write_reg(REG_AC_MCK_AHBMSTR_EN, 0);
/* Disable SRC. */
write_reg(REG_AC_SDIN1_EN, 0);
write_reg(REG_AC_SDIN2_EN, 0);
write_reg(REG_AC_SDOUT1_EN, 0);
write_reg(REG_AC_SDOUT2_EN, 0);
write_reg(REG_AC_SDCK_OUTENX, 1);
write_reg(REG_AC_BLF_EN, 0);
/* Disable SDES. */
write_reg(REG_AC_PDM_OUT_EN, 0);
write_reg(REG_AC_FS_CLK_EN, 0);
write_reg(REG_AC_SDES_EN, 0);
/* Power off SRC. */
write_reg(REG_AC_PDN_DSPS1, 1);
write_reg(REG_AC_PDN_DSPS2, 1);
write_reg(REG_AC_PDN_DSPB, 1);
/* Power off CODEC. */
write_reg(REG_AC_PDN_DSPC, 1);
/* Power off DNC. */
write_reg(REG_AC_PDN_DNC1, 1);
write_reg(REG_AC_PDN_DNC2, 1);
write_reg(REG_AC_PDN_ANC, 1);
/* Disable audio clock */
cxd56_audio_clock_disable();
if (fw_as_acacontrol(CXD56_ACA_CTL_POWER_OFF_COMMON, (uint32_t)NULL) != 0)
{
return -EBUSY;
}
board_aca_power_control(CXD5247_AVDD | CXD5247_DVDD, false);
/* Disable interrupts */
cxd56_attach_irq(false);
cxd56_enable_irq(false);
board_audio_finalize();
return OK;
}
/****************************************************************************
* Name: cxd56_getcaps
*
* Description: Get the audio device capabilities.
*
****************************************************************************/
static int cxd56_getcaps(FAR struct audio_lowerhalf_s *lower, int type,
FAR struct audio_caps_s *caps)
{
DEBUGASSERT(caps && caps->ac_len >= sizeof(struct audio_caps_s));
/* Fill in the caller's structure based on requested info */
caps->ac_format.hw = 0;
caps->ac_controls.w = 0;
switch (caps->ac_type)
{
/* Query for supported types of units */
case AUDIO_TYPE_QUERY:
/* Stereo output */
caps->ac_channels = 2;
switch (caps->ac_subtype)
{
case AUDIO_TYPE_QUERY:
/* The types of audio units we implement */
caps->ac_controls.b[0] = AUDIO_TYPE_OUTPUT |
AUDIO_TYPE_INPUT |
AUDIO_TYPE_FEATURE;
break;
default:
caps->ac_controls.b[0] = AUDIO_SUBFMT_END;
break;
}
break;
/* Output capabilities */
case AUDIO_TYPE_OUTPUT:
caps->ac_channels = CXD56_OUT_CHANNELS_MAX;
switch (caps->ac_subtype)
{
case AUDIO_TYPE_QUERY:
/* Report supported output sample rates */
caps->ac_controls.b[0] = CXD56_SUPP_RATES_L;
caps->ac_controls.b[1] = CXD56_SUPP_RATES_H;
break;
default:
break;
}
break;
/* Output capabilities */
case AUDIO_TYPE_INPUT:
caps->ac_channels = CXD56_IN_CHANNELS_MAX;
switch (caps->ac_subtype)
{
case AUDIO_TYPE_QUERY:
/* Report supported input sample rates */
caps->ac_controls.b[0] = CXD56_SUPP_RATES_L;
caps->ac_controls.b[1] = CXD56_SUPP_RATES_H;
break;
default:
break;
}
break;
/* Feature capabilities */
case AUDIO_TYPE_FEATURE:
/* Report supported feature units */
if (caps->ac_subtype == AUDIO_FU_UNDEF)
{
caps->ac_controls.b[0] = AUDIO_FU_VOLUME | AUDIO_FU_MUTE;
caps->ac_controls.b[1] = AUDIO_FU_INP_GAIN >> 8;
}
break;
/* Others are unsupported */
default:
/* Zero out the fields to indicate no support */
caps->ac_subtype = 0;
caps->ac_channels = 0;
break;
}
/* Return the length of the audio_caps_s struct for validation */
return caps->ac_len;
}
/****************************************************************************
* Name: cxd56_shutdown
*
* Description: Shutdown the chip and puts it in the lowest power
* state possible.
*
****************************************************************************/
static int cxd56_shutdown(FAR struct audio_lowerhalf_s *lower)
{
int ret;
FAR struct cxd56_dev_s *priv = (FAR struct cxd56_dev_s *)lower;
if (priv->state != CXD56_DEV_STATE_OFF)
{
ret = cxd56_power_off(priv);
if (ret != OK)
{
auderr("ERROR: Power off failed (%d)\n", ret);
return ret;
}
g_codec_start_count = 0;
priv->state = CXD56_DEV_STATE_OFF;
}
return OK;
}
/****************************************************************************
* Name: cxd56_configure
*
* Description: Configure the audio device for the specified mode.
*
****************************************************************************/
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int cxd56_configure(FAR struct audio_lowerhalf_s *lower,
FAR void *session, FAR const struct audio_caps_s *caps)
#else
static int cxd56_configure(FAR struct audio_lowerhalf_s *lower,
FAR const struct audio_caps_s *caps)
#endif
{
int ret = 0;
uint8_t poweron = 0;
FAR struct cxd56_dev_s *priv = (FAR struct cxd56_dev_s *)lower;
switch (caps->ac_type)
{
case AUDIO_TYPE_FEATURE:
switch (caps->ac_format.hw)
{
#ifndef CONFIG_AUDIO_EXCLUDE_VOLUME
case AUDIO_FU_VOLUME:
{
uint16_t volume = caps->ac_controls.hw[0];
if (volume >= 0 && volume <= 1000)
{
/* Scale the volume setting to the range {-1020..120} */
priv->volume = CXD56_VOL_NX_TO_CXD56(volume);
cxd56_set_volume(CXD56_AUDIO_VOLID_MIXER_OUT, priv->volume);
cxd56_set_volume(CXD56_AUDIO_VOLID_MIXER_IN1, priv->volume);
cxd56_set_volume(CXD56_AUDIO_VOLID_MIXER_IN2, priv->volume);
}
else
{
return -EDOM;
}
}
break;
#endif /* CONFIG_AUDIO_EXCLUDE_VOLUME */
#ifndef CONFIG_AUDIO_EXCLUDE_MUTE
case AUDIO_FU_MUTE:
{
/* Set mic mute/unmute status */
bool mute = (bool) caps->ac_controls.hw[0];
audinfo(" Mute: %d\n", mute);
if (mute)
{
cxd56_set_volume(CXD56_AUDIO_VOLID_MIXER_OUT,
CXD56_VOL_MUTE);
cxd56_set_volume(CXD56_AUDIO_VOLID_MIXER_IN1,
CXD56_VOL_MUTE);
cxd56_set_volume(CXD56_AUDIO_VOLID_MIXER_IN2,
CXD56_VOL_MUTE);
}
else
{
cxd56_set_volume(CXD56_AUDIO_VOLID_MIXER_OUT, priv->volume);
cxd56_set_volume(CXD56_AUDIO_VOLID_MIXER_IN1, priv->volume);
cxd56_set_volume(CXD56_AUDIO_VOLID_MIXER_IN2, priv->volume);
}
if (CXD56_AUDIO_ECODE_OK != ret)
{
return ret;
}
}
break;
#endif /* CONFIG_AUDIO_EXCLUDE_MUTE */
case AUDIO_FU_INP_GAIN:
{
/* Set the mic gain */
priv->mic_gain = caps->ac_controls.hw[0];
audinfo(" Mic gain: %d\n", priv->mic_gain);
/* TODO: How to set individual mic gains? */
}
break;
default:
auderr("ERROR: Unknown feature unit: %d\n", caps->ac_format.hw);
return -ENOTTY;
}
break;
case AUDIO_TYPE_OUTPUT:
{
if (caps->ac_controls.b[2] != 16 && caps->ac_controls.b[2] != 24)
{
auderr("ERROR: Unsupported bits per sample: %d\n",
caps->ac_controls.b[2]);
return -ERANGE;
}
/* Save the configuration */
priv->dma_handle = CXD56_AUDIO_DMA_I2S0_DOWN;
priv->samplerate = caps->ac_controls.hw[0];
priv->channels = caps->ac_channels;
priv->bitwidth = caps->ac_controls.b[2];
g_dev[priv->dma_handle] = priv;
poweron = 1;
audinfo("Configured output using %d:\n", priv->dma_handle);
audinfo(" Channels: %d\n", priv->channels);
audinfo(" Samplerate: %d\n", priv->samplerate);
audinfo(" Bit width: %d\n", priv->bitwidth);
}
break;
case AUDIO_TYPE_INPUT:
{
/* Save the configuration */
priv->dma_handle = CXD56_AUDIO_DMA_MIC;
priv->samplerate = caps->ac_controls.hw[0];
priv->channels = caps->ac_channels;
priv->bitwidth = caps->ac_controls.b[2];
g_dev[priv->dma_handle] = priv;
poweron = 1;
audinfo("Configured input using %d:\n", priv->dma_handle);
audinfo(" Channels: %d\n", priv->channels);
audinfo(" Samplerate: %d\n", priv->samplerate);
audinfo(" Bit width: %d\n", priv->bitwidth);
}
break;
}
if (poweron)
{
/* Get ready to start receiving buffers */
ret = cxd56_power_on(priv);
if (ret != OK)
{
auderr("ERROR: Power on error (%d)\n", ret);
return ret;
}
cxd56_init_dma(priv);
priv->state = CXD56_DEV_STATE_STOPPED;
}
return OK;
}
/****************************************************************************
* Name: cxd56_start
*
* Description: Starts playback with the current configuration.
*
****************************************************************************/
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int cxd56_start(FAR struct audio_lowerhalf_s *lower,
FAR void *session)
#else
static int cxd56_start(FAR struct audio_lowerhalf_s *lower)
#endif
{
int ret;
FAR struct cxd56_dev_s *priv = (FAR struct cxd56_dev_s *)lower;
/* Set audio path and enable analog input/output */
if (priv->dma_handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
write_reg(REG_AC_AU_DAT_SEL1, CXD56_AUDAT_SEL_BUSIF1);
ret = cxd56_power_on_analog_output(priv);
if (ret != OK)
{
auderr("ERROR: Power on analog output failed (%d)\n", ret);
return ret;
}
}
else if (priv->dma_handle == CXD56_AUDIO_DMA_MIC)
{
#if 0
/* TODO: Check configuration. From audio_manager.cpp:221 */
sel_info.au_dat_sel1 = true;
if (AS_THROUGH_PATH_OUT_MIXER1 == out_path)
sel_info.cod_insel2 = true;
else if (AS_THROUGH_PATH_OUT_MIXER2 == out_path)
sel_info.cod_insel3 = true;
else if (AS_THROUGH_PATH_OUT_I2S1 == out_path)
sel_info.src1in_sel = true;
else
sel_info.src2in_sel = true;
#endif
write_reg(REG_AC_AU_DAT_SEL1, CXD56_AUDAT_SEL_MIC1);
write_reg(REG_AC_AU_DAT_SEL2, CXD56_AUDAT_SEL_MIC1);
ret = cxd56_power_on_input(priv);
if (ret != OK)
{
auderr("ERROR: Power on analog input failed (%d)\n", ret);
return ret;
}
if (priv->mic_boot_start != 0x0ull)
{
struct timespec end;
if (clock_gettime(CLOCK_REALTIME, &end) >= 0)
{
uint64_t time = (uint64_t)end.tv_sec * 1000 +
(uint64_t)end.tv_nsec / 1000000 -
priv->mic_boot_start;
if (time < CXD56_MIC_BOOT_WAIT)
{
nxsig_usleep((CXD56_MIC_BOOT_WAIT - time) * 1000);
}
}
}
}
ret = cxd56_init_worker(lower);
if (ret != OK)
{
auderr("ERROR: Could not feed DMA (%d)\n", ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: cxd56_stop
*
* Description: Stops playback with the current configuration.
*
****************************************************************************/
static int cxd56_stop_dma(FAR struct cxd56_dev_s *priv)
{
int ret;
if (priv->state != CXD56_DEV_STATE_STOPPED)
{
/* Stop DMA */
cxd56_set_dma_running(priv->dma_handle, false);
if (priv->dma_handle == CXD56_AUDIO_DMA_MIC)
{
/* Power off decimator */
write_reg(REG_AC_DECIM0_EN, 0);
/* Power off CIC. */
write_reg(REG_AC_PDN_AMIC1, 1);
write_reg(REG_AC_PDN_AMIC2, 1);
write_reg(REG_AC_PDN_AMICEXT, 1);
write_reg(REG_AC_PDN_DMIC, 1);
/* Disable input */
if (fw_as_acacontrol(CXD56_ACA_CTL_POWER_OFF_INPUT,
(uint32_t)NULL) != 0)
{
return -EBUSY;
}
priv->mic_boot_start = 0x0ull;
}
else if (priv->dma_handle == CXD56_AUDIO_DMA_I2S0_DOWN)
{
/* Turn off amplifier */
ret = board_external_amp_mute_control(true);
if (ret != CXD56_AUDIO_ECODE_OK)
{
auderr("ERROR: Couldn't mute amplifier (%d)\n", ret);
return -EBUSY;
}
/* Mute and disable output */
write_reg(REG_AC_NSPMUTE, 1);
write_reg(REG_AC_PDN_SMSTR, 1);
if (fw_as_acacontrol(CXD56_ACA_CTL_POWER_OFF_OUTPUT,
(uint32_t)NULL) != 0)
{
return -EBUSY;
}
}
}
return OK;
}
#ifndef CONFIG_AUDIO_EXCLUDE_STOP
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int cxd56_stop(FAR struct audio_lowerhalf_s *lower, FAR void *session)
#else
static int cxd56_stop(FAR struct audio_lowerhalf_s *lower)
#endif
{
int ret;
FAR void *value;
struct audio_msg_s msg;
FAR struct cxd56_dev_s *priv = (FAR struct cxd56_dev_s *)lower;
audinfo("cxd56_stop\n");
msg.msg_id = AUDIO_MSG_STOP;
msg.u.data = 0;
ret = nxmq_send(priv->mq, (FAR const char *)&msg,
sizeof(msg), CONFIG_CXD56_MSG_PRIO);
if (ret != OK)
{
auderr("ERROR: nxmq_send stop message failed (%d)\n", ret);
return ret;
}
/* Join the worker thread */
pthread_join(priv->threadid, &value);
priv->threadid = 0;
return OK;
}
#endif /* CONFIG_AUDIO_EXCLUDE_STOP */
/****************************************************************************
* Name: cxd56_pause
*
* Description: Pauses the playback.
*
****************************************************************************/
#ifndef CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int cxd56_pause(FAR struct audio_lowerhalf_s *lower,
FAR void *session)
#else
static int cxd56_pause(FAR struct audio_lowerhalf_s *lower)
#endif
{
int ret;
FAR struct cxd56_dev_s *dev = (FAR struct cxd56_dev_s *)lower;
if (dev->state == CXD56_DEV_STATE_STARTED)
{
dev->state = CXD56_DEV_STATE_PAUSED;
ret = cxd56_stop_dma(dev);
if (ret != OK)
{
auderr("ERROR: Could not stop DMA transfer (%d)\n", ret);
return ret;
}
}
return OK;
}
/****************************************************************************
* Name: cxd56_resume
*
* Description: Resumes the playback.
*
****************************************************************************/
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int cxd56_resume(FAR struct audio_lowerhalf_s *lower,
FAR void *session)
#else
static int cxd56_resume(FAR struct audio_lowerhalf_s *lower)
#endif
{
int ret;
FAR struct cxd56_dev_s *dev = (FAR struct cxd56_dev_s *)lower;
if (dev->state == CXD56_DEV_STATE_PAUSED ||
dev->state == CXD56_DEV_STATE_BUFFERING)
{
if (dev->state == CXD56_DEV_STATE_PAUSED)
{
dev->state = CXD56_DEV_STATE_STARTED;
cxd56_power_on_analog_output(dev);
board_external_amp_mute_control(false);
}
else
{
/* NOTE: only power on the analog output
* when resumed from buffering
*/
cxd56_power_on_analog_output(dev);
}
audinfo("START DMA up_pendq=%d \n", dq_count(&dev->up_pendq));
ret = cxd56_start_dma(dev);
if (ret != OK)
{
auderr("ERROR: Could not resume DMA transfer (%d)\n", ret);
return ret;
}
}
return OK;
}
#endif /* CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME */
/****************************************************************************
* Name: cxd56_release
*
* Description: Releases the session.
*
****************************************************************************/
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int cxd56_release(FAR struct audio_lowerhalf_s *lower,
FAR void *session)
#else
static int cxd56_release(FAR struct audio_lowerhalf_s *lower)
#endif
{
return OK;
}
/****************************************************************************
* Name: cxd56_reserve
*
* Description: Reserves a session.
*
****************************************************************************/
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int cxd56_reserve(FAR struct audio_lowerhalf_s *lower,
FAR void **session)
#else
static int cxd56_reserve(FAR struct audio_lowerhalf_s *lower)
#endif
{
return OK;
}
static void cxd56_swap_buffer_rl(uint32_t addr, uint16_t size)
{
uint32_t i = 0;
uint16_t tmp_buffer;
uint16_t *p_lch = (uint16_t *)addr;
uint16_t *p_rch = p_lch + 1;
while (i++ < size / 4)
{
tmp_buffer = *p_lch;
*p_lch = *p_rch;
*p_rch = tmp_buffer;
p_lch += 2;
p_rch += 2;
}
}
static int cxd56_start_dma(FAR struct cxd56_dev_s *dev)
{
FAR struct ap_buffer_s *apb;
irqstate_t flags;
int retry;
int timeout;
uint32_t addr;
uint32_t size;
int ret = OK;
flags = spin_lock_irqsave();
if (dq_count(&dev->up_pendq) == 0)
{
/* Underrun occurred, stop DMA and change state for buffering */
audwarn("Underrun \n");
spin_unlock_irqrestore(flags);
ret = cxd56_stop_dma(dev);
flags = spin_lock_irqsave();
audwarn("STOP DMA due to underrun \n");
if (ret != CXD56_AUDIO_ECODE_OK)
{
auderr("ERROR: Could not stop DMA transfer (%d)\n", ret);
dev->running = false;
}
dev->state = CXD56_DEV_STATE_BUFFERING;
}
else
{
/* Fill up with as many DMA requests as we can */
while (dq_count(&dev->up_pendq) > 0)
{
if (cxd56_dma_is_busy(dev->dma_handle))
{
/* DMA busy, will retry next time */
ret = OK;
goto exit;
}
apb = (struct ap_buffer_s *) dq_peek(&dev->up_pendq);
addr = ((uint32_t)apb->samp) & CXD56_DMA_START_ADDR_MASK;
size = (apb->nbytes / (dev->bitwidth / 8) / dev->channels) - 1;
if (dev->dma_handle == CXD56_AUDIO_DMA_MIC)
{
write_reg(REG_MIC_IN_START_ADR, addr);
write_reg(REG_MIC_IN_SAMPLE_NO, size);
}
else
{
if (dev->bitwidth == 16 &&
CXD56_DMA_FORMAT == CXD56_DMA_FORMAT_RL)
{
cxd56_swap_buffer_rl((uint32_t)apb->samp, apb->nbytes);
}
write_reg(REG_I2S1_OUT_START_ADR, addr);
write_reg(REG_I2S1_OUT_SAMPLE_NO, size);
}
/* Start DMA, use workaround with first buffer */
if (dev->state != CXD56_DEV_STATE_STARTED)
{
/* Turn on amplifier */
spin_unlock_irqrestore(flags);
board_external_amp_mute_control(false);
flags = spin_lock_irqsave();
/* Mask interrupts */
cxd56_int_mask(dev->dma_handle, CXD56_DMA_INT_ERR);
cxd56_int_mask(dev->dma_handle, CXD56_DMA_INT_DONE);
/* Sync workaround loop */
for (retry = 0; retry < CXD56_DMA_START_RETRY_CNT; retry++)
{
/* Clear interrupt status */
cxd56_int_clear(dev->dma_handle, CXD56_DMA_INT_ERR);
cxd56_int_clear(dev->dma_handle, CXD56_DMA_INT_SMP);
for (timeout = 0; timeout < CXD56_DMA_TIMEOUT; timeout++)
{
if (cxd56_int_has_smp(dev->dma_handle))
{
break;
}
}
if (timeout == CXD56_DMA_TIMEOUT)
{
ret = -ETIME;
goto exit;
}
/* Reset channel select */
cxd56_reset_channel_sel(dev->dma_handle);
/* Start DMA */
cxd56_set_dma_running(dev->dma_handle, true);
/* Wait for 1sample tramsfer */
if (dev->samplerate > 48000)
{
up_udelay(CXD56_DMA_SMP_WAIT_HIRES);
}
else
{
up_udelay(CXD56_DMA_SMP_WAIT_NORMALT);
}
/* Check if an error interrupt has occurred */
if (cxd56_int_has_error(dev->dma_handle))
{
cxd56_set_dma_running(dev->dma_handle, false);
cxd56_int_clear(dev->dma_handle, CXD56_DMA_INT_ERR);
for (timeout = 0;
timeout < CXD56_DMA_TIMEOUT;
timeout++)
{
if (CXD56_DMA_MSTATE_BUF_EMPTY ==
cxd56_get_mon_buf(dev->dma_handle))
{
if (cxd56_int_is_done(dev->dma_handle))
{
cxd56_int_clear(dev->dma_handle,
CXD56_DMA_INT_DONE);
break;
}
}
}
}
else
{
break;
}
}
if (retry == CXD56_DMA_START_RETRY_CNT)
{
audinfo("Workaround retries maxed out\n");
}
cxd56_int_unmask(dev->dma_handle, CXD56_DMA_INT_DONE);
cxd56_int_clear(dev->dma_handle, CXD56_DMA_INT_ERR);
cxd56_int_unmask(dev->dma_handle, CXD56_DMA_INT_ERR);
}
else
{
/* start DMA */
cxd56_set_dma_running(dev->dma_handle, true);
}
dq_get(&dev->up_pendq);
dq_put(&dev->up_runq, &apb->dq_entry);
dev->state = CXD56_DEV_STATE_STARTED;
if ((apb->flags & AUDIO_APB_FINAL) != 0)
{
/* If the apb is final, send stop message */
audinfo("Final apb \n");
struct audio_msg_s msg;
msg.msg_id = AUDIO_MSG_STOP;
msg.u.data = 0;
spin_unlock_irqrestore(flags);
ret = nxmq_send(dev->mq, (FAR const char *)&msg,
sizeof(msg), CONFIG_CXD56_MSG_PRIO);
flags = spin_lock_irqsave();
if (ret != OK)
{
auderr("ERROR: nxmq_send for stop failed (%d)\n", ret);
goto exit;
}
}
}
}
exit:
spin_unlock_irqrestore(flags);
return ret;
}
/****************************************************************************
* Name: cxd56_enqueuebuffer
*
* Description: Enqueue an audio buffer for playback.
*
****************************************************************************/
static int cxd56_enqueuebuffer(FAR struct audio_lowerhalf_s *lower,
FAR struct ap_buffer_s *apb)
{
FAR struct cxd56_dev_s *priv = (FAR struct cxd56_dev_s *)lower;
struct audio_msg_s msg;
irqstate_t flags;
flags = spin_lock_irqsave();
apb->dq_entry.flink = NULL;
dq_put(&priv->up_pendq, &apb->dq_entry);
spin_unlock_irqrestore(flags);
if (priv->mq != NULL)
{
int ret;
msg.msg_id = AUDIO_MSG_ENQUEUE;
msg.u.data = 0;
ret = nxmq_send(priv->mq, (FAR const char *) &msg,
sizeof(msg), CONFIG_CXD56_MSG_PRIO);
if (ret != OK)
{
auderr("ERROR: nxmq_send to enqueue failed (%d)\n", ret);
return ret;
}
}
return OK;
}
/****************************************************************************
* Name: cxd56_cancelbuffer
*
* Description: Called when an enqueued buffer is being cancelled.
*
****************************************************************************/
static int cxd56_cancelbuffer(FAR struct audio_lowerhalf_s *lower,
FAR struct ap_buffer_s *apb)
{
return OK;
}
/****************************************************************************
* Name: cxd56_ioctl
*
* Description: Perform a device ioctl
*
****************************************************************************/
static int cxd56_ioctl(FAR struct audio_lowerhalf_s *lower, int cmd,
unsigned long arg)
{
int ret = OK;
#ifdef CONFIG_AUDIO_DRIVER_SPECIFIC_BUFFERS
FAR struct ap_buffer_info_s *bufinfo;
#endif
/* Handle ioctl commands from the upper-half driver */
switch (cmd)
{
/* Return our preferred buffer size and count */
#ifdef CONFIG_AUDIO_DRIVER_SPECIFIC_BUFFERS
case AUDIOIOC_GETBUFFERINFO:
{
audinfo("AUDIOIOC_GETBUFFERINFO:\n");
bufinfo = (FAR struct ap_buffer_info_s *) arg;
bufinfo->buffer_size = CONFIG_CXD56_AUDIO_BUFFER_SIZE;
bufinfo->nbuffers = CONFIG_CXD56_AUDIO_NUM_BUFFERS;
}
break;
#endif
default:
ret = -ENOTTY;
audinfo("Unhandled ioctl: %d\n", cmd);
break;
}
return ret;
}
/****************************************************************************
* Name: cxd56_workerthread
*
* This is the thread that feeds data to the chip and keeps the audio
* stream going.
*
****************************************************************************/
static void *cxd56_workerthread(pthread_addr_t pvarg)
{
FAR struct cxd56_dev_s *priv = (struct cxd56_dev_s *)pvarg;
struct audio_msg_s msg;
unsigned int prio;
int size;
int ret;
audinfo("Workerthread started.\n");
#ifndef CONFIG_AUDIO_EXCLUDE_STOP
priv->terminating = false;
#endif
/* Mark ourself as running */
priv->running = true;
/* Initial buffering */
ret = cxd56_start_dma(priv);
if (ret != OK)
{
auderr("ERROR: Could not start DMA transfer (%d)\n", ret);
priv->running = false;
}
while (priv->running)
{
size = nxmq_receive(priv->mq, (FAR char *)&msg, sizeof(msg), &prio);
/* Handle the case when we return with no message */
if (size == 0)
{
priv->running = false;
break;
}
/* Process the message */
switch (msg.msg_id)
{
case AUDIO_MSG_STOP:
ret = cxd56_stop_dma(priv);
if (ret != CXD56_AUDIO_ECODE_OK)
{
auderr("ERROR: Could not stop DMA transfer (%d)\n", ret);
priv->running = false;
}
priv->state = CXD56_DEV_STATE_STOPPED;
priv->running = false;
audinfo("Workerthread stopped.\n");
break;
case AUDIO_MSG_DATA_REQUEST:
if (priv->state == CXD56_DEV_STATE_STARTED)
{
cxd56_start_dma(priv);
}
break;
case AUDIO_MSG_ENQUEUE:
if (priv->state == CXD56_DEV_STATE_BUFFERING)
{
audwarn("Buffering up_pendq=%d \n",
dq_count(&priv->up_pendq));
FAR struct ap_buffer_s *apb;
apb = (struct ap_buffer_s *)(&priv->up_pendq)->tail;
bool final = (apb != NULL) &&
((apb->flags & AUDIO_APB_FINAL) != 0);
/* If up_pendq exceeds the threshold or up_pendq
* contains the final buffer, then start dma.
*/
if (CONFIG_CXD56_AUDIO_NUM_BUFFERS <=
dq_count(&priv->up_pendq) || final)
{
cxd56_resume((FAR struct audio_lowerhalf_s *)priv);
}
}
break;
default:
break;
}
}
mq_close(priv->mq);
mq_unlink(priv->mqname);
priv->mq = NULL;
/* Send AUDIO_MSG_COMPLETE to the client */
#ifdef CONFIG_AUDIO_MULTI_SESSION
priv->dev.upper(priv->dev.priv, AUDIO_CALLBACK_COMPLETE, NULL, OK, NULL);
#else
priv->dev.upper(priv->dev.priv, AUDIO_CALLBACK_COMPLETE, NULL, OK);
#endif
return NULL;
}
/* Setup worker thread and message queue */
static int cxd56_init_worker(FAR struct audio_lowerhalf_s *dev)
{
FAR struct cxd56_dev_s *priv = (FAR struct cxd56_dev_s *)dev;
struct sched_param sparam;
struct mq_attr m_attr;
pthread_attr_t t_attr;
void *value;
int ret;
snprintf(priv->mqname, sizeof(priv->mqname), "/tmp/%X", priv);
m_attr.mq_maxmsg = 16;
m_attr.mq_msgsize = sizeof(struct audio_msg_s);
m_attr.mq_curmsgs = 0;
m_attr.mq_flags = 0;
priv->mq = mq_open(priv->mqname, O_RDWR | O_CREAT, 0644, &m_attr);
if (priv->mq == NULL)
{
auderr("ERROR: Could not allocate message queue.\n");
return -ENOMEM;
}
/* Join any old worker thread we had created to prevent a memory leak */
if (priv->threadid != 0)
{
pthread_join(priv->threadid, &value);
}
pthread_attr_init(&t_attr);
sparam.sched_priority = sched_get_priority_max(SCHED_FIFO) - 3;
(void)pthread_attr_setschedparam(&t_attr, &sparam);
(void)pthread_attr_setstacksize(&t_attr,
CONFIG_CXD56_AUDIO_WORKER_STACKSIZE);
ret = pthread_create(&priv->threadid, &t_attr, cxd56_workerthread,
(pthread_addr_t)priv);
if (ret != OK)
{
auderr("ERROR: pthread_create failed (%d)\n", ret);
return ret;
}
pthread_setname_np(priv->threadid, "cxd56");
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: cxd56_initialize
*
* Description:
* Initialize audio on the CXD56 device
*
* Input Parameters:
*
****************************************************************************/
struct audio_lowerhalf_s *cxd56_initialize(
FAR const struct cxd56_lower_s *lower)
{
FAR struct cxd56_dev_s *priv;
audinfo("cxd56_initialize\n");
priv = (FAR struct cxd56_dev_s *)kmm_zalloc(sizeof(struct cxd56_dev_s));
if (priv)
{
priv->dev.ops = &g_audioops;
priv->lower = lower;
priv->state = CXD56_DEV_STATE_OFF;
nxsem_init(&priv->pendsem, 0, 1);
dq_init(&priv->up_pendq);
dq_init(&priv->up_runq);
}
return &priv->dev;
}