nuttx/arch/arm/src/stm32/stm32_adc.c
Gregory Nutt 037c9ea0a4 arch/arm: Rename all up_*.h files to arm_*.h
Summary

The naming standard at https://cwiki.apache.org/confluence/display/NUTTX/Naming+FAQ requires that all MCU-private files begin with the name of the architecture, not up_.

This PR addresses only these name changes for the up_*.h files.  There are only three, but almost 1680 files that include them:

    up_arch.h
    up_internal.h
    up_vfork.h

The only change to the files is from including up_arch.h to arm_arch.h (for example).

The entire job required to be compatible with that Naming Convention will also require changing the naming of the up_() functions that are used only within arch/arm and board/arm.

Impact

There should be not impact of this change (other that one step toward more consistent naming).

Testing

stm32f4discovery:netnsh
2020-05-01 03:43:44 +01:00

4729 lines
128 KiB
C

/****************************************************************************
* arch/arm/src/stm32/stm32_adc.c
*
* Copyright (C) 2018 Gregory Nutt. All rights reserved.
* Copyright (C) 2015 Omni Hoverboards Inc. All rights reserved.
* Authors: Gregory Nutt <gnutt@nuttx.org>
* Diego Sanchez <dsanchez@nx-engineering.com>
* Paul Alexander Patience <paul-a.patience@polymtl.ca>
* Mateusz Szafoni <raiden00@railab.me>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdio.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <debug.h>
#include <unistd.h>
#include <arch/board/board.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/analog/adc.h>
#include <nuttx/analog/ioctl.h>
#include <nuttx/semaphore.h>
#include "arm_internal.h"
#include "arm_arch.h"
#include "chip.h"
#include "stm32.h"
#include "stm32_dma.h"
#include "stm32_adc.h"
/* The STM32 ADC lower-half driver functionality overview:
* - one lower-half driver for all STM32 ADC IP cores,
* - general lower-half logic for the Nuttx upper-half ADC driver,
* - lower-half ADC driver can be used not only with the upper-half ADC
* driver, but also in the lower-half logic for special-case custom
* drivers (eg. power-control, custom sensors),
* - ADC can be used in time-critical operations (eg. control loop for
* converters or motor drivers) therefore it is necessary to support the
* high performance, zero latency ADC interrupts,
* - ADC triggering from different sources (EXTSEL and JEXTSEL),
* - regular sequence conversion (supported in upper-half ADC driver)
* - injected sequence conversion (not supported in upper-half ADC driver)
*/
/* STM32 ADC "lower-half" support must be enabled */
#ifdef CONFIG_STM32_ADC
/* Some ADC peripheral must be enabled */
#if defined(CONFIG_STM32_ADC1) || defined(CONFIG_STM32_ADC2) || \
defined(CONFIG_STM32_ADC3) || defined(CONFIG_STM32_ADC4)
/* This implementation is for the STM32 ADC IP version 1 and 2 */
#if !defined(HAVE_IP_ADC_V1) && !defined(HAVE_IP_ADC_V2)
# error "STM32 ADC IP version not specified"
#endif
/* At this moment only support for the STM32 ADC IPv2 looks fully functional:
* - noDMA
* - DMA
* - TIM trg
* - TIM trg + DMA
*
* Support for the STM32 ADC IPv1 works fine only for:
* - noDMA (but only with 1 sample)
* - TIM trg
* - TIM trg + DMA
*
* (tested with ADC example app from Nuttx apps repo).
*/
#ifdef HAVE_IP_ADC_V1
# if defined(ADC_HAVE_DMA) && !defined(ADC_HAVE_TIMER)
# warning "ADC DMA mode without hardware trigger may not work properly!"
# elif !defined(ADC_HAVE_DMA) && !defined(ADC_HAVE_TIMER)
# warning "ADC without hardware trigger and without DMA may not work properly!"
# endif
#endif
/* At the moment there is no proper implementation for timers external
* trigger in STM32L15XX may be added later
*/
#if defined(ADC_HAVE_TIMER) && defined(CONFIG_STM32_STM32L15XX)
# warning "There is no proper implementation for TIMER TRIGGERS at the moment"
#endif
/* If ADC use HSI as clock-source and HSI is not used for PLL and system
* clock, then we can control it directly from ADC driver.
*/
#if defined(HAVE_ADC_CLOCK_HSI) && \
(STM32_CFGR_PLLSRC != 0 || STM32_SYSCLK_SW != RCC_CFGR_SW_HSI)
# define HAVE_HSI_CONTROL
#endif
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* RCC reset ****************************************************************/
#if defined(HAVE_IP_ADC_V1)
# ifdef HAVE_BASIC_ADC
# define STM32_RCC_RSTR STM32_RCC_APB2RSTR
# define RCC_RSTR_ADC1RST RCC_APB2RSTR_ADC1RST
# define RCC_RSTR_ADC2RST RCC_APB2RSTR_ADC2RST
# define RCC_RSTR_ADC3RST RCC_APB2RSTR_ADC3RST
# else
# define STM32_RCC_RSTR STM32_RCC_APB2RSTR
# define RCC_RSTR_ADC123RST RCC_APB2RSTR_ADCRST
# endif
#elif defined(HAVE_IP_ADC_V2)
# define STM32_RCC_RSTR STM32_RCC_AHBRSTR
# define RCC_RSTR_ADC12RST RCC_AHBRSTR_ADC12RST
# define RCC_RSTR_ADC34RST RCC_AHBRSTR_ADC34RST
#endif
/* ADC Channels/DMA *********************************************************/
/* The maximum number of channels that can be sampled. If DMA support is
* not enabled, then only a single channel can be sampled. Otherwise,
* data overruns would occur.
*/
#define ADC_MAX_CHANNELS_DMA 16
#define ADC_MAX_CHANNELS_NODMA 1
#ifdef ADC_HAVE_DMA
# define ADC_MAX_SAMPLES ADC_MAX_CHANNELS_DMA
#else
# if defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F33XX)
# define ADC_MAX_SAMPLES ADC_MAX_CHANNELS_DMA /* Works without DMA should sampling frequency be reduced */
# elif defined(CONFIG_STM32_STM32L15XX)
# define ADC_MAX_SAMPLES ADC_MAX_CHANNELS_DMA /* Works without DMA as IO_START_CONV can switch channels on the fly */
# else
# define ADC_MAX_SAMPLES ADC_MAX_CHANNELS_NODMA
# endif
#endif
/* DMA values differs according to STM32 DMA IP core version */
#if defined(HAVE_IP_DMA_V2)
# define ADC_DMA_CONTROL_WORD (DMA_SCR_MSIZE_16BITS | \
DMA_SCR_PSIZE_16BITS | \
DMA_SCR_MINC | \
DMA_SCR_CIRC | \
DMA_SCR_DIR_P2M)
#elif defined(HAVE_IP_DMA_V1)
# define ADC_DMA_CONTROL_WORD (DMA_CCR_MSIZE_16BITS | \
DMA_CCR_PSIZE_16BITS | \
DMA_CCR_MINC | \
DMA_CCR_CIRC)
#endif
/* Sample time default configuration
*
* REVISIT: simplify this, use adc_sampletime_write() function.
* REVISIT: default SMPR configurable from Kconfig
*/
#if defined(CONFIG_STM32_STM32F10XX)
# define ADC_SMPR_DEFAULT ADC_SMPR_55p5
# define ADC_SMPR1_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR1_SMP10_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP11_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP12_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP13_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP14_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP15_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP16_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP17_SHIFT))
# define ADC_SMPR2_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR2_SMP0_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP1_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP2_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP3_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP4_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP5_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP6_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP7_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP8_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP9_SHIFT))
#elif defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F33XX)
# if defined(ADC_HAVE_DMA) || (ADC_MAX_SAMPLES == 1)
# define ADC_SMPR_DEFAULT ADC_SMPR_61p5
# else /* Slow down sampling frequency */
# define ADC_SMPR_DEFAULT ADC_SMPR_601p5
# endif
# define ADC_SMPR1_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR1_SMP1_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP2_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP3_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP4_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP5_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP6_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP7_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP8_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP9_SHIFT))
# define ADC_SMPR2_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR2_SMP10_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP11_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP12_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP13_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP14_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP15_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP16_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP17_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP18_SHIFT))
#elif defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F37XX) || \
defined(CONFIG_STM32_STM32F4XXX)
# if defined(CONFIG_STM32_STM32F37XX)
# define ADC_SMPR_DEFAULT ADC_SMPR_239p5 /* TODO choose 1p5? */
# else
# define ADC_SMPR_DEFAULT ADC_SMPR_112
# endif
# define ADC_SMPR1_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR1_SMP10_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP11_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP12_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP13_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP14_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP15_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP16_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP17_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP18_SHIFT))
# define ADC_SMPR2_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR2_SMP0_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP1_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP2_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP3_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP4_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP5_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP6_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP7_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP8_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP9_SHIFT))
#elif defined(CONFIG_STM32_STM32L15XX)
# define ADC_SMPR_DEFAULT ADC_SMPR_384
# define ADC_SMPR1_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR1_SMP20_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP21_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP22_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP23_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP24_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP25_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP26_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP27_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP28_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP29_SHIFT))
# define ADC_SMPR2_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR2_SMP10_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP11_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP12_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP13_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP14_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP15_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP16_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP17_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP18_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP19_SHIFT))
# define ADC_SMPR3_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR3_SMP0_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR3_SMP1_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR3_SMP2_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR3_SMP3_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR3_SMP4_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR3_SMP5_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR3_SMP6_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR3_SMP7_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR3_SMP8_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR3_SMP9_SHIFT))
# define ADC_SMPR0_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR0_SMP30_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR0_SMP31_SHIFT))
#endif
/* Number of channels per ADC:
* - F0, L0 - 19, but single SMP for all channels
* - F1 - 18
* - F2,F3,F4,F7,L4,L4+ - 19
* - H7 - 20
* - L1 - 32
*
* NOTE: this value can be obtained from SMPRx register description
* (ST manual)
*/
#if defined(CONFIG_STM32_STM32F10XX)
# define ADC_CHANNELS_NUMBER 18
#elif defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F30XX) || \
defined(CONFIG_STM32_STM32F33XX) || defined(CONFIG_STM32_STM32F4XXX)
# define ADC_CHANNELS_NUMBER 19
#elif defined(CONFIG_STM32_STM32L15XX)
# define ADC_CHANNELS_NUMBER 32
#else
# error "Not supported"
#endif
/* ADC resolution. Not supported for basic STM32 ADC IPv1 */
#ifndef CONFIG_STM32_HAVE_IP_ADC_V1_BASIC
# define HAVE_ADC_RESOLUTION
#else
# undef HAVE_ADC_RESOLUTION
#endif
/* ADC have common registers for all cores except basic ADC IPv1 (F1, F37x) */
#ifdef CONFIG_STM32_HAVE_IP_ADC_V1_BASIC
# undef HAVE_ADC_CMN_REGS
#else
# define HAVE_ADC_CMN_REGS
#endif
#if defined(HAVE_ADC_CMN_REGS) && STM32_NADC > 1
# define HAVE_ADC_CMN_DATA
#else
# undef HAVE_ADC_CMN_DATA
#endif
/* ADCx_EXTSEL_VALUE can be set by this driver (look at stm32_adc.h) or
* by board specific logic in board.h file.
*/
#ifdef ADC1_EXTSEL_VALUE
# define ADC1_HAVE_EXTCFG 1
# define ADC1_EXTCFG_VALUE (ADC1_EXTSEL_VALUE | ADC_EXTREG_EXTEN_DEFAULT)
#else
# undef ADC1_HAVE_EXTCFG
#endif
#ifdef ADC2_EXTSEL_VALUE
# define ADC2_HAVE_EXTCFG 1
# define ADC2_EXTCFG_VALUE (ADC2_EXTSEL_VALUE | ADC_EXTREG_EXTEN_DEFAULT)
#else
# undef ADC2_HAVE_EXTCFG
#endif
#ifdef ADC3_EXTSEL_VALUE
# define ADC3_HAVE_EXTCFG 1
# define ADC3_EXTCFG_VALUE (ADC3_EXTSEL_VALUE | ADC_EXTREG_EXTEN_DEFAULT)
#else
# undef ADC3_HAVE_EXTCFG
#endif
#ifdef ADC4_EXTSEL_VALUE
# define ADC4_HAVE_EXTCFG 1
# define ADC4_EXTCFG_VALUE (ADC4_EXTSEL_VALUE | ADC_EXTREG_EXTEN_DEFAULT)
#else
# undef ADC4_HAVE_EXTCFG
#endif
#if defined(ADC1_HAVE_EXTCFG) || defined(ADC2_HAVE_EXTCFG) || \
defined(ADC3_HAVE_EXTCFG) || defined(ADC3_HAVE_EXTCFG)
# define ADC_HAVE_EXTCFG
#endif
/* Injected channels external trigger support */
#ifdef ADC1_JEXTSEL_VALUE
# define ADC1_HAVE_JEXTCFG 1
# define ADC1_JEXTCFG_VALUE (ADC1_JEXTSEL_VALUE | ADC_JEXTREG_JEXTEN_DEFAULT)
#endif
#ifdef ADC2_JEXTSEL_VALUE
# define ADC2_HAVE_JEXTCFG 1
# define ADC2_JEXTCFG_VALUE (ADC2_JEXTSEL_VALUE | ADC_JEXTREG_JEXTEN_DEFAULT)
#endif
#ifdef ADC3_JEXTSEL_VALUE
# define ADC3_HAVE_JEXTCFG 1
# define ADC3_JEXTCFG_VALUE (ADC3_JEXTSEL_VALUE | ADC_JEXTREG_JEXTEN_DEFAULT)
#endif
#ifdef ADC4_JEXTSEL_VALUE
# define ADC4_HAVE_JEXTCFG 1
# define ADC4_JEXTCFG_VALUE (ADC4_JEXTSEL_VALUE | ADC_JEXTREG_JEXTEN_DEFAULT)
#endif
#if defined(ADC1_HAVE_JEXTCFG) || defined(ADC2_HAVE_JEXTCFG) || \
defined(ADC3_HAVE_JEXTCFG) || defined(ADC4_HAVE_JEXTCFG)
# define ADC_HAVE_JEXTCFG
#endif
/* Max 4 injected channels */
#define ADC_INJ_MAX_SAMPLES 4
/* ADC DMA configuration bit support */
#ifndef CONFIG_STM32_HAVE_IP_ADC_V1_BASIC
# define ADC_HAVE_DMACFG 1
#else
# undef ADC_HAVE_DMACFG
#endif
/* We have to support ADC callbacks if default ADC interrupts or
* DMA transfer are enabled
*/
#if !defined(CONFIG_STM32_ADC_NOIRQ) || defined(ADC_HAVE_DMA)
# define ADC_HAVE_CB
#else
# undef ADC_HAVE_CB
#endif
/****************************************************************************
* Private Types
****************************************************************************/
/* Data common to all ADC instances */
#ifdef HAVE_ADC_CMN_DATA
struct adccmn_data_s
{
uint8_t initialized; /* How many ADC instances are currently in use */
sem_t lock; /* Exclusive access to common ADC data */
};
#endif
/* This structure describes the state of one ADC block
* REVISIT: save some space with bit fields.
*/
struct stm32_dev_s
{
#ifdef CONFIG_STM32_ADC_LL_OPS
FAR const struct stm32_adc_ops_s *llops; /* Low-level ADC ops */
#endif
#ifdef ADC_HAVE_CB
FAR const struct adc_callback_s *cb;
uint8_t irq; /* Interrupt generated by this ADC block */
#endif
#ifdef HAVE_ADC_CMN_DATA
struct adccmn_data_s *cmn; /* Common ADC data */
#endif
uint8_t rnchannels; /* Number of regular channels */
uint8_t cr_channels; /* Number of configured regular channels */
#ifdef ADC_HAVE_INJECTED
uint8_t cj_channels; /* Number of configured injected channels */
#endif
uint8_t intf; /* ADC interface number */
uint8_t current; /* Current ADC channel being converted */
#ifdef HAVE_ADC_RESOLUTION
uint8_t resolution; /* ADC resolution (0-3) */
#endif
#ifdef ADC_HAVE_DMA
uint8_t dmachan; /* DMA channel needed by this ADC */
# ifdef ADC_HAVE_DMACFG
uint8_t dmacfg; /* DMA channel configuration, only for ADC IPv2 */
# endif
bool hasdma; /* True: This channel supports DMA */
#endif
#ifdef CONFIG_STM32_ADC_CHANGE_SAMPLETIME
/* Sample time selection. These bits must be written only when ADON=0.
* REVISIT: this takes too much space. We need only 3 bits per channel.
*/
uint8_t sample_rate[ADC_CHANNELS_NUMBER];
uint8_t adc_channels; /* ADC channels number */
#endif
#ifdef ADC_HAVE_TIMER
uint8_t trigger; /* Timer trigger channel: 0=CC1, 1=CC2, 2=CC3,
* 3=CC4, 4=TRGO */
#endif
xcpt_t isr; /* Interrupt handler for this ADC block */
uint32_t base; /* Base address of registers unique to this ADC
* block */
#ifdef ADC_HAVE_EXTCFG
uint32_t extcfg; /* External event configuration for regular group */
#endif
#ifdef ADC_HAVE_JEXTCFG
uint32_t jextcfg; /* External event configuration for injected group */
#endif
#ifdef ADC_HAVE_TIMER
uint32_t tbase; /* Base address of timer used by this ADC block */
uint32_t pclck; /* The PCLK frequency that drives this timer */
uint32_t freq; /* The desired frequency of conversions */
#endif
#ifdef ADC_HAVE_DMA
DMA_HANDLE dma; /* Allocated DMA channel */
/* DMA transfer buffer */
uint16_t r_dmabuffer[ADC_MAX_SAMPLES];
#endif
/* List of selected ADC channels to sample */
uint8_t r_chanlist[ADC_MAX_SAMPLES];
#ifdef ADC_HAVE_INJECTED
/* List of selected ADC injected channels to sample */
uint8_t j_chanlist[ADC_INJ_MAX_SAMPLES];
#endif
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* ADC Register access */
#ifndef HAVE_BASIC_ADC
static void stm32_modifyreg32(unsigned int addr, uint32_t clrbits,
uint32_t setbits);
#endif
static uint32_t adc_getreg(FAR struct stm32_dev_s *priv, int offset);
static void adc_putreg(FAR struct stm32_dev_s *priv, int offset,
uint32_t value);
static void adc_modifyreg(FAR struct stm32_dev_s *priv, int offset,
uint32_t clrbits, uint32_t setbits);
#ifdef HAVE_ADC_CMN_REGS
static uint32_t adccmn_base_get(FAR struct stm32_dev_s *priv);
static void adccmn_modifyreg(FAR struct stm32_dev_s *priv, uint32_t offset,
uint32_t clrbits, uint32_t setbits);
# ifdef CONFIG_DEBUG_ANALOG_INFO
static uint32_t adccmn_getreg(FAR struct stm32_dev_s *priv, uint32_t offset);
# endif
#endif
#ifdef ADC_HAVE_TIMER
static uint16_t tim_getreg(FAR struct stm32_dev_s *priv, int offset);
static void tim_putreg(FAR struct stm32_dev_s *priv, int offset,
uint16_t value);
static void tim_modifyreg(FAR struct stm32_dev_s *priv, int offset,
uint16_t clrbits, uint16_t setbits);
static void tim_dumpregs(FAR struct stm32_dev_s *priv,
FAR const char *msg);
#endif
#ifdef HAVE_ADC_CMN_DATA
static int adccmn_lock(FAR struct stm32_dev_s *priv, bool lock);
#endif
static void adc_rccreset(FAR struct stm32_dev_s *priv, bool reset);
/* ADC Interrupt Handler */
#ifndef CONFIG_STM32_ADC_NOIRQ
static int adc_interrupt(FAR struct adc_dev_s *dev);
# if defined(STM32_IRQ_ADC1) && defined(CONFIG_STM32_ADC1)
static int adc1_interrupt(int irq, FAR void *context, FAR void *arg);
# endif
# if defined(STM32_IRQ_ADC12) && (defined(CONFIG_STM32_ADC1) || \
defined(CONFIG_STM32_ADC2))
static int adc12_interrupt(int irq, FAR void *context, FAR void *arg);
# endif
# if (defined(STM32_IRQ_ADC3) && defined(CONFIG_STM32_ADC3))
static int adc3_interrupt(int irq, FAR void *context, FAR void *arg);
# endif
# if defined(STM32_IRQ_ADC4) && defined(CONFIG_STM32_ADC4)
static int adc4_interrupt(int irq, FAR void *context, FAR void *arg);
# endif
# if defined(STM32_IRQ_ADC)
static int adc123_interrupt(int irq, FAR void *context, FAR void *arg);
# endif
#endif /* CONFIG_STM32_ADC_NOIRQ */
/* ADC Driver Methods */
static int adc_bind(FAR struct adc_dev_s *dev,
FAR const struct adc_callback_s *callback);
static void adc_reset(FAR struct adc_dev_s *dev);
static int adc_setup(FAR struct adc_dev_s *dev);
static void adc_shutdown(FAR struct adc_dev_s *dev);
static void adc_rxint(FAR struct adc_dev_s *dev, bool enable);
static int adc_ioctl(FAR struct adc_dev_s *dev, int cmd, unsigned long arg);
static void adc_enable(FAR struct stm32_dev_s *priv, bool enable);
static uint32_t adc_sqrbits(FAR struct stm32_dev_s *priv, int first,
int last, int offset);
static int adc_set_ch(FAR struct adc_dev_s *dev, uint8_t ch);
static int adc_ioc_change_ints(FAR struct adc_dev_s *dev, int cmd,
bool arg);
#ifdef HAVE_ADC_RESOLUTION
static int adc_resolution_set(FAR struct adc_dev_s *dev, uint8_t res);
#endif
#ifdef HAVE_ADC_VBAT
static void adc_enable_vbat_channel(FAR struct adc_dev_s *dev, bool enable);
#endif
#ifdef HAVE_ADC_POWERDOWN
static int adc_ioc_change_sleep_between_opers(FAR struct adc_dev_s *dev,
int cmd, bool arg);
static void adc_power_down_idle(FAR struct stm32_dev_s *priv,
bool pdi_high);
static void adc_power_down_delay(FAR struct stm32_dev_s *priv,
bool pdd_high);
#endif
#ifdef CONFIG_STM32_STM32L15XX
static void adc_dels_after_conversion(FAR struct stm32_dev_s *priv,
uint32_t delay);
static void adc_select_ch_bank(FAR struct stm32_dev_s *priv,
bool chb_selected);
#endif
#ifdef HAVE_HSI_CONTROL
static void adc_enable_hsi(bool enable);
static void adc_reset_hsi_disable(FAR struct adc_dev_s *dev);
#endif
#ifdef ADC_HAVE_TIMER
static void adc_timstart(FAR struct stm32_dev_s *priv, bool enable);
static int adc_timinit(FAR struct stm32_dev_s *priv);
#endif
#if defined(ADC_HAVE_DMA) && !defined(CONFIG_STM32_ADC_NOIRQ)
static void adc_dmaconvcallback(DMA_HANDLE handle, uint8_t isr,
FAR void *arg);
#endif
static void adc_reg_startconv(FAR struct stm32_dev_s *priv, bool enable);
#ifdef ADC_HAVE_INJECTED
static void adc_inj_startconv(FAR struct stm32_dev_s *priv, bool enable);
static int adc_inj_set_ch(FAR struct adc_dev_s *dev, uint8_t ch);
#endif
#ifdef ADC_HAVE_EXTCFG
static int adc_extcfg_set(FAR struct adc_dev_s *dev, uint32_t extcfg);
#endif
#ifdef ADC_HAVE_JEXTCFG
static int adc_jextcfg_set(FAR struct adc_dev_s *dev, uint32_t jextcfg);
#endif
static void adc_dumpregs(FAR struct stm32_dev_s *priv);
#ifdef CONFIG_STM32_ADC_LL_OPS
static void adc_intack(FAR struct stm32_adc_dev_s *dev, uint32_t source);
static void adc_inten(FAR struct stm32_adc_dev_s *dev, uint32_t source);
static void adc_intdis(FAR struct stm32_adc_dev_s *dev, uint32_t source);
static uint32_t adc_intget(FAR struct stm32_adc_dev_s *dev);
static uint32_t adc_regget(FAR struct stm32_adc_dev_s *dev);
static void adc_llops_reg_startconv(FAR struct stm32_adc_dev_s *dev,
bool enable);
static int adc_offset_set(FAR struct stm32_adc_dev_s *dev, uint8_t ch,
uint8_t i, uint16_t offset);
# ifdef ADC_HAVE_DMA
static int adc_regbufregister(FAR struct stm32_adc_dev_s *dev,
uint16_t *buffer, uint8_t len);
# endif
# ifdef ADC_HAVE_INJECTED
static uint32_t adc_injget(FAR struct stm32_adc_dev_s *dev, uint8_t chan);
static void adc_llops_inj_startconv(FAR struct stm32_adc_dev_s *dev,
bool enable);
# endif
# ifdef CONFIG_STM32_ADC_CHANGE_SAMPLETIME
static void adc_sampletime_set(FAR struct stm32_adc_dev_s *dev,
FAR struct adc_sample_time_s *time_samples);
static void adc_sampletime_write(FAR struct stm32_adc_dev_s *dev);
# endif
static void adc_llops_dumpregs(FAR struct stm32_adc_dev_s *dev);
#endif
/****************************************************************************
* Private Data
****************************************************************************/
/* ADC interface operations */
static const struct adc_ops_s g_adcops =
{
.ao_bind = adc_bind,
#ifdef HAVE_HSI_CONTROL
.ao_reset = adc_reset_hsi_disable,
#else
.ao_reset = adc_reset,
#endif
.ao_setup = adc_setup,
.ao_shutdown = adc_shutdown,
.ao_rxint = adc_rxint,
.ao_ioctl = adc_ioctl,
};
/* Publicly visible ADC lower-half operations */
#ifdef CONFIG_STM32_ADC_LL_OPS
static const struct stm32_adc_ops_s g_adc_llops =
{
.int_ack = adc_intack,
.int_get = adc_intget,
.int_en = adc_inten,
.int_dis = adc_intdis,
.val_get = adc_regget,
.reg_startconv = adc_llops_reg_startconv,
.offset_set = adc_offset_set,
# ifdef ADC_HAVE_DMA
.regbuf_reg = adc_regbufregister,
# endif
# ifdef ADC_HAVE_INJECTED
.inj_get = adc_injget,
.inj_startconv = adc_llops_inj_startconv,
# endif
# ifdef CONFIG_STM32_ADC_CHANGE_SAMPLETIME
.stime_set = adc_sampletime_set,
.stime_write = adc_sampletime_write,
# endif
.dump_regs = adc_llops_dumpregs
};
#endif
/* ADC instances are coupled in blocks for all IP versions except
* basic ADC IPv1 (F1, F37x).
*/
#ifdef HAVE_ADC_CMN_DATA
# ifdef HAVE_IP_ADC_V1
# define ADC1CMN_DATA g_adc123_cmn
# define ADC2CMN_DATA g_adc123_cmn
# define ADC3CMN_DATA g_adc123_cmn
/* ADC123 common data */
struct adccmn_data_s g_adc123_cmn =
{
.initialized = 0
};
# elif defined(HAVE_IP_ADC_V2)
# define ADC1CMN_DATA g_adc12_cmn
# define ADC2CMN_DATA g_adc12_cmn
# define ADC3CMN_DATA g_adc34_cmn
# define ADC4CMN_DATA g_adc34_cmn
# if defined(CONFIG_STM32_ADC1) || defined(CONFIG_STM32_ADC2)
/* ADC12 common data */
struct adccmn_data_s g_adc12_cmn =
{
.initialized = 0
};
# endif
# if defined(CONFIG_STM32_ADC3) || defined(CONFIG_STM32_ADC4)
/* ADC34 common data */
struct adccmn_data_s g_adc34_cmn =
{
.initialized = 0
};
# endif
# endif /* !HAVE_IP_ADC_V1 */
#endif /* HAVE_ADC_CMN_DATA */
/* ADC1 state */
#ifdef CONFIG_STM32_ADC1
static struct stm32_dev_s g_adcpriv1 =
{
#ifdef CONFIG_STM32_ADC_LL_OPS
.llops = &g_adc_llops,
#endif
#ifndef CONFIG_STM32_ADC_NOIRQ
# if defined(STM32_IRQ_ADC1)
.irq = STM32_IRQ_ADC1,
.isr = adc1_interrupt,
# elif defined(STM32_IRQ_ADC12)
.irq = STM32_IRQ_ADC12,
.isr = adc12_interrupt,
# elif defined(STM32_IRQ_ADC)
.irq = STM32_IRQ_ADC,
.isr = adc123_interrupt,
# else
# error "No STM32_IRQ_ADC1 STM32_IRQ_ADC12 or STM32_IRQ_ADC defined for CONFIG_STM32_ADC1"
# endif
#endif /* CONFIG_STM32_ADC_NOIRQ */
#ifdef HAVE_ADC_CMN_DATA
.cmn = &ADC1CMN_DATA,
#endif
.intf = 1,
#ifdef HAVE_ADC_RESOLUTION
.resolution = CONFIG_STM32_ADC1_RESOLUTION,
#endif
.base = STM32_ADC1_BASE,
#ifdef ADC1_HAVE_EXTCFG
.extcfg = ADC1_EXTCFG_VALUE,
#endif
#ifdef ADC1_HAVE_JEXTCFG
.jextcfg = ADC1_JEXTCFG_VALUE,
#endif
#ifdef ADC1_HAVE_TIMER
.trigger = CONFIG_STM32_ADC1_TIMTRIG,
.tbase = ADC1_TIMER_BASE,
.pclck = ADC1_TIMER_PCLK_FREQUENCY,
.freq = CONFIG_STM32_ADC1_SAMPLE_FREQUENCY,
#endif
#ifdef ADC1_HAVE_DMA
.dmachan = ADC1_DMA_CHAN,
# ifdef ADC_HAVE_DMACFG
.dmacfg = CONFIG_STM32_ADC1_DMA_CFG,
# endif
.hasdma = true,
#endif
};
static struct adc_dev_s g_adcdev1 =
{
.ad_ops = &g_adcops,
.ad_priv = &g_adcpriv1,
};
#endif
/* ADC2 state */
#ifdef CONFIG_STM32_ADC2
static struct stm32_dev_s g_adcpriv2 =
{
#ifdef CONFIG_STM32_ADC_LL_OPS
.llops = &g_adc_llops,
#endif
#ifndef CONFIG_STM32_ADC_NOIRQ
# if defined(STM32_IRQ_ADC12)
.irq = STM32_IRQ_ADC12,
.isr = adc12_interrupt,
# elif defined(STM32_IRQ_ADC)
.irq = STM32_IRQ_ADC,
.isr = adc123_interrupt,
# else
# error "No STM32_IRQ_ADC12 or STM32_IRQ_ADC defined for CONFIG_STM32_ADC2"
# endif
#endif /* CONFIG_STM32_ADC_NOIRQ */
#ifdef HAVE_ADC_CMN_DATA
.cmn = &ADC2CMN_DATA,
#endif
.intf = 2,
#ifdef HAVE_ADC_RESOLUTION
.resolution = CONFIG_STM32_ADC2_RESOLUTION,
#endif
.base = STM32_ADC2_BASE,
#ifdef ADC2_HAVE_EXTCFG
.extcfg = ADC2_EXTCFG_VALUE,
#endif
#ifdef ADC2_HAVE_JEXTCFG
.jextcfg = ADC2_JEXTCFG_VALUE,
#endif
#ifdef ADC2_HAVE_TIMER
.trigger = CONFIG_STM32_ADC2_TIMTRIG,
.tbase = ADC2_TIMER_BASE,
.pclck = ADC2_TIMER_PCLK_FREQUENCY,
.freq = CONFIG_STM32_ADC2_SAMPLE_FREQUENCY,
#endif
#ifdef ADC2_HAVE_DMA
.dmachan = ADC2_DMA_CHAN,
# ifdef ADC_HAVE_DMACFG
.dmacfg = CONFIG_STM32_ADC2_DMA_CFG,
# endif
.hasdma = true,
#endif
};
static struct adc_dev_s g_adcdev2 =
{
.ad_ops = &g_adcops,
.ad_priv = &g_adcpriv2,
};
#endif
/* ADC3 state */
#ifdef CONFIG_STM32_ADC3
static struct stm32_dev_s g_adcpriv3 =
{
#ifdef CONFIG_STM32_ADC_LL_OPS
.llops = &g_adc_llops,
#endif
#ifndef CONFIG_STM32_ADC_NOIRQ
# if defined(STM32_IRQ_ADC3)
.irq = STM32_IRQ_ADC3,
.isr = adc3_interrupt,
# elif defined(STM32_IRQ_ADC)
.irq = STM32_IRQ_ADC,
.isr = adc123_interrupt,
# else
# error "No STM32_IRQ_ADC3 or STM32_IRQ_ADC defined for CONFIG_STM32_ADC3"
# endif
#endif /* CONFIG_STM32_ADC_NOIRQ */
#ifdef HAVE_ADC_CMN_DATA
.cmn = &ADC3CMN_DATA,
#endif
.intf = 3,
#ifdef HAVE_ADC_RESOLUTION
.resolution = CONFIG_STM32_ADC3_RESOLUTION,
#endif
.base = STM32_ADC3_BASE,
#ifdef ADC3_HAVE_EXTCFG
.extcfg = ADC3_EXTCFG_VALUE,
#endif
#ifdef ADC3_HAVE_JEXTCFG
.jextcfg = ADC3_JEXTCFG_VALUE,
#endif
#ifdef ADC3_HAVE_TIMER
.trigger = CONFIG_STM32_ADC3_TIMTRIG,
.tbase = ADC3_TIMER_BASE,
.pclck = ADC3_TIMER_PCLK_FREQUENCY,
.freq = CONFIG_STM32_ADC3_SAMPLE_FREQUENCY,
#endif
#ifdef ADC3_HAVE_DMA
.dmachan = ADC3_DMA_CHAN,
# ifdef ADC_HAVE_DMACFG
.dmacfg = CONFIG_STM32_ADC3_DMA_CFG,
# endif
.hasdma = true,
#endif
};
static struct adc_dev_s g_adcdev3 =
{
.ad_ops = &g_adcops,
.ad_priv = &g_adcpriv3,
};
#endif
/* ADC4 state */
#ifdef CONFIG_STM32_ADC4
static struct stm32_dev_s g_adcpriv4 =
{
#ifdef CONFIG_STM32_ADC_LL_OPS
.llops = &g_adc_llops,
#endif
#ifndef CONFIG_STM32_ADC_NOIRQ
.irq = STM32_IRQ_ADC4,
.isr = adc4_interrupt,
#endif
#ifdef HAVE_ADC_CMN_DATA
.cmn = &ADC4CMN_DATA,
#endif
.intf = 4,
#ifdef HAVE_ADC_RESOLUTION
.resolution = CONFIG_STM32_ADC4_RESOLUTION,
#endif
.base = STM32_ADC4_BASE,
#ifdef ADC4_HAVE_EXTCFG
.extcfg = ADC4_EXTCFG_VALUE,
#endif
#ifdef ADC4_HAVE_JEXTCFG
.jextcfg = ADC4_JEXTCFG_VALUE,
#endif
#ifdef ADC4_HAVE_TIMER
.trigger = CONFIG_STM32_ADC4_TIMTRIG,
.tbase = ADC4_TIMER_BASE,
.pclck = ADC4_TIMER_PCLK_FREQUENCY,
.freq = CONFIG_STM32_ADC4_SAMPLE_FREQUENCY,
#endif
#ifdef ADC4_HAVE_DMA
.dmachan = ADC4_DMA_CHAN,
# ifdef ADC_HAVE_DMACFG
.dmacfg = CONFIG_STM32_ADC4_DMA_CFG,
# endif
.hasdma = true,
#endif
};
static struct adc_dev_s g_adcdev4 =
{
.ad_ops = &g_adcops,
.ad_priv = &g_adcpriv4,
};
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: stm32_modifyreg32
*
* Description:
* Modify the value of a 32-bit register (not atomic).
*
* Input Parameters:
* addr - The address of the register
* clrbits - The bits to clear
* setbits - The bits to set
*
* Returned Value:
* None
*
****************************************************************************/
#ifndef HAVE_BASIC_ADC
static void stm32_modifyreg32(unsigned int addr, uint32_t clrbits,
uint32_t setbits)
{
putreg32((getreg32(addr) & ~clrbits) | setbits, addr);
}
#endif
/****************************************************************************
* Name: adc_getreg
*
* Description:
* Read the value of an ADC register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
* The current contents of the specified register
*
****************************************************************************/
static uint32_t adc_getreg(FAR struct stm32_dev_s *priv, int offset)
{
return getreg32(priv->base + offset);
}
/****************************************************************************
* Name: adc_putreg
*
* Description:
* Write a value to an ADC register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to write to
* value - The value to write to the register
*
* Returned Value:
* None
*
****************************************************************************/
static void adc_putreg(FAR struct stm32_dev_s *priv, int offset,
uint32_t value)
{
putreg32(value, priv->base + offset);
}
/****************************************************************************
* Name: adc_modifyreg
*
* Description:
* Modify the value of an ADC register (not atomic).
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to modify
* clrbits - The bits to clear
* setbits - The bits to set
*
* Returned Value:
* None
*
****************************************************************************/
static void adc_modifyreg(FAR struct stm32_dev_s *priv, int offset,
uint32_t clrbits, uint32_t setbits)
{
adc_putreg(priv, offset, (adc_getreg(priv, offset) & ~clrbits) | setbits);
}
#ifdef HAVE_ADC_CMN_REGS
/****************************************************************************
* Name: adccmn_base_get
****************************************************************************/
static uint32_t adccmn_base_get(FAR struct stm32_dev_s *priv)
{
uint32_t base = 0;
#if defined(HAVE_IP_ADC_V2)
if (priv->base == STM32_ADC1_BASE || priv->base == STM32_ADC2_BASE)
{
base = STM32_ADC12CMN_BASE;
}
# if defined(CONFIG_STM32_ADC3) || defined(CONFIG_STM32_ADC4)
else
{
base = STM32_ADC34CMN_BASE;
}
# endif
#elif defined(HAVE_IP_ADC_V1)
base = STM32_ADCCMN_BASE;
UNUSED(priv);
#endif
return base;
}
/****************************************************************************
* Name: adccmn_modifyreg
****************************************************************************/
static void adccmn_modifyreg(FAR struct stm32_dev_s *priv, uint32_t offset,
uint32_t clrbits, uint32_t setbits)
{
uint32_t base = 0;
/* Get base address for ADC common register */
base = adccmn_base_get(priv);
/* Modify register */
stm32_modifyreg32(offset + base, clrbits, setbits);
}
/****************************************************************************
* Name: adccmn_getreg
****************************************************************************/
# ifdef CONFIG_DEBUG_ANALOG_INFO
static uint32_t adccmn_getreg(FAR struct stm32_dev_s *priv, uint32_t offset)
{
uint32_t base = 0;
/* Get base address for ADC common register */
base = adccmn_base_get(priv);
/* Return register value */
return getreg32(base + offset);
}
# endif
#endif /* HAVE_ADC_CMN_REGS */
/****************************************************************************
* Name: tim_getreg
*
* Description:
* Read the value of an ADC timer register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
* The current contents of the specified register
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static uint16_t tim_getreg(FAR struct stm32_dev_s *priv, int offset)
{
return getreg16(priv->tbase + offset);
}
#endif
/****************************************************************************
* Name: tim_putreg
*
* Description:
* Write a value to an ADC timer register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to write to
* value - The value to write to the register
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void tim_putreg(FAR struct stm32_dev_s *priv, int offset,
uint16_t value)
{
putreg16(value, priv->tbase + offset);
}
#endif
/****************************************************************************
* Name: tim_modifyreg
*
* Description:
* Modify the value of an ADC timer register (not atomic).
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to modify
* clrbits - The bits to clear
* setbits - The bits to set
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void tim_modifyreg(FAR struct stm32_dev_s *priv, int offset,
uint16_t clrbits, uint16_t setbits)
{
tim_putreg(priv, offset, (tim_getreg(priv, offset) & ~clrbits) | setbits);
}
#endif
/****************************************************************************
* Name: tim_dumpregs
*
* Description:
* Dump all timer registers.
*
* Input Parameters:
* priv - A reference to the ADC block status
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void tim_dumpregs(FAR struct stm32_dev_s *priv, FAR const char *msg)
{
ainfo("%s:\n", msg);
ainfo(" CR1: %04x CR2: %04x SMCR: %04x DIER: %04x\n",
tim_getreg(priv, STM32_GTIM_CR1_OFFSET),
tim_getreg(priv, STM32_GTIM_CR2_OFFSET),
tim_getreg(priv, STM32_GTIM_SMCR_OFFSET),
tim_getreg(priv, STM32_GTIM_DIER_OFFSET));
ainfo(" SR: %04x EGR: 0000 CCMR1: %04x CCMR2: %04x\n",
tim_getreg(priv, STM32_GTIM_SR_OFFSET),
tim_getreg(priv, STM32_GTIM_CCMR1_OFFSET),
tim_getreg(priv, STM32_GTIM_CCMR2_OFFSET));
ainfo(" CCER: %04x CNT: %04x PSC: %04x ARR: %04x\n",
tim_getreg(priv, STM32_GTIM_CCER_OFFSET),
tim_getreg(priv, STM32_GTIM_CNT_OFFSET),
tim_getreg(priv, STM32_GTIM_PSC_OFFSET),
tim_getreg(priv, STM32_GTIM_ARR_OFFSET));
ainfo(" CCR1: %04x CCR2: %04x CCR3: %04x CCR4: %04x\n",
tim_getreg(priv, STM32_GTIM_CCR1_OFFSET),
tim_getreg(priv, STM32_GTIM_CCR2_OFFSET),
tim_getreg(priv, STM32_GTIM_CCR3_OFFSET),
tim_getreg(priv, STM32_GTIM_CCR4_OFFSET));
#if STM32_NATIM > 0
if (priv->tbase == STM32_TIM1_BASE
# ifdef STM32_TIM8_BASE
|| priv->tbase == STM32_TIM8_BASE
# endif
)
{
ainfo(" RCR: %04x BDTR: %04x DCR: %04x DMAR: %04x\n",
tim_getreg(priv, STM32_ATIM_RCR_OFFSET),
tim_getreg(priv, STM32_ATIM_BDTR_OFFSET),
tim_getreg(priv, STM32_ATIM_DCR_OFFSET),
tim_getreg(priv, STM32_ATIM_DMAR_OFFSET));
}
else
#endif
{
ainfo(" DCR: %04x DMAR: %04x\n",
tim_getreg(priv, STM32_GTIM_DCR_OFFSET),
tim_getreg(priv, STM32_GTIM_DMAR_OFFSET));
}
}
#endif
/****************************************************************************
* Name: adc_timstart
*
* Description:
* Start (or stop) the timer counter
*
* Input Parameters:
* priv - A reference to the ADC block status
* enable - True: Start conversion
*
* Returned Value:
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void adc_timstart(FAR struct stm32_dev_s *priv, bool enable)
{
ainfo("enable: %d\n", enable ? 1 : 0);
if (enable)
{
/* Start the counter */
tim_modifyreg(priv, STM32_GTIM_CR1_OFFSET, 0, GTIM_CR1_CEN);
}
else
{
/* Disable the counter */
tim_modifyreg(priv, STM32_GTIM_CR1_OFFSET, GTIM_CR1_CEN, 0);
}
}
#endif
/****************************************************************************
* Name: adc_timinit
*
* Description:
* Initialize the timer that drivers the ADC sampling for this channel
* using the pre-calculated timer divider definitions.
*
* Input Parameters:
* priv - A reference to the ADC block status
*
* Returned Value:
* Zero on success; a negated errno value on failure.
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static int adc_timinit(FAR struct stm32_dev_s *priv)
{
uint32_t prescaler;
uint32_t reload;
uint32_t timclk;
uint16_t clrbits = 0;
uint16_t setbits = 0;
uint16_t cr2;
uint16_t ccmr1;
uint16_t ccmr2;
uint16_t ocmode1;
uint16_t ocmode2;
uint16_t ccenable;
uint16_t ccer;
uint16_t egr;
/* If the timer base address is zero, then this ADC was not configured to
* use a timer.
*/
if (priv->tbase == 0)
{
return ERROR;
}
/* NOTE: EXTSEL configuration is done in adc_reset function */
/* Configure the timer channel to drive the ADC */
/* Calculate optimal values for the timer prescaler and for the timer
* reload register. If freq is the desired frequency, then
*
* reload = timclk / freq
* reload = (pclck / prescaler) / freq
*
* There are many solutions to do this, but the best solution will be the
* one that has the largest reload value and the smallest prescaler value.
* That is the solution that should give us the most accuracy in the timer
* control. Subject to:
*
* 0 <= prescaler <= 65536
* 1 <= reload <= 65535
*
* So ( prescaler = pclck / 65535 / freq ) would be optimal.
*/
prescaler = (priv->pclck / priv->freq + 65534) / 65535;
/* We need to decrement the prescaler value by one, but only, the value
* does not underflow.
*/
if (prescaler < 1)
{
awarn("WARNING: Prescaler underflowed.\n");
prescaler = 1;
}
/* Check for overflow */
else if (prescaler > 65536)
{
awarn("WARNING: Prescaler overflowed.\n");
prescaler = 65536;
}
timclk = priv->pclck / prescaler;
reload = timclk / priv->freq;
if (reload < 1)
{
awarn("WARNING: Reload value underflowed.\n");
reload = 1;
}
else if (reload > 65535)
{
awarn("WARNING: Reload value overflowed.\n");
reload = 65535;
}
/* Disable the timer until we get it configured */
adc_timstart(priv, false);
/* Set up the timer CR1 register.
*
* Select the Counter Mode == count up:
*
* ATIM_CR1_EDGE: The counter counts up or down depending on the
* direction bit(DIR).
* ATIM_CR1_DIR: 0: count up, 1: count down
*
* Set the clock division to zero for all
*/
clrbits = GTIM_CR1_DIR | GTIM_CR1_CMS_MASK | GTIM_CR1_CKD_MASK;
setbits = GTIM_CR1_EDGE;
tim_modifyreg(priv, STM32_GTIM_CR1_OFFSET, clrbits, setbits);
/* Set the reload and prescaler values */
tim_putreg(priv, STM32_GTIM_PSC_OFFSET, prescaler - 1);
tim_putreg(priv, STM32_GTIM_ARR_OFFSET, reload);
/* Clear the advanced timers repetition counter in TIM1 */
#if STM32_NATIM > 0
if (priv->tbase == STM32_TIM1_BASE
# ifdef STM32_TIM8_BASE
|| priv->tbase == STM32_TIM8_BASE
# endif
)
{
tim_putreg(priv, STM32_ATIM_RCR_OFFSET, 0);
tim_putreg(priv, STM32_ATIM_BDTR_OFFSET, ATIM_BDTR_MOE); /* Check me */
}
#endif
/* TIMx event generation: Bit 0 UG: Update generation */
tim_putreg(priv, STM32_GTIM_EGR_OFFSET, GTIM_EGR_UG);
/* Handle channel specific setup */
ocmode1 = 0;
ocmode2 = 0;
switch (priv->trigger)
{
case 0: /* TimerX CC1 event */
{
ccenable = ATIM_CCER_CC1E;
ocmode1 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR1_CC1S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR1_OC1M_SHIFT) |
ATIM_CCMR1_OC1PE;
/* Set the event CC1 */
egr = ATIM_EGR_CC1G;
/* Set the duty cycle by writing to the CCR register for this
* channel
*/
tim_putreg(priv, STM32_GTIM_CCR1_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 1: /* TimerX CC2 event */
{
ccenable = ATIM_CCER_CC2E;
ocmode1 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR1_CC2S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR1_OC2M_SHIFT) |
ATIM_CCMR1_OC2PE;
/* Set the event CC2 */
egr = ATIM_EGR_CC2G;
/* Set the duty cycle by writing to the CCR register for this
* channel
*/
tim_putreg(priv, STM32_GTIM_CCR2_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 2: /* TimerX CC3 event */
{
ccenable = ATIM_CCER_CC3E;
ocmode2 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR2_CC3S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR2_OC3M_SHIFT) |
ATIM_CCMR2_OC3PE;
/* Set the event CC3 */
egr = ATIM_EGR_CC3G;
/* Set the duty cycle by writing to the CCR register for this
* channel
*/
tim_putreg(priv, STM32_GTIM_CCR3_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 3: /* TimerX CC4 event */
{
ccenable = ATIM_CCER_CC4E;
ocmode2 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR2_CC4S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR2_OC4M_SHIFT) |
ATIM_CCMR2_OC4PE;
/* Set the event CC4 */
egr = ATIM_EGR_CC4G;
/* Set the duty cycle by writing to the CCR register for this
* channel
*/
tim_putreg(priv, STM32_GTIM_CCR4_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 4: /* TimerX TRGO event */
{
/* TODO: TRGO support not yet implemented */
/* Set the event TRGO */
ccenable = 0;
egr = GTIM_EGR_TG;
/* Set the duty cycle by writing to the CCR register for this
* channel
*/
tim_putreg(priv, STM32_GTIM_CCR4_OFFSET, (uint16_t)(reload >> 1));
}
break;
default:
aerr("ERROR: No such trigger: %d\n", priv->trigger);
return -EINVAL;
}
/* Disable the Channel by resetting the CCxE Bit in the CCER register */
ccer = tim_getreg(priv, STM32_GTIM_CCER_OFFSET);
ccer &= ~ccenable;
tim_putreg(priv, STM32_GTIM_CCER_OFFSET, ccer);
/* Fetch the CR2, CCMR1, and CCMR2 register (already have ccer) */
cr2 = tim_getreg(priv, STM32_GTIM_CR2_OFFSET);
ccmr1 = tim_getreg(priv, STM32_GTIM_CCMR1_OFFSET);
ccmr2 = tim_getreg(priv, STM32_GTIM_CCMR2_OFFSET);
/* Reset the Output Compare Mode Bits and set the select output compare
* mode
*/
ccmr1 &= ~(ATIM_CCMR1_CC1S_MASK | ATIM_CCMR1_OC1M_MASK | ATIM_CCMR1_OC1PE |
ATIM_CCMR1_CC2S_MASK | ATIM_CCMR1_OC2M_MASK | ATIM_CCMR1_OC2PE);
ccmr2 &= ~(ATIM_CCMR2_CC3S_MASK | ATIM_CCMR2_OC3M_MASK | ATIM_CCMR2_OC3PE |
ATIM_CCMR2_CC4S_MASK | ATIM_CCMR2_OC4M_MASK | ATIM_CCMR2_OC4PE);
ccmr1 |= ocmode1;
ccmr2 |= ocmode2;
/* Reset the output polarity level of all channels (selects high
* polarity)
*/
ccer &= ~(ATIM_CCER_CC1P | ATIM_CCER_CC2P |
ATIM_CCER_CC3P | ATIM_CCER_CC4P);
/* Enable the output state of the selected channel (only) */
ccer &= ~(ATIM_CCER_CC1E | ATIM_CCER_CC2E |
ATIM_CCER_CC3E | ATIM_CCER_CC4E);
ccer |= ccenable;
/* TODO: revisit and simplify logic below */
#if STM32_NATIM > 0
if (priv->tbase == STM32_TIM1_BASE
# ifdef STM32_TIM8_BASE
|| priv->tbase == STM32_TIM8_BASE
# endif
)
{
/* Reset output N polarity level, output N state, output compare state,
* output compare N idle state.
*/
ccer &= ~(ATIM_CCER_CC1NE | ATIM_CCER_CC1NP |
ATIM_CCER_CC2NE | ATIM_CCER_CC2NP |
ATIM_CCER_CC3NE | ATIM_CCER_CC3NP);
/* Reset the output compare and output compare N IDLE State */
cr2 &= ~(ATIM_CR2_OIS1 | ATIM_CR2_OIS1N |
ATIM_CR2_OIS2 | ATIM_CR2_OIS2N |
ATIM_CR2_OIS3 | ATIM_CR2_OIS3N |
ATIM_CR2_OIS4);
}
# if defined(HAVE_GTIM_CCXNP)
else
{
ccer &= ~(GTIM_CCER_CC1NP | GTIM_CCER_CC2NP | GTIM_CCER_CC3NP |
GTIM_CCER_CC4NP);
}
# endif
#else /* No ADV TIM */
/* For the STM32L15XX family only these timers can be used: 2-4, 6, 7, 9,
* 10. Reset the output compare and output compare N IDLE State
*/
if (priv->tbase >= STM32_TIM2_BASE && priv->tbase <= STM32_TIM4_BASE)
{
/* Reset output N polarity level, output N state, output compare state,
* output compare N idle state.
*/
ccer &= ~(GTIM_CCER_CC1NE | GTIM_CCER_CC1NP |
GTIM_CCER_CC2NE | GTIM_CCER_CC2NP |
GTIM_CCER_CC3NE | GTIM_CCER_CC3NP |
GTIM_CCER_CC4NP);
}
#endif
/* Save the modified register values */
tim_putreg(priv, STM32_GTIM_CR2_OFFSET, cr2);
tim_putreg(priv, STM32_GTIM_CCMR1_OFFSET, ccmr1);
tim_putreg(priv, STM32_GTIM_CCMR2_OFFSET, ccmr2);
tim_putreg(priv, STM32_GTIM_CCER_OFFSET, ccer);
tim_putreg(priv, STM32_GTIM_EGR_OFFSET, egr);
/* Set the ARR Preload Bit */
tim_modifyreg(priv, STM32_GTIM_CR1_OFFSET, 0, GTIM_CR1_ARPE);
/* Enable the timer counter */
adc_timstart(priv, true);
tim_dumpregs(priv, "After starting timers");
return OK;
}
#endif
/****************************************************************************
* Name: adc_reg_startconv
*
* Description:
* Start (or stop) the ADC regular conversion process
*
* Input Parameters:
* priv - A reference to the ADC block status
* enable - True: Start conversion
*
* Returned Value:
*
****************************************************************************/
#if defined(HAVE_IP_ADC_V2)
static void adc_reg_startconv(FAR struct stm32_dev_s *priv, bool enable)
{
uint32_t regval;
ainfo("reg enable: %d\n", enable ? 1 : 0);
if (enable)
{
/* Start the conversion of regular channels */
adc_modifyreg(priv, STM32_ADC_CR_OFFSET, 0, ADC_CR_ADSTART);
}
else
{
regval = adc_getreg(priv, STM32_ADC_CR_OFFSET);
/* Is a conversion ongoing? */
if ((regval & ADC_CR_ADSTART) != 0)
{
/* Stop the conversion */
adc_putreg(priv, STM32_ADC_CR_OFFSET, regval | ADC_CR_ADSTP);
/* Wait for the conversion to stop */
while ((adc_getreg(priv, STM32_ADC_CR_OFFSET) &
ADC_CR_ADSTP) != 0);
}
}
}
#elif defined(HAVE_IP_ADC_V1) && !defined(HAVE_BASIC_ADC)
static void adc_reg_startconv(FAR struct stm32_dev_s *priv, bool enable)
{
ainfo("reg enable: %d\n", enable ? 1 : 0);
if (enable)
{
/* Start the conversion of regular channels */
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, 0, ADC_CR2_SWSTART);
}
else
{
/* Stop the conversion */
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, ADC_CR2_SWSTART, 0);
}
}
#else /* ADV IPv1 BASIC */
static void adc_reg_startconv(FAR struct stm32_dev_s *priv, bool enable)
{
ainfo("reg enable: %d\n", enable ? 1 : 0);
if (!enable)
{
/* Clear ADON to stop the conversion and put the ADC in the
* power down state.
*/
adc_enable(priv, false);
}
/* If the ADC is already on, set ADON again to start the conversion.
* Otherwise, set ADON once to wake up the ADC from the power down state.
*/
adc_enable(priv, true);
}
#endif
#ifdef ADC_HAVE_INJECTED
/****************************************************************************
* Name: adc_inj_startconv
*
* Description:
* Start (or stop) the ADC injected conversion process
*
* Input Parameters:
* priv - A reference to the ADC block status
* enable - True: Start conversion
*
* Returned Value:
*
****************************************************************************/
#if defined(HAVE_IP_ADC_V2)
static void adc_inj_startconv(FAR struct stm32_dev_s *priv, bool enable)
{
uint32_t regval;
ainfo("inj enable: %d\n", enable ? 1 : 0);
if (enable)
{
/* Start the conversion of regular channels */
adc_modifyreg(priv, STM32_ADC_CR_OFFSET, 0, ADC_CR_JADSTART);
}
else
{
regval = adc_getreg(priv, STM32_ADC_CR_OFFSET);
/* Is a conversion ongoing? */
if ((regval & ADC_CR_JADSTART) != 0)
{
/* Stop the conversion */
adc_putreg(priv, STM32_ADC_CR_OFFSET, regval | ADC_CR_JADSTP);
/* Wait for the conversion to stop */
while ((adc_getreg(priv, STM32_ADC_CR_OFFSET) &
ADC_CR_JADSTP) != 0);
}
}
}
#elif defined(HAVE_IP_ADC_V1) && !defined(HAVE_BASIC_ADC)
static void adc_inj_startconv(FAR struct stm32_dev_s *priv, bool enable)
{
ainfo("inj enable: %d\n", enable ? 1 : 0);
if (enable)
{
/* Start the conversion of injected channels */
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, 0, ADC_CR2_JSWSTART);
}
else
{
/* Stop the conversion */
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, ADC_CR2_JSWSTART, 0);
}
}
#else /* ADV IPv1 BASIC */
# error TODO
#endif
#endif /* ADC_HAVE_INJECTED */
/****************************************************************************
* Name: adccmn_lock
****************************************************************************/
#ifdef HAVE_ADC_CMN_DATA
static int adccmn_lock(FAR struct stm32_dev_s *priv, bool lock)
{
int ret;
if (lock)
{
ret = nxsem_wait_uninterruptible(&priv->cmn->lock);
}
else
{
ret = nxsem_post(&priv->cmn->lock);
}
return ret;
}
#endif
/****************************************************************************
* Name: adc_rccreset
*
* Description:
* Deinitializes the ADCx peripheral registers to their default
* reset values. It could set all the ADCs configured.
*
* Input Parameters:
* regaddr - The register to read
* reset - Condition, set or reset
*
* Returned Value:
*
****************************************************************************/
#if defined(HAVE_IP_ADC_V1) && defined(HAVE_BASIC_ADC)
static void adc_rccreset(FAR struct stm32_dev_s *priv, bool reset)
{
uint32_t adcbit;
/* Pick the appropriate bit in the RCC reset register.
* For the basic STM32 ADC IPv1, there is an individual bit to reset
* each ADC (ADC12 and ADC34).
*/
switch (priv->intf)
{
#ifdef CONFIG_STM32_ADC1
case 1:
{
adcbit = RCC_RSTR_ADC1RST;
break;
}
#endif
#ifdef CONFIG_STM32_ADC2
case 2:
{
adcbit = RCC_RSTR_ADC2RST;
break;
}
#endif
#ifdef CONFIG_STM32_ADC3
case 3:
{
adcbit = RCC_RSTR_ADC3RST;
break;
}
#endif
#ifdef CONFIG_STM32_ADC4
case 4:
{
adcbit = RCC_RSTR_ADC4RST;
break;
}
#endif
default:
{
return;
}
}
/* Set or clear the selected bit in the RCC reset register */
if (reset)
{
/* Enable ADC reset state */
modifyreg32(STM32_RCC_RSTR, 0, adcbit);
}
else
{
/* Release ADC from reset state */
modifyreg32(STM32_RCC_RSTR, adcbit, 0);
}
}
#elif defined(HAVE_IP_ADC_V1)
static void adc_rccreset(FAR struct stm32_dev_s *priv, bool reset)
{
uint32_t adcbit;
/* Pick the appropriate bit in the RCC reset register.
* For the STM32 ADC IPv1, there is one common reset for all ADCs.
*/
switch (priv->intf)
{
case 1:
case 2:
case 3:
{
adcbit = RCC_RSTR_ADC123RST;
break;
}
default:
{
return;
}
}
/* Set or clear the selected bit in the RCC reset register */
if (reset)
{
/* Enable ADC reset state */
modifyreg32(STM32_RCC_RSTR, 0, adcbit);
}
else
{
/* Release ADC from reset state */
modifyreg32(STM32_RCC_RSTR, adcbit, 0);
}
}
#elif defined(HAVE_IP_ADC_V2)
static void adc_rccreset(FAR struct stm32_dev_s *priv, bool reset)
{
uint32_t adcbit;
/* Pick the appropriate bit in the RCC reset register.
* For the STM32 ADC IPv2, there is an individual bit to reset each
* ADC block.
*/
switch (priv->intf)
{
#if defined(CONFIG_STM32_ADC1) || defined(CONFIG_STM32_ADC2)
case 1:
case 2:
{
adcbit = RCC_RSTR_ADC12RST;
break;
}
#endif
#if defined(CONFIG_STM32_ADC3) || defined(CONFIG_STM32_ADC4)
case 3:
case 4:
{
adcbit = RCC_RSTR_ADC34RST;
break;
}
#endif
default:
{
return;
}
}
/* Set or clear the selected bit in the RCC reset register */
if (reset)
{
/* Enable ADC reset state */
modifyreg32(STM32_RCC_RSTR, 0, adcbit);
}
else
{
/* Release ADC from reset state */
modifyreg32(STM32_RCC_RSTR, adcbit, 0);
}
}
#endif
/****************************************************************************
* Name: adc_power_down_idle
*
* Description:
* Enables or disables power down during the idle phase.
*
* Input Parameters:
*
* priv - pointer to the adc device structure
* pdi_high - true: The ADC is powered down when waiting for a start event
* false: The ADC is powered up when waiting for a start event
*
* Returned Value:
* None.
*
****************************************************************************/
#ifdef CONFIG_STM32_STM32L15XX
static void adc_power_down_idle(FAR struct stm32_dev_s *priv, bool pdi_high)
{
uint32_t regval;
ainfo("PDI: %d\n", pdi_high ? 1 : 0);
regval = adc_getreg(priv, STM32_ADC_CR1_OFFSET);
if ((STM32_ADC1_CR2 & ADC_CR2_ADON) == 0)
{
if (pdi_high)
{
regval |= ADC_CR1_PDI;
}
else
{
regval &= ~ADC_CR1_PDI;
}
adc_putreg(priv, STM32_ADC_CR1_OFFSET, regval);
}
}
#endif
/****************************************************************************
* Name: adc_power_down_delay
*
* Description:
* Enables or disables power down during the delay phase.
*
* Input Parameters:
*
* priv - pointer to the adc device structure
* pdd_high - true: The ADC is powered down when waiting for a start event
* false: The ADC is powered up when waiting for a start event
*
* Returned Value:
* None.
*
****************************************************************************/
#ifdef CONFIG_STM32_STM32L15XX
static void adc_power_down_delay(FAR struct stm32_dev_s *priv, bool pdd_high)
{
uint32_t regval;
ainfo("PDD: %d\n", pdd_high ? 1 : 0);
regval = adc_getreg(priv, STM32_ADC_CR1_OFFSET);
if ((STM32_ADC1_CR2 & ADC_CR2_ADON) == 0)
{
if (pdd_high)
{
regval |= ADC_CR1_PDD;
}
else
{
regval &= ~ADC_CR1_PDD;
}
adc_putreg(priv, STM32_ADC_CR1_OFFSET, regval);
}
}
#endif
/****************************************************************************
* Name: adc_dels_after_conversion
*
* Description:
* Defines the length of the delay which is applied after a conversion or
* a sequence of conversions.
*
* Input Parameters:
*
* priv - pointer to the adc device structure
* delay - delay selection (see definition in chip/chip/stm32_adc.h
* starting from line 284)
*
* Returned Value:
*
****************************************************************************/
#ifdef CONFIG_STM32_STM32L15XX
static void adc_dels_after_conversion(FAR struct stm32_dev_s *priv,
uint32_t delay)
{
ainfo("Delay selected: 0x%08x\n", delay);
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, ADC_CR2_DELS_MASK, delay);
}
#endif
/****************************************************************************
* Name: adc_select_ch_bank
*
* Description:
* Selects the bank of channels to be converted
* (! Must be modified only when no conversion is on going !)
*
* Input Parameters:
*
* priv - pointer to the adc device structure
* enable - true: bank of channels B selected
* false: bank of channels A selected
*
* Returned Value:
*
****************************************************************************/
#ifdef CONFIG_STM32_STM32L15XX
static void adc_select_ch_bank(FAR struct stm32_dev_s *priv,
bool chb_selected)
{
ainfo("Bank of channels selected: %c\n", chb_selected ? 'B' : 'A');
if (chb_selected)
{
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, 0, ADC_CR2_CFG);
}
else
{
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, ADC_CR2_CFG, 0);
}
}
#endif
/****************************************************************************
* Name: adc_enable
*
* Description:
* Enables or disables the specified ADC peripheral. Also, starts a
* conversion when the ADC is not triggered by timers
*
* Input Parameters:
*
* enable - true: enable ADC conversion
* false: disable ADC conversion
*
* Returned Value:
*
****************************************************************************/
#if defined(HAVE_IP_ADC_V2)
static void adc_enable(FAR struct stm32_dev_s *priv, bool enable)
{
uint32_t regval;
ainfo("enable: %d\n", enable ? 1 : 0);
regval = adc_getreg(priv, STM32_ADC_CR_OFFSET);
if (enable)
{
/* Enable the ADC */
adc_putreg(priv, STM32_ADC_CR_OFFSET, regval | ADC_CR_ADEN);
/* Wait for the ADC to be ready */
while ((adc_getreg(priv, STM32_ADC_ISR_OFFSET) & ADC_INT_ARDY) == 0);
}
else if ((regval & ADC_CR_ADEN) != 0 && (regval & ADC_CR_ADDIS) == 0)
{
/* Stop ongoing regular conversions */
adc_reg_startconv(priv, false);
/* Disable the ADC */
adc_putreg(priv, STM32_ADC_CR_OFFSET, regval | ADC_CR_ADDIS);
/* Wait for the ADC to be disabled */
while ((adc_getreg(priv, STM32_ADC_CR_OFFSET) & ADC_CR_ADEN) != 0);
}
}
#else /* HAVE_IP_ADC_V1 */
static void adc_enable(FAR struct stm32_dev_s *priv, bool enable)
{
#ifdef ADC_SR_ADONS
bool enabled = (adc_getreg(priv, STM32_ADC_SR_OFFSET) & ADC_SR_ADONS) != 0;
#else
bool enabled = false;
#endif
ainfo("enable: %d\n", enable ? 1 : 0);
if (!enabled && enable)
{
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, 0, ADC_CR2_ADON);
}
else if (enabled && !enable)
{
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, ADC_CR2_ADON, 0);
}
}
#endif
/****************************************************************************
* Name: adc_dmaconvcallback
*
* Description:
* Callback for DMA. Called from the DMA transfer complete interrupt after
* all channels have been converted and transferred with DMA.
*
* Input Parameters:
*
* handle - handle to DMA
* isr -
* arg - adc device
*
* Returned Value:
*
****************************************************************************/
#if defined(ADC_HAVE_DMA) && !defined(CONFIG_STM32_ADC_NOIRQ)
static void adc_dmaconvcallback(DMA_HANDLE handle, uint8_t isr,
FAR void *arg)
{
FAR struct adc_dev_s *dev = (FAR struct adc_dev_s *)arg;
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
int i;
/* Verify that the upper-half driver has bound its callback functions */
if (priv->cb != NULL)
{
DEBUGASSERT(priv->cb->au_receive != NULL);
for (i = 0; i < priv->rnchannels; i++)
{
priv->cb->au_receive(dev, priv->r_chanlist[priv->current],
priv->r_dmabuffer[priv->current]);
priv->current++;
if (priv->current >= priv->rnchannels)
{
/* Restart the conversion sequence from the beginning */
priv->current = 0;
}
}
}
/* Restart DMA for the next conversion series */
adc_modifyreg(priv, STM32_ADC_DMAREG_OFFSET, ADC_DMAREG_DMA, 0);
adc_modifyreg(priv, STM32_ADC_DMAREG_OFFSET, 0, ADC_DMAREG_DMA);
}
#endif
/****************************************************************************
* Name: adc_bind
*
* Description:
* Bind the upper-half driver callbacks to the lower-half implementation.
* This must be called early in order to receive ADC event notifications.
*
****************************************************************************/
static int adc_bind(FAR struct adc_dev_s *dev,
FAR const struct adc_callback_s *callback)
{
#ifdef ADC_HAVE_CB
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
DEBUGASSERT(priv != NULL);
priv->cb = callback;
#else
UNUSED(dev);
UNUSED(callback);
#endif
return OK;
}
/****************************************************************************
* Name: adc_watchdog_cfg
****************************************************************************/
#if defined(HAVE_IP_ADC_V2)
static void adc_watchdog_cfg(FAR struct stm32_dev_s *priv)
{
uint32_t clrbits = 0;
uint32_t setbits = 0;
/* Initialize the watchdog 1 threshold register */
adc_putreg(priv, STM32_ADC_TR1_OFFSET, 0x0fff0000);
/* Enable the analog watchdog */
clrbits = ADC_CFGR1_AWD1CH_MASK;
setbits = ADC_CFGR1_AWD1EN | ADC_CFGR1_AWD1SGL |
(priv->r_chanlist[0] << ADC_CFGR1_AWD1CH_SHIFT);
/* Modify CFGR configuration */
adc_modifyreg(priv, STM32_ADC_CFGR1_OFFSET, clrbits, setbits);
}
#else
static void adc_watchdog_cfg(FAR struct stm32_dev_s *priv)
{
uint32_t clrbits = 0;
uint32_t setbits = 0;
/* Initialize the watchdog high threshold register */
adc_putreg(priv, STM32_ADC_HTR_OFFSET, 0x00000fff);
/* Initialize the watchdog low threshold register */
adc_putreg(priv, STM32_ADC_LTR_OFFSET, 0x00000000);
clrbits = ADC_CR1_AWDCH_MASK;
setbits = ADC_CR1_AWDEN | (priv->r_chanlist[0] << ADC_CR1_AWDCH_SHIFT);
/* Modify CR1 configuration */
adc_modifyreg(priv, STM32_ADC_CR1_OFFSET, clrbits, setbits);
}
#endif
/****************************************************************************
* Name: adc_calibrate
****************************************************************************/
#if defined(HAVE_IP_ADC_V2)
static void adc_calibrate(FAR struct stm32_dev_s *priv)
{
#if 0 /* Doesn't work */
/* Calibrate the ADC */
adc_modifyreg(priv, STM32_ADC_CR_OFFSET, ADC_CR_ADCALDIF, AD_CR_ADCAL);
/* Wait for the calibration to complete */
while ((adc_getreg(priv, STM32_ADC_CR_OFFSET) & ADC_CR_ADCAL) != 0);
#else
UNUSED(priv);
#endif
}
#elif defined(HAVE_IP_ADC_V1) && defined(HAVE_BASIC_ADC)
static void adc_calibrate(FAR struct stm32_dev_s *priv)
{
/* Power on the ADC */
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, 0, ADC_CR2_ADON);
/* Wait for the ADC power on at least 2 ADCCLK cycles */
up_udelay(10);
/* Reset calibration registers */
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, 0, ADC_CR2_RSTCAL);
/* Wait for the calibration register reset to complete */
while ((adc_getreg(priv, STM32_ADC_CR2_OFFSET) & ADC_CR2_RSTCAL) != 0);
/* Start ADC auto-calibration procedure */
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, 0, ADC_CR2_CAL);
/* Wait for the calibration procedure to complete */
while ((adc_getreg(priv, STM32_ADC_CR2_OFFSET) & ADC_CR2_CAL) != 0);
/* Power off the ADC */
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, ADC_CR2_ADON, 0);
}
#else
# define adc_calibrate(priv)
#endif
/****************************************************************************
* Name: adc_mode_cfg
****************************************************************************/
#ifdef HAVE_IP_ADC_V2
static void adc_mode_cfg(FAR struct stm32_dev_s *priv)
{
uint32_t clrbits = 0;
uint32_t setbits = 0;
/* Disable continuous mode and set align to right */
clrbits = ADC_CFGR1_CONT | ADC_CFGR1_ALIGN;
/* Disable external trigger for regular channels */
clrbits |= ADC_CFGR1_EXTEN_MASK;
setbits |= ADC_CFGR1_EXTEN_NONE;
/* Set CFGR configuration */
adc_modifyreg(priv, STM32_ADC_CFGR1_OFFSET, clrbits, setbits);
}
#else
static void adc_mode_cfg(FAR struct stm32_dev_s *priv)
{
uint32_t clrbits = 0;
uint32_t setbits = 0;
#ifdef HAVE_BASIC_ADC
/* Set independent mode */
clrbits |= ADC_CR1_DUALMOD_MASK;
setbits |= ADC_CR1_IND;
#endif
#ifdef ADC_HAVE_DMA
if (priv->hasdma)
{
setbits |= ADC_CR1_SCAN;
}
#endif
/* Set CR1 configuration */
adc_modifyreg(priv, STM32_ADC_CR1_OFFSET, clrbits, setbits);
/* REVISIT: */
#ifdef CONFIG_STM32_STM32L15XX
/* Select the bank of channels A */
adc_select_ch_bank(priv, false);
# ifdef HAVE_ADC_POWERDOWN
/* Disables power down during the delay phase */
adc_power_down_idle(priv, false);
adc_power_down_delay(priv, false);
# endif
/* Delay until the converted data has been read */
adc_dels_after_conversion(priv, ADC_CR2_DELS_TILLRD);
#endif
/* Disable continuous mode and set align to right */
clrbits = ADC_CR2_CONT | ADC_CR2_ALIGN;
setbits = 0;
/* Disable external trigger for regular channels */
clrbits |= ADC_EXTREG_EXTEN_MASK;
setbits |= ADC_EXTREG_EXTEN_NONE;
/* Enable software trigger for regular channels
* REVISIT: SWSTART must be set if no EXT trigger and basic ADC IPv1
*/
#ifdef CONFIG_STM32_STM32F37XX
clrbits |= ADC_CR2_EXTSEL_MASK;
setbits |= ADC_CR2_EXTSEL_SWSTART | ADC_CR2_EXTTRIG; /* SW is considered as external trigger */
#endif
/* Set CR2 configuration */
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, clrbits, setbits);
}
#endif
/****************************************************************************
* Name: adc_voltreg_cfg
****************************************************************************/
#if defined(HAVE_IP_ADC_V2)
static void adc_voltreg_cfg(FAR struct stm32_dev_s *priv)
{
/* Set ADC voltage regulator to intermediate state */
adc_modifyreg(priv, STM32_ADC_CR_OFFSET, ADC_CR_ADVREGEN_MASK,
ADC_CR_ADVREGEN_INTER);
/* Enable the ADC voltage regulator */
adc_modifyreg(priv, STM32_ADC_CR_OFFSET, ADC_CR_ADVREGEN_MASK,
ADC_CR_ADVREGEN_ENABLED);
/* Wait for the ADC voltage regulator to startup */
up_udelay(10);
}
#else
static void adc_voltreg_cfg(FAR struct stm32_dev_s *priv)
{
/* Nothing to do here */
UNUSED(priv);
}
#endif
/****************************************************************************
* Name: adc_voltreg_cfg
****************************************************************************/
static void adc_sampletime_cfg(FAR struct adc_dev_s *dev)
{
/* Initialize the same sample time for each ADC.
* During sample cycles channel selection bits must remain unchanged.
*/
#ifdef CONFIG_STM32_ADC_CHANGE_SAMPLETIME
adc_sampletime_write((FAR struct stm32_adc_dev_s *)dev);
#else
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
adc_putreg(priv, STM32_ADC_SMPR1_OFFSET, ADC_SMPR1_DEFAULT);
adc_putreg(priv, STM32_ADC_SMPR2_OFFSET, ADC_SMPR2_DEFAULT);
# ifdef STM32_ADC_SMPR3_OFFSET
adc_putreg(priv, STM32_ADC_SMPR3_OFFSET, ADC_SMPR3_DEFAULT);
# endif
# ifdef STM32_ADC_SMPR0_OFFSET
adc_putreg(priv, STM32_ADC_SMPR0_OFFSET, ADC_SMPR0_DEFAULT);
# endif
#endif
}
/****************************************************************************
* Name: adc_common_cfg
****************************************************************************/
#if defined(HAVE_IP_ADC_V2)
static void adc_common_cfg(FAR struct stm32_dev_s *priv)
{
uint32_t clrbits = 0;
uint32_t setbits = 0;
/* REVISIT: */
clrbits = ADC_CCR_DUAL_MASK | ADC_CCR_DELAY_MASK | ADC_CCR_DMACFG |
ADC_CCR_MDMA_MASK | ADC_CCR_CKMODE_MASK | ADC_CCR_VREFEN |
ADC_CCR_TSEN | ADC_CCR_VBATEN;
setbits = ADC_CCR_DUAL_IND | ADC_CCR_DELAY(0) | ADC_CCR_MDMA_DISABLED |
ADC_CCR_CKMODE_ASYNCH;
adccmn_modifyreg(priv, STM32_ADC_CCR_OFFSET, clrbits, setbits);
}
#elif defined(HAVE_IP_ADC_V1) && !defined(HAVE_BASIC_ADC)
static void adc_common_cfg(FAR struct stm32_dev_s *priv)
{
uint32_t clrbits = 0;
uint32_t setbits = 0;
clrbits = ADC_CCR_ADCPRE_MASK | ADC_CCR_TSVREFE;
setbits = ADC_CCR_ADCPRE_DIV2;
/* REVISIT: */
#if !defined(CONFIG_STM32_STM32L15XX)
clrbits |= ADC_CCR_MULTI_MASK | ADC_CCR_DELAY_MASK | ADC_CCR_DDS |
ADC_CCR_DMA_MASK | ADC_CCR_VBATEN;
setbits |= ADC_CCR_MULTI_NONE | ADC_CCR_DMA_DISABLED;
#endif /* !defined(CONFIG_STM32_STM32L15XX) */
adccmn_modifyreg(priv, STM32_ADC_CCR_OFFSET, clrbits, setbits);
}
#else
static void adc_common_cfg(FAR struct stm32_dev_s *priv)
{
/* Do nothing here */
UNUSED(priv);
}
#endif
#ifdef ADC_HAVE_DMA
/****************************************************************************
* Name: adc_dma_cfg
****************************************************************************/
#ifdef HAVE_IP_ADC_V2
static void adc_dma_cfg(FAR struct stm32_dev_s *priv)
{
uint32_t clrbits = 0;
uint32_t setbits = 0;
/* Set DMA mode */
if (priv->dmacfg == 0)
{
/* One Shot Mode */
clrbits |= ADC_CFGR1_DMACFG;
}
else
{
/* Circular Mode */
setbits |= ADC_CFGR1_DMACFG;
}
/* Enable DMA */
setbits |= ADC_CFGR1_DMAEN;
/* Modify CFGR configuration */
adc_modifyreg(priv, STM32_ADC_CFGR1_OFFSET, clrbits, setbits);
}
#else
static void adc_dma_cfg(FAR struct stm32_dev_s *priv)
{
uint32_t clrbits = 0;
uint32_t setbits = 0;
#ifdef ADC_HAVE_DMACFG
/* Set DMA mode */
if (priv->dmacfg == 0)
{
/* One Shot Mode */
clrbits |= ADC_CR2_DDS;
}
else
{
/* Circular Mode */
setbits |= ADC_CR2_DDS;
}
#endif
/* Enable DMA */
setbits |= ADC_CR2_DMA;
/* Modify CR2 configuration */
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, clrbits, setbits);
}
#endif
/****************************************************************************
* Name: adc_dma_start
****************************************************************************/
static void adc_dma_start(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
/* Stop and free DMA if it was started before */
if (priv->dma != NULL)
{
stm32_dmastop(priv->dma);
stm32_dmafree(priv->dma);
}
priv->dma = stm32_dmachannel(priv->dmachan);
#ifndef CONFIG_STM32_ADC_NOIRQ
/* Start DMA only if standard ADC interrupts used */
stm32_dmasetup(priv->dma,
priv->base + STM32_ADC_DR_OFFSET,
(uint32_t)priv->r_dmabuffer,
priv->rnchannels,
ADC_DMA_CONTROL_WORD);
stm32_dmastart(priv->dma, adc_dmaconvcallback, dev, false);
#endif
}
#endif /* ADC_HAVE_DMA */
/****************************************************************************
* Name: adc_configure
****************************************************************************/
static void adc_configure(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
/* Turn off the ADC before configuration */
adc_enable(priv, false);
/* Configure voltage regulator if present */
adc_voltreg_cfg(priv);
/* Calibrate ADC - doesn't work for now */
adc_calibrate(priv);
/* Initialize the ADC watchdog */
adc_watchdog_cfg(priv);
/* Initialize the ADC sample time */
adc_sampletime_cfg(dev);
/* Set ADC working mode */
adc_mode_cfg(priv);
/* Configuration of the channel conversions */
if (priv->cr_channels > 0)
{
adc_set_ch(dev, 0);
}
#ifdef ADC_HAVE_INJECTED
/* Configuration of the injected channel conversions after adc enabled */
if (priv->cj_channels > 0)
{
adc_inj_set_ch(dev, 0);
}
#endif
/* ADC common register configuration */
adc_common_cfg(priv);
#ifdef ADC_HAVE_DMA
/* Configure ADC DMA if enabled */
if (priv->hasdma)
{
/* Configure ADC DMA */
adc_dma_cfg(priv);
/* Start ADC DMA */
adc_dma_start(dev);
}
#endif
#ifdef HAVE_ADC_RESOLUTION
/* Configure ADC resolution */
adc_resolution_set(dev, priv->resolution);
#endif
#ifdef ADC_HAVE_EXTCFG
/* Configure external event for regular group */
adc_extcfg_set(dev, priv->extcfg);
#endif
/* Enable ADC */
adc_enable(priv, true);
#ifdef ADC_HAVE_JEXTCFG
/* Configure external event for injected group when ADC enabled */
adc_jextcfg_set(dev, priv->jextcfg);
#if defined(HAVE_IP_ADC_V2)
/* For ADC IPv2 there is queue of context for injected conversion.
* JEXTCFG configuration is the second write to JSQR register which means
* configuration is stored on queue.
* We trigger single INJ conversion here to update context.
*/
adc_inj_startconv(priv, true);
#endif
#endif
/* Dump regs */
adc_dumpregs(priv);
}
/****************************************************************************
* Name: adc_reset
*
* Description:
* Reset the ADC device. Called early to initialize the hardware.
* This is called, before adc_setup() and on error conditions.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_reset(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
irqstate_t flags;
ainfo("intf: %d\n", priv->intf);
flags = enter_critical_section();
#ifdef HAVE_HSI_CONTROL
/* The STM32L15XX family uses HSI as an independent clock-source
* for the ADC
*/
adc_enable_hsi(true);
#endif
#if defined(HAVE_IP_ADC_V2)
/* Turn off the ADC so we can write the RCC bits */
adc_enable(priv, false);
#endif
/* Only if this is the first initialzied ADC instance in the ADC block */
#ifdef HAVE_ADC_CMN_DATA
if (adccmn_lock(priv, true) < 0)
{
return;
}
if (priv->cmn->initialized == 0)
#endif
{
/* Enable ADC reset state */
adc_rccreset(priv, true);
/* Release ADC from reset state */
adc_rccreset(priv, false);
}
#ifdef HAVE_ADC_CMN_DATA
adccmn_lock(priv, false);
#endif
leave_critical_section(flags);
}
/****************************************************************************
* Name: adc_reset_hsi_disable
*
* Description:
* Reset the ADC device with HSI and ADC shut down. Called early to
* initialize the hardware. This is called, before adc_setup() and on
* error conditions. In STM32L15XX case sometimes HSI must be shut
* down after the first initialization
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
#ifdef HAVE_HSI_CONTROL
static void adc_reset_hsi_disable(FAR struct adc_dev_s *dev)
{
adc_reset(dev);
adc_shutdown(dev);
}
#endif
/****************************************************************************
* Name: adc_setup
*
* Description:
* Configure the ADC. This method is called the first time that the ADC
* device is opened. This will occur when the port is first opened.
* This setup includes configuring and attaching ADC interrupts.
* Interrupts are all disabled upon return.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_setup(FAR struct adc_dev_s *dev)
{
#if !defined(CONFIG_STM32_ADC_NOIRQ) || defined(HAVE_ADC_CMN_DATA) || \
defined(ADC_HAVE_TIMER) || !defined(CONFIG_STM32_ADC_NO_STARTUP_CONV)
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
#endif
int ret = OK;
/* Attach the ADC interrupt */
#ifndef CONFIG_STM32_ADC_NOIRQ
ret = irq_attach(priv->irq, priv->isr, NULL);
if (ret < 0)
{
ainfo("irq_attach failed: %d\n", ret);
return ret;
}
#endif
/* Make sure that the ADC device is in the powered up, reset state */
adc_reset(dev);
/* Configure ADC device */
adc_configure(dev);
#ifdef ADC_HAVE_TIMER
/* Configure timer */
if (priv->tbase != 0)
{
ret = adc_timinit(priv);
if (ret < 0)
{
aerr("ERROR: adc_timinit failed: %d\n", ret);
}
}
#endif
/* As default conversion is started here.
*
* NOTE: for ADC IPv2 (J)ADSTART bit must be set to start ADC conversion
* even if hardware trigger is selected.
* This can be done here during the opening of the ADC device
* or later with ANIOC_TRIGGER ioctl call.
*/
#ifndef CONFIG_STM32_ADC_NO_STARTUP_CONV
/* Start regular conversion */
adc_reg_startconv(priv, true);
# ifdef ADC_HAVE_INJECTED
/* Start injected conversion */
adc_inj_startconv(priv, true);
# endif
#endif
/* Enable the ADC interrupt */
#ifndef CONFIG_STM32_ADC_NOIRQ
ainfo("Enable the ADC interrupt: irq=%d\n", priv->irq);
up_enable_irq(priv->irq);
#endif
#ifdef HAVE_ADC_CMN_DATA
/* Increase instances counter */
ret = adccmn_lock(priv, true);
if (ret < 0)
{
return ret;
}
priv->cmn->initialized += 1;
adccmn_lock(priv, false);
#endif
return ret;
}
/****************************************************************************
* Name: adc_shutdown
*
* Description:
* Disable the ADC. This method is called when the ADC device is closed.
* This method reverses the operation the setup method.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_shutdown(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
/* Disable ADC */
adc_enable(priv, false);
#ifdef HAVE_HSI_CONTROL
adc_enable_hsi(false);
#endif
#ifndef CONFIG_STM32_ADC_NOIRQ
/* Disable ADC interrupts and detach the ADC interrupt handler */
up_disable_irq(priv->irq);
irq_detach(priv->irq);
#endif
#ifdef HAVE_ADC_CMN_DATA
if (adccmn_lock(priv, true) < 0)
{
return;
}
if (priv->cmn->initialized <= 1)
#endif
{
/* Disable and reset the ADC module.
*
* NOTE: The ADC block will be reset to its reset state only if all
* ADC block instances are closed. This means that the closed
* ADC may not be reset which in turn may affect low-power
* applications. (But ADC is turned off here, is not that
* enough?)
*/
adc_rccreset(priv, true);
}
#ifdef ADC_HAVE_TIMER
/* Disable timer */
if (priv->tbase != 0)
{
adc_timstart(priv, false);
}
#endif
#ifdef HAVE_ADC_CMN_DATA
/* Decrease instances counter */
priv->cmn->initialized -= 1;
adccmn_lock(priv, false);
#endif
}
/****************************************************************************
* Name: adc_rxint
*
* Description:
* Call to enable or disable RX interrupts.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_rxint(FAR struct adc_dev_s *dev, bool enable)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
uint32_t regval;
ainfo("intf: %d enable: %d\n", priv->intf, enable ? 1 : 0);
if (enable)
{
/* Enable the analog watchdog / overrun interrupts, and if no DMA,
* end-of-conversion ADC.
*/
regval = ADC_IER_ALLINTS;
#ifdef ADC_HAVE_DMA
if (priv->hasdma)
{
regval &= ~(ADC_IER_EOC | ADC_IER_JEOC);
}
#endif
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, 0, regval);
}
else
{
/* Disable all ADC interrupts */
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, ADC_IER_ALLINTS, 0);
}
}
/****************************************************************************
* Name: adc_enable_tvref_register
*
* Description:
* Enable/disable the temperature sensor and the VREFINT channel.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* enable - true: Temperature sensor and V REFINT channel enabled
* (ch 16 and 17)
* false: Temperature sensor and V REFINT channel disabled
* (ch 16 and 17)
*
* Returned Value:
* None.
*
****************************************************************************/
#if defined(HAVE_IP_ADC_V1)
static void adc_ioc_enable_tvref_register(FAR struct adc_dev_s *dev,
bool enable)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
#ifdef HAVE_BASIC_ADC
# if defined(CONFIG_STM32_ADC1)
/* TSVREF bit is only available in the STM32_ADC1_CR2 register. */
if (priv->intf == 1)
{
if (enable)
{
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, 0, ADC_CR2_TSVREFE);
}
else
{
adc_modifyreg(priv, STM32_ADC_CR2_OFFSET, ADC_CR2_TSVREFE, 0);
}
}
ainfo("STM32_ADC_CR2 value: 0x%08x\n",
adc_getreg(priv, STM32_ADC_CR2_OFFSET));
# endif /* CONFIG_STM32_ADC1 */
#else /* !HAVE_BASIC_ADC */
if (enable)
{
adccmn_modifyreg(priv, STM32_ADC_CCR_OFFSET, 0, ADC_CCR_TSVREFE);
}
else
{
adccmn_modifyreg(priv, STM32_ADC_CCR_OFFSET, ADC_CCR_TSVREFE, 0);
}
ainfo("STM32_ADC_CCR value: 0x%08x\n",
adccmn_getreg(priv, STM32_ADC_CCR_OFFSET));
#endif
}
#endif /* HAVE_IP_ADC_V1 */
/****************************************************************************
* Name: adc_resolution_set
****************************************************************************/
#ifdef HAVE_ADC_RESOLUTION
static int adc_resolution_set(FAR struct adc_dev_s *dev, uint8_t res)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
int ret = OK;
/* Check input */
if (res > 3)
{
ret = -EINVAL;
goto errout;
}
/* Modify appropriate register */
#if defined(HAVE_IP_ADC_V1)
adc_modifyreg(priv, STM32_ADC_CR1_OFFSET, ADC_CR1_RES_MASK,
res << ADC_CR1_RES_SHIFT);
#elif defined(HAVE_IP_ADC_V2)
adc_modifyreg(priv, STM32_ADC_CFGR1_OFFSET, ADC_CFGR1_RES_MASK,
res << ADC_CFGR1_RES_SHIFT);
#endif
errout:
return ret;
}
#endif
/****************************************************************************
* Name: adc_extsel_set
****************************************************************************/
#ifdef ADC_HAVE_EXTCFG
static int adc_extcfg_set(FAR struct adc_dev_s *dev, uint32_t extcfg)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
uint32_t exten = 0;
uint32_t extsel = 0;
uint32_t setbits = 0;
uint32_t clrbits = 0;
/* Get EXTEN and EXTSEL from input */
exten = (extcfg & ADC_EXTREG_EXTEN_MASK);
extsel = (extcfg & ADC_EXTREG_EXTSEL_MASK);
/* EXTSEL selection: These bits select the external event used
* to trigger the start of conversion of a regular group. NOTE:
*
* - The position with of the EXTSEL field varies from one STM32 MCU
* to another.
* - The width of the EXTSEL field varies from one STM32 MCU to another.
*/
if (exten > 0)
{
setbits = (extsel | exten);
clrbits = (ADC_EXTREG_EXTEN_MASK | ADC_EXTREG_EXTSEL_MASK);
ainfo("Initializing extsel = 0x%08x\n", extsel);
/* Write register */
adc_modifyreg(priv, STM32_ADC_EXTREG_OFFSET, clrbits, setbits);
}
return OK;
}
#endif
/****************************************************************************
* Name: adc_jextsel_set
****************************************************************************/
#ifdef ADC_HAVE_JEXTCFG
static int adc_jextcfg_set(FAR struct adc_dev_s *dev, uint32_t jextcfg)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
uint32_t jexten = 0;
uint32_t jextsel = 0;
uint32_t setbits = 0;
uint32_t clrbits = 0;
/* Get JEXTEN and JEXTSEL from input */
jexten = (jextcfg & ADC_JEXTREG_JEXTEN_MASK);
jextsel = (jextcfg & ADC_JEXTREG_JEXTSEL_MASK);
/* JEXTSEL selection: These bits select the external event used
* to trigger the start of conversion of a injected group. NOTE:
*
* - The position with of the JEXTSEL field varies from one STM32 MCU
* to another.
* - The width of the JEXTSEL field varies from one STM32 MCU to another.
*/
if (jexten > 0)
{
setbits = (jexten | jextsel);
clrbits = (ADC_JEXTREG_JEXTEN_MASK | ADC_JEXTREG_JEXTSEL_MASK);
ainfo("Initializing jextsel = 0x%08x\n", jextsel);
/* Write register */
adc_modifyreg(priv, STM32_ADC_JEXTREG_OFFSET, clrbits, setbits);
}
return OK;
}
#endif
/****************************************************************************
* Name: adc_dumpregs
****************************************************************************/
static void adc_dumpregs(FAR struct stm32_dev_s *priv)
{
UNUSED(priv);
#if defined(HAVE_IP_ADC_V2)
ainfo("ISR: 0x%08x IER: 0x%08x CR: 0x%08x CFGR1: 0x%08x\n",
adc_getreg(priv, STM32_ADC_ISR_OFFSET),
adc_getreg(priv, STM32_ADC_IER_OFFSET),
adc_getreg(priv, STM32_ADC_CR_OFFSET),
adc_getreg(priv, STM32_ADC_CFGR1_OFFSET));
#else
ainfo("SR: 0x%08x CR1: 0x%08x CR2: 0x%08x\n",
adc_getreg(priv, STM32_ADC_SR_OFFSET),
adc_getreg(priv, STM32_ADC_CR1_OFFSET),
adc_getreg(priv, STM32_ADC_CR2_OFFSET));
#endif
ainfo("SQR1: 0x%08x SQR2: 0x%08x SQR3: 0x%08x\n",
adc_getreg(priv, STM32_ADC_SQR1_OFFSET),
adc_getreg(priv, STM32_ADC_SQR2_OFFSET),
adc_getreg(priv, STM32_ADC_SQR3_OFFSET));
ainfo("SMPR1: 0x%08x SMPR2: 0x%08x\n",
adc_getreg(priv, STM32_ADC_SMPR1_OFFSET),
adc_getreg(priv, STM32_ADC_SMPR2_OFFSET));
#if defined(STM32_ADC_SQR4_OFFSET)
ainfo("SQR4: 0x%08x\n",
adc_getreg(priv, STM32_ADC_SQR5_OFFSET));
#endif
#if defined(STM32_ADC_SQR5_OFFSET)
ainfo("SQR5: 0x%08x\n",
adc_getreg(priv, STM32_ADC_SQR4_OFFSET));
#endif
#ifdef ADC_HAVE_INJECTED
ainfo("JSQR: 0x%08x\n", adc_getreg(priv, STM32_ADC_JSQR_OFFSET));
#endif
#if defined(HAVE_IP_ADC_V2) || (defined(HAVE_IP_ADC_V1) && !defined(HAVE_BASIC_ADC))
ainfo("CCR: 0x%08x\n", adccmn_getreg(priv, STM32_ADC_CCR_OFFSET));
#endif
}
/****************************************************************************
* Name: adc_enable_vbat_channel
*
* Description:
* Enable/disable the Vbat voltage measurement channel.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* enable - true: Vbat input channel enabled (ch 18)
* false: Vbat input channel disabled (ch 18)
*
* Returned Value:
* None.
*
****************************************************************************/
#ifdef HAVE_ADC_VBAT
static void adc_enable_vbat_channel(FAR struct adc_dev_s *dev, bool enable)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
if (enable)
{
adccmn_modifyreg(priv, STM32_ADC_CCR_OFFSET, 0, ADC_CCR_VBATEN);
}
else
{
adccmn_modifyreg(priv, STM32_ADC_CCR_OFFSET, ADC_CCR_VBATEN, 0);
}
ainfo("STM32_ADC_CCR value: 0x%08x\n",
adccmn_getreg(priv, STM32_ADC_CCR_OFFSET));
}
#endif
/****************************************************************************
* Name: adc_ioc_change_sleep_between_opers
*
* Description:
* Changes PDI and PDD bits to save battery.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* cmd - command
* arg - arguments passed with command
*
* Returned Value:
*
****************************************************************************/
#ifdef HAVE_ADC_POWERDOWN
static int adc_ioc_change_sleep_between_opers(FAR struct adc_dev_s *dev,
int cmd, bool arg)
{
int ret = OK;
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
adc_enable(priv, false);
switch (cmd)
{
case IO_ENABLE_DISABLE_PDI:
adc_power_down_idle(priv, arg);
break;
case IO_ENABLE_DISABLE_PDD:
adc_power_down_delay(priv, arg);
break;
case IO_ENABLE_DISABLE_PDD_PDI:
adc_power_down_idle(priv, arg);
adc_power_down_delay(priv, arg);
break;
default:
ainfo("unknown cmd: %d\n", cmd);
break;
}
adc_enable(priv, true);
return ret;
}
#endif
/****************************************************************************
* Name: adc_ioc_enable_awd_int
*
* Description:
* Turns ON/OFF ADC analog watchdog interrupt.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* arg - true: Turn ON interrupt
* false: Turn OFF interrupt
*
* Returned Value:
*
****************************************************************************/
static void adc_ioc_enable_awd_int(FAR struct stm32_dev_s *priv, bool enable)
{
if (enable)
{
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, 0, ADC_IER_AWD);
}
else
{
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, ADC_IER_AWD, 0);
}
}
/****************************************************************************
* Name: adc_ioc_enable_eoc_int
*
* Description:
* Turns ON/OFF ADC EOC interrupt.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* arg - true: Turn ON interrupt
* false: Turn OFF interrupt
*
* Returned Value:
*
****************************************************************************/
static void adc_ioc_enable_eoc_int(FAR struct stm32_dev_s *priv, bool enable)
{
if (enable)
{
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, 0, ADC_IER_EOC);
}
else
{
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, ADC_IER_EOC, 0);
}
}
/****************************************************************************
* Name: adc_ioc_enable_jeoc_int
*
* Description:
* Turns ON/OFF ADC injected channels interrupt.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* arg - true: Turn ON interrupt
* false: Turn OFF interrupt
*
* Returned Value:
*
****************************************************************************/
static void adc_ioc_enable_jeoc_int(FAR struct stm32_dev_s *priv,
bool enable)
{
if (enable)
{
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, 0, ADC_IER_JEOC);
}
else
{
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, ADC_IER_JEOC, 0);
}
}
/****************************************************************************
* Name: adc_ioc_enable_ovr_int
*
* Description:
* Turns ON/OFF ADC overrun interrupt.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* arg - true: Turn ON interrupt
* false: Turn OFF interrupt
*
* Returned Value:
*
****************************************************************************/
static void adc_ioc_enable_ovr_int(FAR struct stm32_dev_s *priv, bool enable)
{
if (enable)
{
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, 0, ADC_IER_OVR);
}
else
{
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, ADC_IER_OVR, 0);
}
}
/****************************************************************************
* Name: adc_ioc_change_ints
*
* Description:
* Turns ON/OFF ADC interrupts.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* cmd - command
* arg - arguments passed with command
*
* Returned Value:
*
****************************************************************************/
static int adc_ioc_change_ints(FAR struct adc_dev_s *dev, int cmd, bool arg)
{
int ret = OK;
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
switch (cmd)
{
case IO_ENABLE_DISABLE_AWDIE:
adc_ioc_enable_awd_int(priv, arg);
break;
case IO_ENABLE_DISABLE_EOCIE:
adc_ioc_enable_eoc_int(priv, arg);
break;
case IO_ENABLE_DISABLE_JEOCIE:
adc_ioc_enable_jeoc_int(priv, arg);
break;
case IO_ENABLE_DISABLE_OVRIE:
adc_ioc_enable_ovr_int(priv, arg);
break;
case IO_ENABLE_DISABLE_ALL_INTS:
adc_ioc_enable_awd_int(priv, arg);
adc_ioc_enable_eoc_int(priv, arg);
adc_ioc_enable_jeoc_int(priv, arg);
adc_ioc_enable_ovr_int(priv, arg);
break;
default:
ainfo("unknown cmd: %d\n", cmd);
break;
}
return ret;
}
/****************************************************************************
* Name: adc_ioc_wait_rcnr_zeroed
*
* Description:
* For the STM3215XX-family the ADC_SR_RCNR bit must be zeroed,
* before next conversion.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
*
* Returned Value:
*
****************************************************************************/
#ifdef CONFIG_STM32_STM32L15XX
static int adc_ioc_wait_rcnr_zeroed(FAR struct stm32_dev_s *priv)
{
int i;
for (i = 0; i < 30000; i++)
{
if ((adc_getreg(priv, STM32_ADC_SR_OFFSET) & ADC_SR_RCNR) == 0)
{
return OK;
}
}
return -ENODATA;
}
#endif
/****************************************************************************
* Name: adc_enable_hsi
*
* Description:
* Enable/Disable HSI clock
*
* Input Parameters:
* enable - true : HSI clock for ADC enabled
* false : HSI clock for ADC disabled
*
* Returned Value:
*
****************************************************************************/
#ifdef HAVE_HSI_CONTROL
static void adc_enable_hsi(bool enable)
{
if (enable)
{
/* Enable the HSI */
stm32_modifyreg32(STM32_RCC_CR, 0, RCC_CR_HSION);
while ((getreg32(STM32_RCC_CR) & RCC_CR_HSIRDY) == 0);
}
else
{
/* Disable the HSI */
stm32_modifyreg32(STM32_RCC_CR, RCC_CR_HSION, 0);
}
}
#endif
/****************************************************************************
* Name: adc_sqrbits
****************************************************************************/
static uint32_t adc_sqrbits(FAR struct stm32_dev_s *priv, int first,
int last, int offset)
{
uint32_t bits = 0;
int i;
for (i = first - 1;
i < priv->rnchannels && i < last;
i++, offset += ADC_SQ_OFFSET)
{
bits |= (uint32_t)priv->r_chanlist[i] << offset;
}
return bits;
}
/****************************************************************************
* Name: adc_set_ch
*
* Description:
* Sets the ADC channel.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* ch - ADC channel number + 1. 0 reserved for all configured channels
*
* Returned Value:
* int - errno
*
****************************************************************************/
static int adc_set_ch(FAR struct adc_dev_s *dev, uint8_t ch)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
uint32_t bits;
int i;
if (ch == 0)
{
priv->current = 0;
priv->rnchannels = priv->cr_channels;
}
else
{
for (i = 0; i < priv->cr_channels && priv->r_chanlist[i] != ch - 1;
i++);
if (i >= priv->cr_channels)
{
return -ENODEV;
}
priv->current = i;
priv->rnchannels = 1;
}
#ifdef STM32_ADC_SQR5_OFFSET
bits = adc_sqrbits(priv, ADC_SQR5_FIRST, ADC_SQR5_LAST,
ADC_SQR5_SQ_OFFSET);
adc_modifyreg(priv, STM32_ADC_SQR5_OFFSET, ~ADC_SQR5_RESERVED, bits);
#endif
#ifdef STM32_ADC_SQR4_OFFSET
bits = adc_sqrbits(priv, ADC_SQR4_FIRST, ADC_SQR4_LAST,
ADC_SQR4_SQ_OFFSET);
adc_modifyreg(priv, STM32_ADC_SQR4_OFFSET, ~ADC_SQR4_RESERVED, bits);
#endif
bits = adc_sqrbits(priv, ADC_SQR3_FIRST, ADC_SQR3_LAST,
ADC_SQR3_SQ_OFFSET);
adc_modifyreg(priv, STM32_ADC_SQR3_OFFSET, ~ADC_SQR3_RESERVED, bits);
bits = adc_sqrbits(priv, ADC_SQR2_FIRST, ADC_SQR2_LAST,
ADC_SQR2_SQ_OFFSET);
adc_modifyreg(priv, STM32_ADC_SQR2_OFFSET, ~ADC_SQR2_RESERVED, bits);
bits = ((uint32_t)priv->rnchannels - 1) << ADC_SQR1_L_SHIFT;
bits |= adc_sqrbits(priv, ADC_SQR1_FIRST,
ADC_SQR1_LAST, ADC_SQR1_SQ_OFFSET);
adc_modifyreg(priv, STM32_ADC_SQR1_OFFSET, ~ADC_SQR1_RESERVED, bits);
return OK;
}
#ifdef ADC_HAVE_INJECTED
/****************************************************************************
* Name: adc_inj_set_ch
****************************************************************************/
static int adc_inj_set_ch(FAR struct adc_dev_s *dev, uint8_t ch)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
uint32_t clrbits;
uint32_t setbits;
int i;
/* Configure injected sequence length */
setbits = ADC_JSQR_JL(priv->cj_channels);
clrbits = ADC_JEXTREG_JEXTSEL_MASK | ADC_JSQR_JL_MASK;
/* Configure injected channels */
for (i = 0 ; i < priv->cj_channels; i += 1)
{
#if defined(HAVE_IP_ADC_V1)
/* Injected channels sequence for for ADC IPv1:
*
* 1 2 3 4
* IL=1: JSQR4,
* IL=2: JSQR3, JSQR4
* IL=3: JSQR2, JSQR3, JSQR4
* IL=4: JSQR1, JSQR2, JSQR3, JSQR4
*/
setbits |= (priv->j_chanlist[priv->cj_channels - 1 - i] <<
(ADC_JSQR_JSQ4_SHIFT - ADC_JSQR_JSQ_SHIFT * i));
#else
setbits |= priv->j_chanlist[i] << (ADC_JSQR_JSQ1_SHIFT +
ADC_JSQR_JSQ_SHIFT * i);
#endif
}
/* Write register */
adc_modifyreg(priv, STM32_ADC_JSQR_OFFSET, clrbits, setbits);
return OK;
}
#endif
/****************************************************************************
* Name: adc_ioctl
*
* Description:
* All ioctl calls will be routed through this method.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* cmd - command
* arg - arguments passed with command
*
* Returned Value:
*
****************************************************************************/
static int adc_ioctl(FAR struct adc_dev_s *dev, int cmd, unsigned long arg)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
int ret = OK;
switch (cmd)
{
case ANIOC_TRIGGER:
{
/* Start regular conversion if regular channels configured */
if (priv->cr_channels > 0)
{
adc_reg_startconv(priv, true);
}
#ifdef ADC_HAVE_INJECTED
/* Start injected conversion if injected channels configured */
if (priv->cj_channels > 0)
{
adc_inj_startconv(priv, true);
}
#endif
break;
}
case IO_TRIGGER_REG:
{
/* Start regular conversion if regular channels configured */
if (priv->cr_channels > 0)
{
adc_reg_startconv(priv, true);
}
break;
}
#ifdef ADC_HAVE_INJECTED
case IO_TRIGGER_INJ:
{
/* Start injected conversion if injected channels configured */
if (priv->cj_channels > 0)
{
adc_inj_startconv(priv, true);
}
break;
}
#endif
case IO_ENABLE_DISABLE_AWDIE:
case IO_ENABLE_DISABLE_EOCIE:
case IO_ENABLE_DISABLE_JEOCIE:
case IO_ENABLE_DISABLE_OVRIE:
case IO_ENABLE_DISABLE_ALL_INTS:
{
adc_ioc_change_ints(dev, cmd, *(bool *)arg);
break;
}
#if defined(HAVE_IP_ADC_V1)
case IO_ENABLE_TEMPER_VOLT_CH:
{
adc_ioc_enable_tvref_register(dev, *(bool *)arg);
break;
}
#endif
#ifdef HAVE_ADC_VBAT
case IO_ENABLE_DISABLE_VBAT_CH:
{
adc_enable_vbat_channel(dev, *(bool *)arg);
break;
}
#endif
#ifdef HAVE_ADC_POWERDOWN
case IO_ENABLE_DISABLE_PDI:
case IO_ENABLE_DISABLE_PDD:
case IO_ENABLE_DISABLE_PDD_PDI:
{
adc_ioc_change_sleep_between_opers(dev, cmd, *(bool *)arg);
break;
}
#endif
case IO_STOP_ADC:
{
adc_enable(priv, false);
#ifdef HAVE_HSI_CONTROL
adc_enable_hsi(false);
#endif
break;
}
case IO_START_ADC:
{
#ifdef HAVE_HSI_CONTROL
adc_enable_hsi(true);
#endif
adc_enable(priv, true);
break;
}
case IO_START_CONV:
{
uint8_t ch = ((uint8_t)arg);
#ifdef CONFIG_STM32_STM32L15XX
ret = adc_ioc_wait_rcnr_zeroed(priv);
if (ret < 0)
{
return ret;
}
#endif
ret = adc_set_ch(dev, ch);
if (ret < 0)
{
return ret;
}
#ifdef CONFIG_ADC
if (ch)
{
/* Clear fifo if upper-half driver enabled */
dev->ad_recv.af_head = 0;
dev->ad_recv.af_tail = 0;
}
#endif
adc_reg_startconv(priv, true);
break;
}
default:
{
aerr("ERROR: Unknown cmd: %d\n", cmd);
ret = -ENOTTY;
break;
}
}
return ret;
}
#ifndef CONFIG_STM32_ADC_NOIRQ
/****************************************************************************
* Name: adc_interrupt
*
* Description:
* Common ADC interrupt handler.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_interrupt(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
uint32_t regval;
uint32_t pending;
int32_t data;
regval = adc_getreg(priv, STM32_ADC_ISR_OFFSET);
pending = regval & ADC_ISR_ALLINTS;
if (pending == 0)
{
return OK;
}
/* Identifies the interruption AWD, OVR or EOC */
if ((regval & ADC_ISR_AWD) != 0)
{
awarn("WARNING: Analog Watchdog, Value converted out of range!\n");
}
if ((regval & ADC_ISR_OVR) != 0)
{
awarn("WARNING: Overrun has occurred!\n");
}
/* EOC: End of conversion */
if ((regval & ADC_ISR_EOC) != 0)
{
/* Read the converted value and clear EOC bit
* (It is cleared by reading the ADC_DR)
*/
data = adc_getreg(priv, STM32_ADC_DR_OFFSET) & ADC_DR_RDATA_MASK;
/* Verify that the upper-half driver has bound its callback functions */
if (priv->cb != NULL)
{
/* Give the ADC data to the ADC driver. The ADC receive() method
* accepts 3 parameters:
*
* 1) The first is the ADC device instance for this ADC block.
* 2) The second is the channel number for the data, and
* 3) The third is the converted data for the channel.
*/
DEBUGASSERT(priv->cb->au_receive != NULL);
priv->cb->au_receive(dev, priv->r_chanlist[priv->current], data);
}
/* Set the channel number of the next channel that will complete
* conversion.
*/
priv->current++;
if (priv->current >= priv->rnchannels)
{
/* Restart the conversion sequence from the beginning */
priv->current = 0;
}
}
/* Clear pending interrupts */
adc_putreg(priv, STM32_ADC_ISR_OFFSET, pending);
return OK;
}
/****************************************************************************
* Name: adc1_interrupt
*
* Description:
* ADC interrupt handler for the STM32 L15XX family.
*
* Input Parameters:
* irq - The IRQ number that generated the interrupt.
* context - Architecture specific register save information.
*
* Returned Value:
*
****************************************************************************/
#if defined(STM32_IRQ_ADC1)
static int adc1_interrupt(int irq, FAR void *context, FAR void *arg)
{
adc_interrupt(&g_adcdev1);
return OK;
}
#endif
/****************************************************************************
* Name: adc12_interrupt
*
* Description:
* ADC1/2 interrupt handler for the STM32 F1/F3 families.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
#if defined(STM32_IRQ_ADC12) && \
(defined(CONFIG_STM32_ADC1) || defined(CONFIG_STM32_ADC2))
static int adc12_interrupt(int irq, FAR void *context, FAR void *arg)
{
#ifdef CONFIG_STM32_ADC1
adc_interrupt(&g_adcdev1);
#endif
#ifdef CONFIG_STM32_ADC2
adc_interrupt(&g_adcdev2);
#endif
return OK;
}
#endif
/****************************************************************************
* Name: adc3_interrupt
*
* Description:
* ADC3 interrupt handler for the STM32 F1 family.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
#if defined(STM32_IRQ_ADC3) && defined(CONFIG_STM32_ADC3)
static int adc3_interrupt(int irq, FAR void *context, FAR void *arg)
{
adc_interrupt(&g_adcdev3);
return OK;
}
#endif
/****************************************************************************
* Name: adc4_interrupt
*
* Description:
* ADC4 interrupt handler for the STM32 F3 family.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
#if defined(STM32_IRQ_ADC4) && defined(CONFIG_STM32_ADC4)
static int adc4_interrupt(int irq, FAR void *context, FAR void *arg)
{
adc_interrupt(&g_adcdev4);
return OK;
}
#endif
/****************************************************************************
* Name: adc123_interrupt
*
* Description:
* ADC1/2/3 interrupt handler for the STM32 F2/F4 families.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
#if defined(STM32_IRQ_ADC)
static int adc123_interrupt(int irq, FAR void *context, FAR void *arg)
{
#ifdef CONFIG_STM32_ADC1
adc_interrupt(&g_adcdev1);
#endif
#ifdef CONFIG_STM32_ADC2
adc_interrupt(&g_adcdev2);
#endif
#ifdef CONFIG_STM32_ADC3
adc_interrupt(&g_adcdev3);
#endif
return OK;
}
#endif
#endif /* CONFIG_STM32_ADC_NOIRQ */
#ifdef CONFIG_STM32_ADC_LL_OPS
/****************************************************************************
* Name: adc_intack
****************************************************************************/
static void adc_intack(FAR struct stm32_adc_dev_s *dev, uint32_t source)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
/* Clear pending interrupts */
#ifdef HAVE_IP_ADC_V2
/* Cleared by writing 1 to it */
adc_putreg(priv, STM32_ADC_ISR_OFFSET, (source & ADC_ISR_ALLINTS));
#else
/* Cleared by writing 0 to it */
adc_modifyreg(priv, STM32_ADC_ISR_OFFSET, (source & ADC_ISR_ALLINTS), 0);
#endif
}
/****************************************************************************
* Name: adc_inten
****************************************************************************/
static void adc_inten(FAR struct stm32_adc_dev_s *dev, uint32_t source)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
/* Enable interrupts */
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, 0, (source & ADC_IER_ALLINTS));
}
/****************************************************************************
* Name: adc_intdis
****************************************************************************/
static void adc_intdis(FAR struct stm32_adc_dev_s *dev, uint32_t source)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
/* Disable interrupts */
adc_modifyreg(priv, STM32_ADC_IER_OFFSET, (source & ADC_IER_ALLINTS), 0);
}
/****************************************************************************
* Name: adc_ackget
****************************************************************************/
static uint32_t adc_intget(FAR struct stm32_adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
uint32_t regval;
uint32_t pending;
regval = adc_getreg(priv, STM32_ADC_ISR_OFFSET);
pending = regval & ADC_ISR_ALLINTS;
return pending;
}
/****************************************************************************
* Name: adc_regget
****************************************************************************/
static uint32_t adc_regget(FAR struct stm32_adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
return adc_getreg(priv, STM32_ADC_DR_OFFSET) & ADC_DR_RDATA_MASK;
}
/****************************************************************************
* Name: adc_llops_reg_startconv
****************************************************************************/
static void adc_llops_reg_startconv(FAR struct stm32_adc_dev_s *dev,
bool enable)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
adc_reg_startconv(priv, enable);
}
/****************************************************************************
* Name: adc_offset_set
****************************************************************************/
#ifdef HAVE_IP_ADC_V2
static int adc_offset_set(FAR struct stm32_adc_dev_s *dev, uint8_t ch,
uint8_t i, uint16_t offset)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
uint32_t regval = 0;
uint32_t reg = 0;
int ret = OK;
if (i >= 4)
{
/* There are only four offset registers. */
ret = -E2BIG;
goto errout;
}
reg = STM32_ADC_OFR1_OFFSET + i * 4;
regval = ADC_OFR_OFFSETY_EN;
adc_putreg(priv, reg, regval);
regval |= ADC_OFR_OFFSETY_CH(ch) | ADC_OFR_OFFSETY(offset);
adc_putreg(priv, reg, regval);
errout:
return ret;
}
#else /* HAVE_IP_ADC_V1 */
static int adc_offset_set(FAR struct stm32_adc_dev_s *dev, uint8_t ch,
uint8_t i, uint16_t offset)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
uint32_t reg = 0;
int ret = OK;
/* WARNING: Offset only for injected channels! */
UNUSED(ch);
if (i >= 4)
{
/* There are only four offset registers. */
ret = -E2BIG;
goto errout;
}
reg = STM32_ADC_JOFR1_OFFSET + i * 4;
adc_putreg(priv, reg, offset);
errout:
return ret;
}
#endif
/****************************************************************************
* Name: adc_regbufregister
****************************************************************************/
#ifdef ADC_HAVE_DMA
static int adc_regbufregister(FAR struct stm32_adc_dev_s *dev,
uint16_t *buffer, uint8_t len)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
stm32_dmasetup(priv->dma,
priv->base + STM32_ADC_DR_OFFSET,
(uint32_t)buffer,
len,
ADC_DMA_CONTROL_WORD);
/* No DMA callback */
stm32_dmastart(priv->dma, NULL, dev, false);
return OK;
}
#endif /* ADC_HAVE_DMA */
/****************************************************************************
* Name: adc_inj_get
****************************************************************************/
#ifdef ADC_HAVE_INJECTED
static uint32_t adc_injget(FAR struct stm32_adc_dev_s *dev, uint8_t chan)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
uint32_t regval = 0;
if (chan > (priv->cj_channels - 1))
{
/* REVISIT: return valute with MSB set to indicate error ? */
goto errout;
}
regval = adc_getreg(priv, STM32_ADC_JDR1_OFFSET + 4 * (chan)) &
ADC_JDR_JDATA_MASK;
errout:
return regval;
}
/****************************************************************************
* Name: adc_llops_inj_startconv
****************************************************************************/
static void adc_llops_inj_startconv(FAR struct stm32_adc_dev_s *dev,
bool enable)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
adc_inj_startconv(priv, enable);
}
#endif /* ADC_HAVE_INJECTED */
/****************************************************************************
* Name: adc_sampletime_write
*
* Description:
* Writes previously defined values into ADC_SMPRx registers.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
#ifdef CONFIG_STM32_ADC_CHANGE_SAMPLETIME
static void adc_sampletime_write(FAR struct stm32_adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
uint32_t value = 0;
uint8_t i;
uint8_t shift;
/* Sampling time individually for each channel.
* It's different for families.
*/
for (i = 0, shift = 0; i < priv->adc_channels; i++)
{
value |= priv->sample_rate[i] << (shift * 3);
switch (i)
{
#if defined(STM32_ADC_SMPR0_OFFSET) && defined(STM32_ADC_SMPR3_OFFSET)
case 9:
{
adc_putreg(priv, STM32_ADC_SMPR3_OFFSET, value);
shift = 0;
value = 0;
break;
}
case 19:
{
adc_putreg(priv, STM32_ADC_SMPR2_OFFSET, value);
shift = 0;
value = 0;
break;
}
case 29:
{
adc_putreg(priv, STM32_ADC_SMPR1_OFFSET, value);
shift = 0;
value = 0;
break;
}
case (ADC_CHANNELS_NUMBER - 1):
{
adc_putreg(priv, STM32_ADC_SMPR0_OFFSET, value);
shift = 0;
value = 0;
break;
}
#elif defined(STM32_ADC_SMPR1_OFFSET) && defined(STM32_ADC_SMPR2_OFFSET)
case (ADC_CHANNELS_NUMBER - 1):
{
adc_putreg(priv, STM32_ADC_SMPR2_OFFSET, value);
shift = 0;
value = 0;
break;
}
case 9:
{
adc_putreg(priv, STM32_ADC_SMPR1_OFFSET, value);
shift = 0;
value = 0;
break;
}
#else
# error "Not supported SMPRx configuration"
#endif
default:
{
shift++;
break;
}
}
}
}
/****************************************************************************
* Name: adc_change_sample_time
*
* Description:
* Changes sample times for specified channels. This method
* doesn't make any register writing. So, it's only stores the information.
* Values provided by user will be written in registers only on the next
* ADC peripheral start, as it was told to do in manual. However, before
* very first start, user can call this method and override default values
* either for every channels or for only some predefined by user channel(s)
*
* Input Parameters:
* priv - pointer to the adc device structure
* pdi_high - true: The ADC is powered down when waiting for a start event
* false: The ADC is powered up when waiting for a start event
*
* Returned Value:
* None
*
****************************************************************************/
void adc_sampletime_set(FAR struct stm32_adc_dev_s *dev,
FAR struct adc_sample_time_s *time_samples)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
uint8_t ch_index;
uint8_t i;
/* Check if user wants to assign the same value for all channels
* or just wants to change sample time values for certain channels
*/
if (time_samples->all_same)
{
memset(priv->sample_rate, time_samples->all_ch_sample_time,
ADC_CHANNELS_NUMBER);
}
else
{
for (i = 0; i < time_samples->channels_nbr; i++)
{
ch_index = time_samples->channel[i].channel;
if (ch_index >= ADC_CHANNELS_NUMBER)
{
break;
}
priv->sample_rate[ch_index] = time_samples->channel[i].sample_time;
}
}
}
#endif /* CONFIG_STM32_ADC_CHANGE_SAMPLETIME */
/****************************************************************************
* Name: adc_llops_dumpregs
****************************************************************************/
static void adc_llops_dumpregs(FAR struct stm32_adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev;
adc_dumpregs(priv);
}
#endif /* CONFIG_STM32_ADC_LL_OPS */
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: stm32_adcinitialize
*
* Description:
* Initialize the ADC.
*
* The logic allow initialize ADC regular and injected channels.
*
* The number of injected channels for given ADC is selected from Kconfig
* with CONFIG_STM32_ADCx_INJECTED_CHAN definitions
*
* The number of regular channels is obtained from the equation:
*
* cr_channels = channels - cj_channels
*
* where:
* cr_channels - regular channels
* cj_channels - injected channels
* channels - this function parameter
*
* The chanlist array store both regular channels and injected channels
* configuration so that regular channels are the first in order:
*
* # regular channels start from here
* chanlist[0] -> ADC_SQRx_SQ1
* chanlist[1] -> ADC_SQRx_SQ2
* ...
* # injected channels start from here
* chanlist[channels - (y - 1)] -> ADC_JSQR_JSQ1
* ...
* chanlist[channels] -> ADC_JSQR_ISQy
*
* where:
* y = CONFIG_STM32_ADCx_INJECTED_CHAN, and y > 0
*
* If CONFIG_STM32_ADCx_INJECTED_CHAN = 0, then all channels from chanlist
* are regular channels.
*
* Input Parameters:
* intf - Could be {1,2,3,4} for ADC1, ADC2, ADC3 or ADC4
* chanlist - The list of channels (regular + injected)
* channels - Number of channels (regular + injected)
*
* Returned Value:
* Valid ADC device structure reference on success; a NULL on failure
*
****************************************************************************/
struct adc_dev_s *stm32_adcinitialize(int intf, FAR const uint8_t *chanlist,
int channels)
{
FAR struct adc_dev_s *dev;
FAR struct stm32_dev_s *priv;
uint8_t cr_channels = 0;
uint8_t cj_channels = 0;
#ifdef ADC_HAVE_INJECTED
FAR uint8_t *j_chanlist = NULL;
#endif
switch (intf)
{
#ifdef CONFIG_STM32_ADC1
case 1:
{
ainfo("ADC1 selected\n");
dev = &g_adcdev1;
cj_channels = CONFIG_STM32_ADC1_INJECTED_CHAN;
cr_channels = channels - cj_channels;
# ifdef ADC_HAVE_INJECTED
if (cj_channels > 0)
{
j_chanlist = (FAR uint8_t *)chanlist + cr_channels;
}
# endif
break;
}
#endif /* CONFIG_STM32_ADC1 */
#ifdef CONFIG_STM32_ADC2
case 2:
{
ainfo("ADC2 selected\n");
dev = &g_adcdev2;
cj_channels = CONFIG_STM32_ADC2_INJECTED_CHAN;
cr_channels = channels - cj_channels;
# ifdef ADC_HAVE_INJECTED
if (cj_channels > 0)
{
j_chanlist = (FAR uint8_t *)chanlist + cr_channels;
}
# endif
break;
}
#endif /* CONFIG_STM32_ADC2 */
#ifdef CONFIG_STM32_ADC3
case 3:
{
ainfo("ADC3 selected\n");
dev = &g_adcdev3;
cj_channels = CONFIG_STM32_ADC3_INJECTED_CHAN;
cr_channels = channels - cj_channels;
# ifdef ADC_HAVE_INJECTED
if (cj_channels > 0)
{
j_chanlist = (FAR uint8_t *)chanlist + cr_channels;
}
# endif
break;
}
#endif /* CONFIG_STM32_ADC3 */
#ifdef CONFIG_STM32_ADC4
case 4:
{
ainfo("ADC4 selected\n");
dev = &g_adcdev4;
cj_channels = CONFIG_STM32_ADC4_INJECTED_CHAN;
cr_channels = channels - cj_channels;
# ifdef ADC_HAVE_INJECTED
if (cj_channels > 0)
{
j_chanlist = (FAR uint8_t *)chanlist + cr_channels;
}
# endif
break;
}
#endif /* CONFIG_STM32_ADC4 */
default:
{
aerr("ERROR: No ADC interface defined\n");
return NULL;
}
}
/* Configure the selected ADC */
priv = (FAR struct stm32_dev_s *)dev->ad_priv;
/* Configure regular channels */
DEBUGASSERT(cr_channels <= ADC_MAX_SAMPLES);
priv->cr_channels = cr_channels;
memcpy(priv->r_chanlist, chanlist, cr_channels);
#ifdef ADC_HAVE_INJECTED
/* Configure injected channels */
DEBUGASSERT(cj_channels <= ADC_INJ_MAX_SAMPLES);
priv->cj_channels = cj_channels;
memcpy(priv->j_chanlist, j_chanlist, cj_channels);
#endif
#ifdef CONFIG_STM32_ADC_CHANGE_SAMPLETIME
/* Assign default values for the sample time table */
memset(priv->sample_rate, ADC_SMPR_DEFAULT, ADC_CHANNELS_NUMBER);
priv->adc_channels = ADC_CHANNELS_NUMBER;
#endif
#ifdef ADC_HAVE_CB
priv->cb = NULL;
#endif
#ifdef ADC_HAVE_INJECTED
ainfo("intf: %d cr_channels: %d, cj_channels: %d\n",
intf, priv->cr_channels, priv->cj_channels);
#else
ainfo("intf: %d cr_channels: %d\n", intf, priv->cr_channels);
#endif
#ifdef HAVE_ADC_CMN_DATA
/* Initialize the ADC common data semaphore.
*
* REVISIT: This will be done several times for each initialzied ADC in
* the ADC block.
*/
nxsem_init(&priv->cmn->lock, 0, 1);
#endif
return dev;
}
#endif /* CONFIG_STM32_ADC1 || CONFIG_STM32_ADC2 ||
* CONFIG_STM32_ADC3 || CONFIG_STM32_ADC4
*/
#endif /* CONFIG_STM32_ADC */