nuttx/drivers/usbdev/cdcacm.c
yangsong8 5a39e83c05 usbdev: extend the usb req len to size_t
Some USB controllers can receive or send multiple data packets then
generate one interrupt. This mechanism can reduce the number of data
copies. Extend req buf to accommodate this.

Signed-off-by: yangsong8 <yangsong8@xiaomi.com>
2024-08-30 01:32:02 +08:00

3172 lines
90 KiB
C

/****************************************************************************
* drivers/usbdev/cdcacm.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/kmalloc.h>
#include <nuttx/queue.h>
#include <nuttx/wdog.h>
#include <nuttx/arch.h>
#include <nuttx/serial/serial.h>
#include <nuttx/usb/usb.h>
#include <nuttx/usb/cdc.h>
#include <nuttx/usb/usbdev.h>
#include <nuttx/usb/cdcacm.h>
#include <nuttx/usb/usbdev_trace.h>
#include "cdcacm.h"
#ifdef CONFIG_CDCACM_COMPOSITE
# include <nuttx/usb/composite.h>
# include "composite.h"
#endif
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* RX poll delay = 200 milliseconds. CLK_TCK is the number of clock ticks per
* second
*/
#define CDCACM_RXDELAY (CLK_TCK / 5)
/****************************************************************************
* Private Types
****************************************************************************/
/* Container to support a list of requests */
struct cdcacm_wrreq_s
{
FAR struct cdcacm_wrreq_s *flink; /* Implements a singly linked list */
FAR struct usbdev_req_s *req; /* The contained request */
};
struct cdcacm_rdreq_s
{
FAR struct cdcacm_rdreq_s *flink; /* Implements a singly linked list */
FAR struct usbdev_req_s *req; /* The contained request */
uint16_t offset; /* Offset to valid data in the RX request */
};
/* This structure describes the internal state of the driver */
struct cdcacm_dev_s
{
FAR struct uart_dev_s serdev; /* Serial device structure */
FAR struct usbdev_s *usbdev; /* usbdev driver pointer */
uint8_t config; /* Configuration number */
uint8_t nwrq; /* Number of queue write requests (in txfree) */
uint8_t nrdq; /* Number of queue read requests (in epbulkout) */
uint8_t minor; /* The device minor number */
uint8_t ctrlline; /* Buffered control line state */
#ifdef CONFIG_CDCACM_IFLOWCONTROL
uint8_t serialstate; /* State of the DSR/DCD */
bool iflow; /* True: input flow control is enabled */
bool iactive; /* True: input flow control is active */
bool upper; /* True: RX buffer is (nearly) full */
#endif
bool rxenabled; /* true: UART RX "interrupts" enabled */
struct cdc_linecoding_s linecoding; /* Buffered line status */
cdcacm_callback_t callback; /* Serial event callback function */
FAR struct usbdev_ep_s *epintin; /* Interrupt IN endpoint structure */
FAR struct usbdev_ep_s *epbulkin; /* Bulk IN endpoint structure */
FAR struct usbdev_ep_s *epbulkout; /* Bulk OUT endpoint structure */
FAR struct usbdev_req_s *ctrlreq; /* Allocated control request */
struct wdog_s rxfailsafe; /* Failsafe timer to prevent RX stalls */
struct sq_queue_s txfree; /* Available write request containers */
struct sq_queue_s rxpending; /* Pending read request containers */
struct usbdev_devinfo_s devinfo;
/* Pre-allocated write request containers. The write requests will
* be linked in a free list (txfree), and used to send requests to
* EPBULKIN; Read requests will be queued in the EBULKOUT.
*/
struct cdcacm_wrreq_s wrreqs[CONFIG_CDCACM_NWRREQS];
struct cdcacm_rdreq_s rdreqs[CONFIG_CDCACM_NRDREQS];
/* Serial I/O buffers */
char rxbuffer[CONFIG_CDCACM_RXBUFSIZE];
char txbuffer[CONFIG_CDCACM_TXBUFSIZE];
};
/* The internal version of the class driver */
struct cdcacm_driver_s
{
struct usbdevclass_driver_s drvr;
FAR struct cdcacm_dev_s *dev;
};
/* This is what is allocated */
struct cdcacm_alloc_s
{
struct cdcacm_dev_s dev;
struct cdcacm_driver_s drvr;
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Transfer helpers *********************************************************/
static uint16_t cdcacm_fillrequest(FAR struct cdcacm_dev_s *priv,
uint8_t *reqbuf, uint16_t reqlen);
static int cdcacm_sndpacket(FAR struct cdcacm_dev_s *priv);
static int cdcacm_recvpacket(FAR struct cdcacm_dev_s *priv,
FAR struct cdcacm_rdreq_s *rdcontainer);
static int cdcacm_requeue_rdrequest(FAR struct cdcacm_dev_s *priv,
FAR struct cdcacm_rdreq_s *rdcontainer);
static int cdcacm_release_rxpending(FAR struct cdcacm_dev_s *priv);
static void cdcacm_rxtimeout(wdparm_t arg);
/* Flow Control *************************************************************/
#ifdef CONFIG_CDCACM_IFLOWCONTROL
static int cdcacm_serialstate(FAR struct cdcacm_dev_s *priv);
#endif
/* Configuration ************************************************************/
static void cdcacm_resetconfig(FAR struct cdcacm_dev_s *priv);
static int cdcacm_epconfigure(FAR struct usbdev_ep_s *ep,
enum cdcacm_epdesc_e epid, bool last,
FAR struct usbdev_devinfo_s *devinfo,
uint8_t speed);
static int cdcacm_setconfig(FAR struct cdcacm_dev_s *priv,
uint8_t config);
/* Completion event handlers ************************************************/
static void cdcacm_ep0incomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req);
static void cdcacm_rdcomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req);
static void cdcacm_wrcomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req);
/* USB class device *********************************************************/
static int cdcacm_bind(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev);
static void cdcacm_unbind(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev);
static int cdcacm_setup(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev,
FAR const struct usb_ctrlreq_s *ctrl, FAR uint8_t *dataout,
size_t outlen);
static void cdcacm_disconnect(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev);
#ifdef CONFIG_SERIAL_REMOVABLE
static void cdcacm_suspend(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev);
static void cdcacm_resume(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev);
#endif
/* UART Operations **********************************************************/
static int cdcuart_setup(FAR struct uart_dev_s *dev);
static void cdcuart_shutdown(FAR struct uart_dev_s *dev);
static int cdcuart_attach(FAR struct uart_dev_s *dev);
static void cdcuart_detach(FAR struct uart_dev_s *dev);
static int cdcuart_ioctl(FAR struct file *filep, int cmd,
unsigned long arg);
static void cdcuart_rxint(FAR struct uart_dev_s *dev, bool enable);
#ifdef CONFIG_SERIAL_IFLOWCONTROL
static bool cdcuart_rxflowcontrol(FAR struct uart_dev_s *dev,
unsigned int nbuffered, bool upper);
#endif
static void cdcuart_txint(FAR struct uart_dev_s *dev, bool enable);
static bool cdcuart_txempty(FAR struct uart_dev_s *dev);
static int cdcuart_release(FAR struct uart_dev_s *dev);
/****************************************************************************
* Private Data
****************************************************************************/
/* USB class device *********************************************************/
static const struct usbdevclass_driverops_s g_driverops =
{
cdcacm_bind, /* bind */
cdcacm_unbind, /* unbind */
cdcacm_setup, /* setup */
cdcacm_disconnect, /* disconnect */
#ifdef CONFIG_SERIAL_REMOVABLE
cdcacm_suspend, /* suspend */
cdcacm_resume, /* resume */
#else
NULL, /* suspend */
NULL, /* resume */
#endif
};
/* Serial port **************************************************************/
static const struct uart_ops_s g_uartops =
{
cdcuart_setup, /* setup */
cdcuart_shutdown, /* shutdown */
cdcuart_attach, /* attach */
cdcuart_detach, /* detach */
cdcuart_ioctl, /* ioctl */
NULL, /* receive */
cdcuart_rxint, /* rxinit */
NULL, /* rxavailable */
#ifdef CONFIG_SERIAL_IFLOWCONTROL
cdcuart_rxflowcontrol, /* rxflowcontrol */
#endif
#ifdef CONFIG_SERIAL_TXDMA
NULL, /* dmasend */
#endif
#ifdef CONFIG_SERIAL_RXDMA
NULL, /* dmareceive */
NULL, /* dmarxfree */
#endif
#ifdef CONFIG_SERIAL_TXDMA
NULL, /* dmatxavail */
#endif
NULL, /* send */
cdcuart_txint, /* txinit */
NULL, /* txready */
cdcuart_txempty, /* txempty */
cdcuart_release /* release */
};
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: cdcacm_fillrequest
*
* Description:
* If there is data to send it is copied to the given buffer. Called
* either to initiate the first write operation, or from the completion
* interrupt handler service consecutive write operations.
*
* NOTE: The USB serial driver does not use the serial drivers
* uart_xmitchars() API. That logic is essentially duplicated here because
* unlike UART hardware, we need to be able to handle writes not byte-by-
* byte, but packet-by-packet. Unfortunately, that decision also exposes
* some internals of the serial driver in the following.
*
****************************************************************************/
static uint16_t cdcacm_fillrequest(FAR struct cdcacm_dev_s *priv,
FAR uint8_t *reqbuf,
uint16_t reqlen)
{
FAR uart_dev_t *serdev = &priv->serdev;
FAR struct uart_buffer_s *xmit = &serdev->xmit;
irqstate_t flags;
uint16_t nbytes = 0;
/* Disable interrupts */
flags = enter_critical_section();
/* Transfer bytes while we have bytes available and there is room in the
* request.
*/
while (xmit->head != xmit->tail && nbytes < reqlen)
{
*reqbuf++ = xmit->buffer[xmit->tail];
nbytes++;
/* Increment the tail pointer */
if (++(xmit->tail) >= xmit->size)
{
xmit->tail = 0;
}
}
/* When all of the characters have been sent from the buffer disable the
* "TX interrupt".
*/
if (xmit->head == xmit->tail)
{
uart_disabletxint(serdev);
}
/* If any bytes were removed from the buffer, inform any waiters that
* there is space available.
*/
if (nbytes)
{
uart_datasent(serdev);
}
leave_critical_section(flags);
return nbytes;
}
/****************************************************************************
* Name: cdcacm_sndpacket
*
* Description:
* This function obtains write requests, transfers the TX data into the
* request, and submits the requests to the USB controller. This
* continues until either (1) there are no further packets available, or
* (2) there is no further data to send.
*
****************************************************************************/
static int cdcacm_sndpacket(FAR struct cdcacm_dev_s *priv)
{
FAR struct usbdev_ep_s *ep;
FAR struct usbdev_req_s *req;
FAR struct cdcacm_wrreq_s *wrcontainer;
uint16_t reqlen;
irqstate_t flags;
int len;
int ret = OK;
#ifdef CONFIG_DEBUG_FEATURES
if (priv == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return -EINVAL;
}
#endif
flags = enter_critical_section();
/* Use our bulk IN endpoint for the transfer */
ep = priv->epbulkin;
/* Loop until either (1) we run out or write requests, or (2)
* cdcacm_fillrequest() is unable to fill the request with data (i.e.,
* until there is no more data to be sent).
*/
uinfo("head=%d tail=%d nwrq=%d empty=%d\n",
priv->serdev.xmit.head, priv->serdev.xmit.tail,
priv->nwrq, sq_empty(&priv->txfree));
/* Get the maximum number of bytes that will fit into one bulk IN request */
reqlen = MAX(CONFIG_CDCACM_BULKIN_REQLEN, ep->maxpacket);
while (!sq_empty(&priv->txfree))
{
/* Peek at the request in the container at the head of the list */
wrcontainer = (FAR struct cdcacm_wrreq_s *)sq_peek(&priv->txfree);
req = wrcontainer->req;
/* Fill the request with serial TX data */
len = cdcacm_fillrequest(priv, req->buf, reqlen);
if (len > 0)
{
/* Remove the empty container from the request list */
sq_remfirst(&priv->txfree);
priv->nwrq--;
/* Then submit the request to the endpoint */
req->len = len;
req->priv = wrcontainer;
req->flags = USBDEV_REQFLAGS_NULLPKT;
ret = EP_SUBMIT(ep, req);
if (ret != OK)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_SUBMITFAIL),
(uint16_t)-ret);
break;
}
}
else
{
break;
}
}
leave_critical_section(flags);
return ret;
}
/****************************************************************************
* Name: cdcacm_recvpacket
*
* Description:
* A normal completion event was received by the read completion handler
* at the interrupt level (with interrupts disabled). This function handles
* the USB packet and provides the received data to the uart RX buffer.
*
* Assumptions:
* Called from the USB interrupt handler with interrupts disabled.
*
****************************************************************************/
static int cdcacm_recvpacket(FAR struct cdcacm_dev_s *priv,
FAR struct cdcacm_rdreq_s *rdcontainer)
{
FAR uart_dev_t *serdev;
FAR struct uart_buffer_s *recv;
FAR struct usbdev_req_s *req;
FAR uint8_t *reqbuf;
#ifdef CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS
unsigned int watermark;
#endif
uint16_t reqlen;
uint16_t nexthead;
uint16_t nbytes = 0;
DEBUGASSERT(priv != NULL && rdcontainer != NULL);
#ifdef CONFIG_CDCACM_IFLOWCONTROL
DEBUGASSERT(priv->rxenabled && !priv->iactive);
#else
DEBUGASSERT(priv->rxenabled);
#endif
req = rdcontainer->req;
DEBUGASSERT(req != NULL);
reqbuf = &req->buf[rdcontainer->offset];
reqlen = req->xfrd - rdcontainer->offset;
uinfo("head=%d tail=%d nrdq=%d reqlen=%d\n",
priv->serdev.recv.head, priv->serdev.recv.tail, priv->nrdq, reqlen);
serdev = &priv->serdev;
recv = &serdev->recv;
/* Pre-calculate the head index and check for wrap around. We need to do
* this so that we can determine if the circular buffer will overrun
* BEFORE we overrun the buffer!
*/
nexthead = recv->head + 1;
if (nexthead >= recv->size)
{
nexthead = 0;
}
#ifdef CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS
/* Pre-calculate the watermark level that we will need to test against.
* Note that the range of the the upper watermark is from 1 to 99 percent
* and that the actual capacity of the RX buffer is (recv->size - 1).
*/
watermark = CONFIG_SERIAL_IFLOWCONTROL_UPPER_WATERMARK * recv->size / 100;
DEBUGASSERT(watermark > 0 && watermark < (recv->size - 1));
#endif
/* Then copy data into the RX buffer until either: (1) all of the data has
* been copied, or (2) the RX buffer is full.
*
* NOTE: If the RX buffer becomes full, then we have overrun the serial
* driver and data will be lost. This is the correct behavior for a
* proper emulation of a serial link. It should not NAK, it should drop
* data like a physical serial port.
*
* If you don't like that behavior. DO NOT change it here. Instead, you
* should finish the implementation of RX flow control which is the only
* proper way to throttle a serial device.
*/
while (nexthead != recv->tail && nbytes < reqlen)
{
#if defined(CONFIG_SERIAL_IFLOWCONTROL) && \
defined(CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS)
unsigned int nbuffered;
/* How many bytes are buffered */
if (recv->head >= recv->tail)
{
nbuffered = recv->head - recv->tail;
}
else
{
nbuffered = recv->size - recv->tail + recv->head;
}
/* Is the level now above the watermark level that we need to report? */
if (nbuffered >= watermark)
{
/* Let the lower level driver know that the watermark level has
* been crossed. It will probably activate RX flow control.
*/
if (cdcuart_rxflowcontrol(&priv->serdev, nbuffered, true))
{
/* Low-level driver activated RX flow control, exit loop now. */
break;
}
}
#endif
/* Copy one byte to the head of the circular RX buffer */
recv->buffer[recv->head] = *reqbuf++;
nbytes++;
/* Increment the head index and check for wrap around */
recv->head = nexthead;
if (++nexthead >= recv->size)
{
nexthead = 0;
}
}
#if defined(CONFIG_SERIAL_IFLOWCONTROL) && \
!defined(CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS)
/* Check if RX buffer became full and allow serial low-level driver to
* pause processing. This allows proper utilization of hardware flow
* control when there are no watermarks.
*/
if (nexthead == recv->tail)
{
cdcuart_rxflowcontrol(&priv->serdev, recv->size - 1, true);
}
#endif
/* If data was added to the incoming serial buffer, then wake up any
* threads is waiting for incoming data. If we are running in an interrupt
* handler, then the serial driver will not run until the interrupt
* handler returns.
*/
if (nbytes > 0)
{
uart_datareceived(serdev);
}
/* Return an overrun error if the entire packet could not be transferred. */
if (nbytes < reqlen)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RXOVERRUN), 0);
rdcontainer->offset += nbytes;
return -ENOSPC;
}
return OK;
}
/****************************************************************************
* Name: cdcacm_requeue_rdrequest
*
* Description:
* Add any pending RX packets to the upper half serial drivers RX buffer.
*
****************************************************************************/
static int cdcacm_requeue_rdrequest(FAR struct cdcacm_dev_s *priv,
FAR struct cdcacm_rdreq_s *rdcontainer)
{
FAR struct usbdev_req_s *req;
FAR struct usbdev_ep_s *ep;
int ret;
DEBUGASSERT(priv != NULL && rdcontainer != NULL);
rdcontainer->offset = 0;
req = rdcontainer->req;
DEBUGASSERT(req != NULL);
/* Requeue the read request */
ep = priv->epbulkout;
req->len = ep->maxpacket;
ret = EP_SUBMIT(ep, req);
if (ret != OK)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RDSUBMIT),
(uint16_t)-req->result);
}
return ret;
}
/****************************************************************************
* Name: cdcacm_release_rxpending
*
* Description:
* Add any pending RX packets to the upper half serial drivers RX buffer.
*
****************************************************************************/
static int cdcacm_release_rxpending(FAR struct cdcacm_dev_s *priv)
{
FAR struct cdcacm_rdreq_s *rdcontainer;
irqstate_t flags;
int ret = -EBUSY;
/* Note that the priv->rxpending queue, priv->rxenabled, priv->iactive
* may be modified by interrupt level processing and, hence, interrupts
* must be disabled throughout the following.
*/
flags = enter_critical_section();
/* Cancel any pending failsafe timer */
wd_cancel(&priv->rxfailsafe);
/* If RX "interrupts" are enabled and if input flow control is not in
* effect, then pass the packet at the head of the pending RX packet list
* to the upper serial layer. Otherwise, let the packet continue to pend
* the priv->rxpending list until the upper serial layer is able to buffer
* it.
*/
#ifdef CONFIG_CDCACM_IFLOWCONTROL
if (priv->rxenabled && !priv->iactive)
#else
if (priv->rxenabled)
#endif
{
/* Process pending RX packets while the queue is not empty and while
* no errors occur. NOTE that the priv->rxpending queue is accessed
* from interrupt level processing and, hence, interrupts must be
* disabled throughout the following.
*/
ret = OK;
while (!sq_empty(&priv->rxpending))
{
/* Process each packet in the priv->rxpending list */
rdcontainer = (FAR struct cdcacm_rdreq_s *)
sq_peek(&priv->rxpending);
DEBUGASSERT(rdcontainer != NULL);
/* cdcacm_recvpacket() will return OK if the entire packet was
* successful buffered. In the case of RX buffer overrun,
* cdcacm_recvpacket() will return a failure (-ENOSPC) and will
* set the req->offset field.
*/
ret = cdcacm_recvpacket(priv, rdcontainer);
if (ret < 0)
{
uwarn("WARNING: RX buffer full\n");
break;
}
/* The entire packet was processed and may be removed from the
* pending RX list and returned to the DCD.
*/
sq_remfirst(&priv->rxpending);
ret = cdcacm_requeue_rdrequest(priv, rdcontainer);
}
}
/* Restart the RX failsafe timer if there are RX packets in
* priv->rxpending. This could happen if either RX "interrupts" are
* disable, RX flow control is in effect of if the upper serial drivers
* RX buffer is full and cannot accept additional data.
*
* If/when the timer expires, cdcacm_release_rxpending() will be called
* the timer handler (at interrupt level).
*
* The timer may not be necessary, but it is a failsafe to be certain
* that data cannot stall in priv->rxpending.
*/
if (!sq_empty(&priv->rxpending))
{
wd_start(&priv->rxfailsafe, CDCACM_RXDELAY,
cdcacm_rxtimeout, (wdparm_t)priv);
}
leave_critical_section(flags);
return ret;
}
/****************************************************************************
* Name: cdcacm_rxtimeout
*
* Description:
* Timer expiration handler. Whenever cdcacm_release_rxpending()
* terminates with pending RX data in priv->rxpending, it will set a
* timer to recheck the queued RX data can be processed later. This
* failsafe timer may not be necessary, but this reduces my paranoia
* about stalls in the RX pending FIFO .
*
****************************************************************************/
static void cdcacm_rxtimeout(wdparm_t arg)
{
FAR struct cdcacm_dev_s *priv = (FAR struct cdcacm_dev_s *)arg;
DEBUGASSERT(priv != NULL);
cdcacm_release_rxpending(priv);
}
/****************************************************************************
* Name: cdcacm_serialstate
*
* Description:
* Send the serial state message.
*
* 1. Format and send a request header with:
*
* bmRequestType:
* USB_REQ_DIR_IN | USB_REQ_TYPE_CLASS |
* USB_REQ_RECIPIENT_INTERFACE
* bRequest: ACM_SERIAL_STATE
* wValue: 0
* wIndex: 0
* wLength: Length of data = 2
*
* 2. Followed by the notification data
*
****************************************************************************/
#ifdef CONFIG_CDCACM_IFLOWCONTROL
static int cdcacm_serialstate(FAR struct cdcacm_dev_s *priv)
{
FAR struct usbdev_ep_s *ep;
FAR struct usbdev_req_s *req;
FAR struct cdcacm_wrreq_s *wrcontainer;
FAR struct cdc_notification_s *notify;
irqstate_t flags;
int ret;
DEBUGASSERT(priv != NULL && priv->epintin != NULL);
#ifdef CONFIG_DEBUG_FEATURES
if (priv == NULL || priv->epintin == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return -EINVAL;
}
#endif
usbtrace(CDCACM_CLASSAPI_FLOWCONTROL, (uint16_t)priv->serialstate);
flags = enter_critical_section();
/* Use our interrupt IN endpoint for the transfer */
ep = priv->epintin;
/* Remove the next container from the request list */
wrcontainer = (FAR struct cdcacm_wrreq_s *)sq_remfirst(&priv->txfree);
if (wrcontainer == NULL)
{
ret = -ENOMEM;
goto errout_with_flags;
}
/* Decrement the count of write requests */
priv->nwrq--;
/* Format the SerialState notification */
DEBUGASSERT(wrcontainer->req != NULL);
req = wrcontainer->req;
DEBUGASSERT(req->buf != NULL);
notify = (FAR struct cdc_notification_s *)req->buf;
notify->type = (USB_REQ_DIR_IN | USB_REQ_TYPE_CLASS |
USB_REQ_RECIPIENT_INTERFACE);
notify->notification = ACM_SERIAL_STATE;
notify->value[0] = 0;
notify->value[1] = 0;
notify->index[0] = 0;
notify->index[1] = 0;
notify->len[0] = 2;
notify->len[1] = 0;
notify->data[0] = priv->serialstate;
notify->data[1] = 0;
/* Then submit the request to the endpoint */
req->len = SIZEOF_NOTIFICATION_S(2);
req->priv = wrcontainer;
req->flags = USBDEV_REQFLAGS_NULLPKT;
ret = EP_SUBMIT(ep, req);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_SUBMITFAIL), (uint16_t)-ret);
}
errout_with_flags:
/* Reset all of the "irregular" notification */
priv->serialstate &= CDC_UART_CONSISTENT;
leave_critical_section(flags);
return ret;
}
#endif
/****************************************************************************
* Name: cdcacm_resetconfig
*
* Description:
* Mark the device as not configured and disable all endpoints.
*
****************************************************************************/
static void cdcacm_resetconfig(FAR struct cdcacm_dev_s *priv)
{
/* When the USB is pulled out, if there is an unprocessed buffer,
* it needs to be push them to upper half serial drivers RX buffer.
*/
if (priv->nrdq != 0)
{
cdcacm_release_rxpending(priv);
priv->nrdq = 0;
}
/* Are we configured? */
if (priv->config != CDCACM_CONFIGIDNONE)
{
/* Yes.. but not anymore */
priv->config = CDCACM_CONFIGIDNONE;
/* Inform the "upper half" driver that there is no (functional) USB
* connection.
*/
#ifdef CONFIG_SERIAL_REMOVABLE
uart_connected(&priv->serdev, false);
#endif
/* Disable endpoints. This should force completion of all pending
* transfers.
*/
EP_DISABLE(priv->epintin);
EP_DISABLE(priv->epbulkin);
EP_DISABLE(priv->epbulkout);
}
}
/****************************************************************************
* Name: cdcacm_epconfigure
*
* Description:
* Configure one endpoint.
*
****************************************************************************/
static int cdcacm_epconfigure(FAR struct usbdev_ep_s *ep,
enum cdcacm_epdesc_e epid, bool last,
FAR struct usbdev_devinfo_s *devinfo,
uint8_t speed)
{
struct usb_ss_epdesc_s epdesc;
cdcacm_copy_epdesc(epid, &epdesc.epdesc, devinfo, speed);
return EP_CONFIGURE(ep, &epdesc.epdesc, last);
}
/****************************************************************************
* Name: cdcacm_setconfig
*
* Description:
* Set the device configuration by allocating and configuring endpoints and
* by allocating and queue read and write requests.
*
****************************************************************************/
static int cdcacm_setconfig(FAR struct cdcacm_dev_s *priv, uint8_t config)
{
FAR struct usbdev_req_s *req;
int i;
int ret = 0;
#ifdef CONFIG_DEBUG_FEATURES
if (priv == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return -EINVAL;
}
#endif
if (config == priv->config)
{
/* Already configured -- Do nothing */
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_ALREADYCONFIGURED), 0);
return 0;
}
/* Discard the previous configuration data */
cdcacm_resetconfig(priv);
/* Was this a request to simply discard the current configuration? */
if (config == CDCACM_CONFIGIDNONE)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_CONFIGNONE), 0);
return 0;
}
/* We only accept one configuration */
if (config != CDCACM_CONFIGID)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_CONFIGIDBAD), 0);
return -EINVAL;
}
/* Configure the IN interrupt endpoint */
ret = cdcacm_epconfigure(priv->epintin, CDCACM_EPINTIN, false,
&priv->devinfo, priv->usbdev->speed);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPINTINCONFIGFAIL), 0);
goto errout;
}
priv->epintin->priv = priv;
/* Configure the IN bulk endpoint */
ret = cdcacm_epconfigure(priv->epbulkin, CDCACM_EPBULKIN, false,
&priv->devinfo, priv->usbdev->speed);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPBULKINCONFIGFAIL), 0);
goto errout;
}
priv->epbulkin->priv = priv;
/* Configure the OUT bulk endpoint */
ret = cdcacm_epconfigure(priv->epbulkout, CDCACM_EPBULKOUT, true,
&priv->devinfo, priv->usbdev->speed);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPBULKOUTCONFIGFAIL), 0);
goto errout;
}
priv->epbulkout->priv = priv;
/* Queue read requests in the bulk OUT endpoint */
DEBUGASSERT(priv->nrdq == 0);
for (i = 0; i < CONFIG_CDCACM_NRDREQS; i++)
{
req = priv->rdreqs[i].req;
req->callback = cdcacm_rdcomplete;
ret = EP_SUBMIT(priv->epbulkout, req);
if (ret != OK)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RDSUBMIT),
(uint16_t)-ret);
goto errout;
}
priv->nrdq++;
}
/* We are successfully configured */
priv->config = config;
/* Inform the "upper half" driver that we are "open for business" */
#ifdef CONFIG_SERIAL_REMOVABLE
uart_connected(&priv->serdev, true);
#endif
return OK;
errout:
cdcacm_resetconfig(priv);
return ret;
}
/****************************************************************************
* Name: cdcacm_ep0incomplete
*
* Description:
* Handle completion of EP0 control operations
*
****************************************************************************/
static void cdcacm_ep0incomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req)
{
if (req->result || req->xfrd != req->len)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_REQRESULT),
(uint16_t)-req->result);
}
}
/****************************************************************************
* Name: cdcacm_rdcomplete
*
* Description:
* Handle completion of read request on the bulk OUT endpoint. This
* is handled like the receipt of serial data on the "UART"
*
****************************************************************************/
static void cdcacm_rdcomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req)
{
FAR struct cdcacm_rdreq_s *rdcontainer;
FAR struct cdcacm_dev_s *priv;
irqstate_t flags;
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (!ep || !ep->priv || !req)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract references to private data */
priv = (FAR struct cdcacm_dev_s *)ep->priv;
/* Get the container of the read request */
rdcontainer = (FAR struct cdcacm_rdreq_s *)req->priv;
DEBUGASSERT(rdcontainer != NULL);
/* Process the received data unless this is some unusual condition */
flags = enter_critical_section();
switch (req->result)
{
case 0: /* Normal completion */
{
usbtrace(TRACE_CLASSRDCOMPLETE, priv->nrdq);
/* Place the incoming packet at the end of pending RX packet list. */
rdcontainer->offset = 0;
sq_addlast((FAR sq_entry_t *)rdcontainer, &priv->rxpending);
/* Then process all pending RX packet starting at the head of the
* list
*/
cdcacm_release_rxpending(priv);
}
break;
case -ESHUTDOWN: /* Disconnection */
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RDSHUTDOWN), 0);
priv->nrdq--;
}
break;
default: /* Some other error occurred */
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RDUNEXPECTED),
(uint16_t)-req->result);
cdcacm_requeue_rdrequest(priv, rdcontainer);
break;
}
}
leave_critical_section(flags);
}
/****************************************************************************
* Name: cdcacm_wrcomplete
*
* Description:
* Handle completion of write request. This function probably executes
* in the context of an interrupt handler.
*
****************************************************************************/
static void cdcacm_wrcomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req)
{
FAR struct cdcacm_dev_s *priv;
FAR struct cdcacm_wrreq_s *wrcontainer;
irqstate_t flags;
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (!ep || !ep->priv || !req || !req->priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract references to our private data */
priv = (FAR struct cdcacm_dev_s *)ep->priv;
wrcontainer = (FAR struct cdcacm_wrreq_s *)req->priv;
/* Return the write request to the free list */
flags = enter_critical_section();
sq_addlast((FAR sq_entry_t *)wrcontainer, &priv->txfree);
priv->nwrq++;
leave_critical_section(flags);
/* Send the next packet unless this was some unusual termination
* condition
*/
switch (req->result)
{
case OK: /* Normal completion */
{
usbtrace(TRACE_CLASSWRCOMPLETE, priv->nwrq);
cdcacm_sndpacket(priv);
}
break;
case -ESHUTDOWN: /* Disconnection */
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_WRSHUTDOWN), priv->nwrq);
}
break;
default: /* Some other error occurred */
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_WRUNEXPECTED),
(uint16_t)-req->result);
}
break;
}
}
/****************************************************************************
* USB Class Driver Methods
****************************************************************************/
/****************************************************************************
* Name: cdcacm_bind
*
* Description:
* Invoked when the driver is bound to a USB device driver
*
****************************************************************************/
static int cdcacm_bind(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev)
{
FAR struct cdcacm_dev_s *priv =
((FAR struct cdcacm_driver_s *)driver)->dev;
FAR struct cdcacm_wrreq_s *wrcontainer;
FAR struct cdcacm_rdreq_s *rdcontainer;
irqstate_t flags;
size_t reqlen;
int ret;
int i;
usbtrace(TRACE_CLASSBIND, 0);
/* Bind the structures */
priv->usbdev = dev;
/* Save the reference to our private data structure in EP0 so that it
* can be recovered in ep0 completion events (Unless we are part of
* a composite device and, in that case, the composite device owns
* EP0).
*/
#ifndef CONFIG_CDCACM_COMPOSITE
dev->ep0->priv = priv;
#endif
/* Preallocate control request */
priv->ctrlreq = usbdev_allocreq(dev->ep0, CDCACM_MXDESCLEN);
if (priv->ctrlreq == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_ALLOCCTRLREQ), 0);
ret = -ENOMEM;
goto errout;
}
priv->ctrlreq->callback = cdcacm_ep0incomplete;
/* Pre-allocate all endpoints... the endpoints will not be functional
* until the SET CONFIGURATION request is processed in cdcacm_setconfig.
* This is done here because there may be calls to kmm_malloc and the SET
* CONFIGURATION processing probably occurs within interrupt handling
* logic where kmm_malloc calls will fail.
*/
/* Pre-allocate the IN interrupt endpoint */
priv->epintin = DEV_ALLOCEP(dev, CDCACM_MKEPINTIN(&priv->devinfo),
true, USB_EP_ATTR_XFER_INT);
if (!priv->epintin)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPINTINALLOCFAIL), 0);
ret = -ENODEV;
goto errout;
}
priv->epintin->priv = priv;
/* Pre-allocate the IN bulk endpoint */
priv->epbulkin = DEV_ALLOCEP(dev, CDCACM_MKEPBULKIN(&priv->devinfo),
true, USB_EP_ATTR_XFER_BULK);
if (!priv->epbulkin)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPBULKINALLOCFAIL), 0);
ret = -ENODEV;
goto errout;
}
priv->epbulkin->priv = priv;
/* Pre-allocate the OUT bulk endpoint */
priv->epbulkout = DEV_ALLOCEP(dev, CDCACM_MKEPBULKOUT(&priv->devinfo),
false, USB_EP_ATTR_XFER_BULK);
if (!priv->epbulkout)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPBULKOUTALLOCFAIL), 0);
ret = -ENODEV;
goto errout;
}
priv->epbulkout->priv = priv;
/* Pre-allocate read requests. The buffer size is one full packet. */
#if defined(CONFIG_USBDEV_SUPERSPEED)
if (dev->speed == USB_SPEED_SUPER ||
dev->speed == USB_SPEED_SUPER_PLUS)
{
if (CONFIG_CDCACM_EPBULKOUT_MAXBURST < USB_SS_BULK_EP_MAXBURST)
{
reqlen = CONFIG_CDCACM_EPBULKOUT_SSSIZE *
(CONFIG_CDCACM_EPBULKOUT_MAXBURST + 1);
}
else
{
reqlen = CONFIG_CDCACM_EPBULKOUT_SSSIZE *
USB_SS_BULK_EP_MAXBURST;
}
}
else
#endif
#if defined(CONFIG_USBDEV_DUALSPEED)
if (dev->speed == USB_SPEED_HIGH)
{
reqlen = CONFIG_CDCACM_EPBULKOUT_HSSIZE;
}
else
#endif
{
reqlen = CONFIG_CDCACM_EPBULKOUT_FSSIZE;
}
for (i = 0; i < CONFIG_CDCACM_NRDREQS; i++)
{
rdcontainer = &priv->rdreqs[i];
rdcontainer->req = usbdev_allocreq(priv->epbulkout, reqlen);
if (rdcontainer->req == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RDALLOCREQ), -ENOMEM);
ret = -ENOMEM;
goto errout;
}
rdcontainer->offset = 0;
rdcontainer->req->priv = rdcontainer;
rdcontainer->req->callback = cdcacm_rdcomplete;
}
/* Pre-allocate write request containers and put in a free list. The
* buffer size should be larger than a full build IN packet. Otherwise,
* we will send a bogus null packet at the end of each packet.
*
* Pick the larger of the max packet size and the configured request size.
*
* NOTE: These write requests are sized for the bulk IN endpoint but are
* shared with interrupt IN endpoint which does not need a large buffer.
*/
#if defined(CONFIG_USBDEV_SUPERSPEED)
if (dev->speed == USB_SPEED_SUPER ||
dev->speed == USB_SPEED_SUPER_PLUS)
{
if (CONFIG_CDCACM_EPBULKIN_MAXBURST < USB_SS_BULK_EP_MAXBURST)
{
reqlen = CONFIG_CDCACM_EPBULKOUT_SSSIZE *
(CONFIG_CDCACM_EPBULKIN_MAXBURST + 1);
}
else
{
reqlen = CONFIG_CDCACM_EPBULKOUT_SSSIZE *
USB_SS_BULK_EP_MAXBURST;
}
}
else
#endif
#if defined(CONFIG_USBDEV_DUALSPEED)
if (dev->speed == USB_SPEED_HIGH)
{
reqlen = CONFIG_CDCACM_EPBULKIN_HSSIZE;
}
else
#endif
{
reqlen = CONFIG_CDCACM_EPBULKIN_FSSIZE;
}
if (CONFIG_CDCACM_BULKIN_REQLEN > reqlen)
{
reqlen = CONFIG_CDCACM_BULKIN_REQLEN;
}
for (i = 0; i < CONFIG_CDCACM_NWRREQS; i++)
{
wrcontainer = &priv->wrreqs[i];
wrcontainer->req = usbdev_allocreq(priv->epbulkin, reqlen);
if (wrcontainer->req == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_WRALLOCREQ), -ENOMEM);
ret = -ENOMEM;
goto errout;
}
wrcontainer->req->priv = wrcontainer;
wrcontainer->req->callback = cdcacm_wrcomplete;
flags = enter_critical_section();
sq_addlast((FAR sq_entry_t *)wrcontainer, &priv->txfree);
priv->nwrq++; /* Count of write requests available */
leave_critical_section(flags);
}
/* Report if we are selfpowered (unless we are part of a
* composite device)
*/
#ifndef CONFIG_CDCACM_COMPOSITE
#ifdef CONFIG_USBDEV_SELFPOWERED
DEV_SETSELFPOWERED(dev);
#endif
/* And pull-up the data line for the soft connect function (unless we are
* part of a composite device)
*/
DEV_CONNECT(dev);
#endif
return OK;
errout:
cdcacm_unbind(driver, dev);
return ret;
}
/****************************************************************************
* Name: cdcacm_unbind
*
* Description:
* Invoked when the driver is unbound from a USB device driver
*
****************************************************************************/
static void cdcacm_unbind(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev)
{
FAR struct cdcacm_dev_s *priv;
FAR struct cdcacm_wrreq_s *wrcontainer;
FAR struct cdcacm_rdreq_s *rdcontainer;
irqstate_t flags;
int i;
usbtrace(TRACE_CLASSUNBIND, 0);
#ifdef CONFIG_DEBUG_FEATURES
if (!driver || !dev)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract reference to private data */
priv = ((FAR struct cdcacm_driver_s *)driver)->dev;
#ifdef CONFIG_DEBUG_FEATURES
if (!priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EP0NOTBOUND), 0);
return;
}
#endif
/* Make sure that we are not already unbound */
if (priv != NULL)
{
/* Make sure that the endpoints have been unconfigured. If
* we were terminated gracefully, then the configuration should
* already have been reset. If not, then calling cdcacm_resetconfig
* should cause the endpoints to immediately terminate all
* transfers and return the requests to us (with result == -ESHUTDOWN)
*/
cdcacm_resetconfig(priv);
up_mdelay(50);
/* Free the pre-allocated control request */
if (priv->ctrlreq != NULL)
{
usbdev_freereq(dev->ep0, priv->ctrlreq);
priv->ctrlreq = NULL;
}
/* Free pre-allocated read requests (which should all have
* been returned to the free list at this time -- we don't check)
*/
DEBUGASSERT(priv->nrdq == 0);
for (i = 0; i < CONFIG_CDCACM_NRDREQS; i++)
{
rdcontainer = &priv->rdreqs[i];
if (rdcontainer->req)
{
usbdev_freereq(priv->epbulkout, rdcontainer->req);
rdcontainer->req = NULL;
}
}
/* Free write requests that are not in use (which should be all
* of them)
*/
flags = enter_critical_section();
DEBUGASSERT(priv->nwrq == CONFIG_CDCACM_NWRREQS);
while (!sq_empty(&priv->txfree))
{
wrcontainer = (struct cdcacm_wrreq_s *)sq_remfirst(&priv->txfree);
if (wrcontainer->req != NULL)
{
usbdev_freereq(priv->epbulkin, wrcontainer->req);
priv->nwrq--; /* Number of write requests queued */
}
}
DEBUGASSERT(priv->nwrq == 0);
leave_critical_section(flags);
/* Free the interrupt IN endpoint */
if (priv->epintin)
{
DEV_FREEEP(dev, priv->epintin);
priv->epintin = NULL;
}
/* Free the bulk OUT endpoint */
if (priv->epbulkout)
{
DEV_FREEEP(dev, priv->epbulkout);
priv->epbulkout = NULL;
}
/* Free the bulk IN endpoint */
if (priv->epbulkin)
{
DEV_FREEEP(dev, priv->epbulkin);
priv->epbulkin = NULL;
}
/* Clear out all data in the circular buffer */
priv->serdev.xmit.head = 0;
priv->serdev.xmit.tail = 0;
}
}
/****************************************************************************
* Name: cdcacm_setup
*
* Description:
* Invoked for ep0 control requests. This function probably executes
* in the context of an interrupt handler.
*
****************************************************************************/
static int cdcacm_setup(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev,
FAR const struct usb_ctrlreq_s *ctrl,
FAR uint8_t *dataout, size_t outlen)
{
FAR struct cdcacm_dev_s *priv;
FAR struct usbdev_req_s *ctrlreq;
uint16_t value;
uint16_t index;
uint16_t len;
int ret = -EOPNOTSUPP;
#ifdef CONFIG_DEBUG_FEATURES
if (!driver || !dev || !ctrl)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return -EINVAL;
}
#endif
/* Extract reference to private data */
usbtrace(TRACE_CLASSSETUP, ctrl->req);
priv = ((FAR struct cdcacm_driver_s *)driver)->dev;
#ifdef CONFIG_DEBUG_FEATURES
if (!priv || !priv->ctrlreq)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EP0NOTBOUND), 0);
return -ENODEV;
}
#endif
ctrlreq = priv->ctrlreq;
/* Extract the little-endian 16-bit values to host order */
value = GETUINT16(ctrl->value);
index = GETUINT16(ctrl->index);
len = GETUINT16(ctrl->len);
uinfo("type=%02x req=%02x value=%04x index=%04x len=%04x\n",
ctrl->type, ctrl->req, value, index, len);
if ((ctrl->type & USB_REQ_TYPE_MASK) == USB_REQ_TYPE_STANDARD)
{
/**********************************************************************
* Standard Requests
**********************************************************************/
switch (ctrl->req)
{
case USB_REQ_GETDESCRIPTOR:
{
/* The value field specifies the descriptor type in the MS byte
* and the descriptor index in the LS byte (order is little
* endian)
*/
switch (ctrl->value[1])
{
/* If the serial device is used in as part of a composite
* device, then the device descriptor is provided by logic in
* the composite device implementation.
*/
#ifndef CONFIG_CDCACM_COMPOSITE
case USB_DESC_TYPE_DEVICE:
{
ret = usbdev_copy_devdesc(ctrlreq->buf,
cdcacm_getdevdesc(),
dev->speed);
}
break;
#endif
/* If the serial device is used in as part of a composite
* device, then the device qualifier descriptor is provided by
* logic in the composite device implementation.
*/
#if !defined(CONFIG_CDCACM_COMPOSITE) && defined(CONFIG_USBDEV_DUALSPEED)
case USB_DESC_TYPE_DEVICEQUALIFIER:
{
ret = USB_SIZEOF_QUALDESC;
memcpy(ctrlreq->buf, cdcacm_getqualdesc(), ret);
}
break;
case USB_DESC_TYPE_OTHERSPEEDCONFIG:
#endif
/* If the serial device is used in as part of a composite
* device, then the configuration descriptor is provided by
* logic in the composite device implementation.
*/
#ifndef CONFIG_CDCACM_COMPOSITE
case USB_DESC_TYPE_CONFIG:
{
ret = cdcacm_mkcfgdesc(ctrlreq->buf, &priv->devinfo,
dev->speed, ctrl->value[1]);
}
break;
#endif
/* If the serial device is used in as part of a composite
* device, then the language string descriptor is provided by
* logic in the composite device implementation.
*/
#ifndef CONFIG_CDCACM_COMPOSITE
case USB_DESC_TYPE_STRING:
{
/* index == language code. */
ret =
cdcacm_mkstrdesc(ctrl->value[0],
(FAR struct usb_strdesc_s *)
ctrlreq->buf);
}
break;
#endif
default:
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_GETUNKNOWNDESC),
value);
}
break;
}
}
break;
case USB_REQ_SETCONFIGURATION:
{
if (ctrl->type == 0)
{
ret = cdcacm_setconfig(priv, value);
}
}
break;
/* If the serial device is used in as part of a composite device,
* then the overall composite class configuration is managed by logic
* in the composite device implementation.
*/
#ifndef CONFIG_CDCACM_COMPOSITE
case USB_REQ_GETCONFIGURATION:
{
if (ctrl->type == USB_DIR_IN)
{
*(FAR uint8_t *)ctrlreq->buf = priv->config;
ret = 1;
}
}
break;
#endif
case USB_REQ_SETINTERFACE:
{
if (ctrl->type == USB_REQ_RECIPIENT_INTERFACE &&
priv->config == CDCACM_CONFIGID)
{
if ((index == priv->devinfo.ifnobase &&
value == CDCACM_NOTALTIFID) ||
(index == (priv->devinfo.ifnobase + 1) &&
value == CDCACM_DATAALTIFID))
{
cdcacm_resetconfig(priv);
cdcacm_setconfig(priv, CDCACM_CONFIGID);
ret = 0;
}
}
}
break;
case USB_REQ_GETINTERFACE:
{
if (ctrl->type == (USB_DIR_IN | USB_REQ_RECIPIENT_INTERFACE) &&
priv->config == CDCACM_CONFIGIDNONE)
{
if ((index == priv->devinfo.ifnobase &&
value == CDCACM_NOTALTIFID) ||
(index == (priv->devinfo.ifnobase + 1) &&
value == CDCACM_DATAALTIFID))
{
*(FAR uint8_t *) ctrlreq->buf = value;
ret = 1;
}
else
{
ret = -EDOM;
}
}
}
break;
default:
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDSTDREQ),
ctrl->req);
break;
}
}
else if ((ctrl->type & USB_REQ_TYPE_MASK) == USB_REQ_TYPE_CLASS)
{
/**********************************************************************
* CDC ACM-Specific Requests
**********************************************************************/
switch (ctrl->req)
{
/* ACM_GET_LINE_CODING requests current DTE rate, stop-bits, parity,
* and number-of-character bits. (Optional)
*/
case ACM_GET_LINE_CODING:
{
if (ctrl->type == (USB_DIR_IN | USB_REQ_TYPE_CLASS |
USB_REQ_RECIPIENT_INTERFACE) &&
index == priv->devinfo.ifnobase)
{
/* Return the current line status from the private data
* structure.
*/
memcpy(ctrlreq->buf, &priv->linecoding,
SIZEOF_CDC_LINECODING);
ret = SIZEOF_CDC_LINECODING;
}
else
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDCLASSREQ),
ctrl->type);
}
}
break;
/* ACM_SET_LINE_CODING configures DTE rate, stop-bits, parity, and
* number-of-character bits. (Optional)
*/
case ACM_SET_LINE_CODING:
{
if (ctrl->type == (USB_DIR_OUT | USB_REQ_TYPE_CLASS |
USB_REQ_RECIPIENT_INTERFACE) &&
len == SIZEOF_CDC_LINECODING && /* dataout && len == outlen && */
index == priv->devinfo.ifnobase)
{
/* Save the new line coding in the private data structure.
* NOTE: that this is conditional now because not all device
* controller drivers supported provision of EP0 OUT data
* with the setup command.
*/
/* REVISIT */
if (dataout && len <= SIZEOF_CDC_LINECODING)
{
memcpy(&priv->linecoding,
dataout, SIZEOF_CDC_LINECODING);
}
/* Respond with a zero length packet */
ret = 0;
/* If there is a registered callback to receive line status
* info, then callout now.
*/
if (priv->callback)
{
priv->callback(CDCACM_EVENT_LINECODING);
}
}
else
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDCLASSREQ),
ctrl->type);
}
}
break;
/* ACM_SET_CTRL_LINE_STATE: RS-232 signal used to tell the DCE
* device the DTE device is now present. (Optional)
*/
case ACM_SET_CTRL_LINE_STATE:
{
if (ctrl->type == (USB_DIR_OUT | USB_REQ_TYPE_CLASS |
USB_REQ_RECIPIENT_INTERFACE) &&
index == priv->devinfo.ifnobase)
{
/* Save the control line state in the private data
* structure. Only bits 0 and 1 have meaning. Respond with
* a zero length packet.
*/
priv->ctrlline = value & 3;
ret = 0;
/* If there is a registered callback to receive control line
* status info, then call out now.
*/
if (priv->callback)
{
priv->callback(CDCACM_EVENT_CTRLLINE);
}
}
else
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDCLASSREQ),
ctrl->type);
}
}
break;
/* Sends special carrier */
case ACM_SEND_BREAK:
{
if (ctrl->type == (USB_DIR_OUT | USB_REQ_TYPE_CLASS |
USB_REQ_RECIPIENT_INTERFACE) &&
index == priv->devinfo.ifnobase)
{
/* If there is a registered callback to handle the SendBreak
* request, then call out now. Respond with a zero length
* packet.
*/
ret = 0;
if (priv->callback)
{
priv->callback(CDCACM_EVENT_SENDBREAK);
}
}
else
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDCLASSREQ),
ctrl->type);
}
}
break;
default:
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDCLASSREQ),
ctrl->req);
break;
}
}
else
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDTYPE), ctrl->type);
}
/* Respond to the setup command if data was returned. On an error return
* value (ret < 0), the USB driver will stall.
*/
if (ret >= 0)
{
/* Configure the response */
ctrlreq->len = MIN(len, ret);
ctrlreq->flags = USBDEV_REQFLAGS_NULLPKT;
/* Send the response -- either directly to the USB controller or
* indirectly in the case where this class is a member of a composite
* device.
*/
#ifndef CONFIG_CDCACM_COMPOSITE
ret = EP_SUBMIT(dev->ep0, ctrlreq);
#else
ret = composite_ep0submit(driver, dev, ctrlreq, ctrl);
#endif
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPRESPQ), (uint16_t)-ret);
ctrlreq->result = OK;
cdcacm_ep0incomplete(dev->ep0, ctrlreq);
}
}
/* Returning a negative value will cause a STALL */
return ret;
}
/****************************************************************************
* Name: cdcacm_disconnect
*
* Description:
* Invoked after all transfers have been stopped, when the host is
* disconnected. This function is probably called from the context of an
* interrupt handler.
*
****************************************************************************/
static void cdcacm_disconnect(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev)
{
FAR struct cdcacm_dev_s *priv;
irqstate_t flags;
usbtrace(TRACE_CLASSDISCONNECT, 0);
#ifdef CONFIG_DEBUG_FEATURES
if (!driver || !dev || !dev->ep0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract reference to private data */
priv = ((FAR struct cdcacm_driver_s *)driver)->dev;
#ifdef CONFIG_DEBUG_FEATURES
if (!priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EP0NOTBOUND), 0);
return;
}
#endif
/* Inform the "upper half serial driver that we have lost the USB serial
* connection.
*/
flags = enter_critical_section();
#ifdef CONFIG_SERIAL_REMOVABLE
uart_connected(&priv->serdev, false);
#endif
/* Reset the configuration */
cdcacm_resetconfig(priv);
/* Clear out all outgoing data in the circular buffer */
priv->serdev.xmit.head = 0;
priv->serdev.xmit.tail = 0;
leave_critical_section(flags);
/* Perform the soft connect function so that we will we can be
* re-enumerated (unless we are part of a composite device)
*/
#ifndef CONFIG_CDCACM_COMPOSITE
DEV_CONNECT(dev);
#endif
}
/****************************************************************************
* Name: cdcacm_suspend
*
* Description:
* Handle the USB suspend event.
*
****************************************************************************/
#ifdef CONFIG_SERIAL_REMOVABLE
static void cdcacm_suspend(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev)
{
FAR struct cdcacm_dev_s *priv;
usbtrace(TRACE_CLASSSUSPEND, 0);
#ifdef CONFIG_DEBUG_FEATURES
if (!driver || !dev)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract reference to private data */
priv = ((FAR struct cdcacm_driver_s *)driver)->dev;
/* And let the "upper half" driver now that we are suspended */
uart_connected(&priv->serdev, false);
}
#endif
/****************************************************************************
* Name: cdcacm_resume
*
* Description:
* Handle the USB resume event.
*
****************************************************************************/
#ifdef CONFIG_SERIAL_REMOVABLE
static void cdcacm_resume(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev)
{
FAR struct cdcacm_dev_s *priv;
usbtrace(TRACE_CLASSRESUME, 0);
#ifdef CONFIG_DEBUG_FEATURES
if (!driver || !dev)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract reference to private data */
priv = ((FAR struct cdcacm_driver_s *)driver)->dev;
/* Are we still configured? */
if (priv->config != CDCACM_CONFIGIDNONE)
{
/* Yes.. let the "upper half" know that have resumed */
uart_connected(&priv->serdev, true);
}
}
#endif
/****************************************************************************
* Serial Device Methods
****************************************************************************/
/****************************************************************************
* Name: cdcuart_setup
*
* Description:
* This method is called the first time that the serial port is opened.
*
****************************************************************************/
static int cdcuart_setup(FAR struct uart_dev_s *dev)
{
FAR struct cdcacm_dev_s *priv;
usbtrace(CDCACM_CLASSAPI_SETUP, 0);
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (!dev || !dev->priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return -EINVAL;
}
#endif
/* Extract reference to private data */
priv = (FAR struct cdcacm_dev_s *)dev->priv;
/* Check if we have been configured */
if (priv->config == CDCACM_CONFIGIDNONE)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_SETUPNOTCONNECTED), 0);
return -ENOTCONN;
}
return OK;
}
/****************************************************************************
* Name: cdcuart_shutdown
*
* Description:
* This method is called when the serial port is closed. This operation
* is very simple for the USB serial back-end because the serial driver
* has already assured that the TX data has full drained -- it calls
* cdcuart_txempty() until that function returns true before calling this
* function.
*
****************************************************************************/
static void cdcuart_shutdown(FAR struct uart_dev_s *dev)
{
usbtrace(CDCACM_CLASSAPI_SHUTDOWN, 0);
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (!dev || !dev->priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
}
#endif
}
/****************************************************************************
* Name: cdcuart_attach
*
* Description:
* Does not apply to the USB serial class device
*
****************************************************************************/
static int cdcuart_attach(FAR struct uart_dev_s *dev)
{
usbtrace(CDCACM_CLASSAPI_ATTACH, 0);
return OK;
}
/****************************************************************************
* Name: cdcuart_detach
*
* Description:
* Does not apply to the USB serial class device
*
****************************************************************************/
static void cdcuart_detach(FAR struct uart_dev_s *dev)
{
usbtrace(CDCACM_CLASSAPI_DETACH, 0);
}
/****************************************************************************
* Name: cdcuart_ioctl
*
* Description:
* All ioctl calls will be routed through this method
*
****************************************************************************/
static int cdcuart_ioctl(FAR struct file *filep, int cmd, unsigned long arg)
{
struct inode *inode = filep->f_inode;
struct cdcacm_dev_s *priv = inode->i_private;
FAR uart_dev_t *serdev = &priv->serdev;
int ret = OK;
switch (cmd)
{
/* CAICO_REGISTERCB
* Register a callback for serial event notification. Argument:
* cdcacm_callback_t. See cdcacm_callback_t type definition below.
* NOTE: The callback will most likely invoked at the interrupt level.
* The called back function should, therefore, limit its operations to
* invoking some kind of IPC to handle the serial event in some normal
* task environment.
*/
case CAIOC_REGISTERCB:
{
/* Save the new callback function */
priv->callback = (cdcacm_callback_t)((uintptr_t)arg);
}
break;
/* CAIOC_GETLINECODING
* Get current line coding. Argument: struct cdc_linecoding_s*.
* See include/nuttx/usb/cdc.h for structure definition. This IOCTL
* should be called to get the data associated with the
* CDCACM_EVENT_LINECODING event).
*/
case CAIOC_GETLINECODING:
{
FAR struct cdc_linecoding_s *ptr =
(FAR struct cdc_linecoding_s *)((uintptr_t)arg);
if (ptr != NULL)
{
memcpy(ptr, &priv->linecoding, sizeof(struct cdc_linecoding_s));
}
else
{
ret = -EINVAL;
}
}
break;
/* CAIOC_GETCTRLLINE
* Get control line status bits. Argument FAR int*. See
* include/nuttx/usb/cdc.h for bit definitions. This IOCTL should be
* called to get the data associated CDCACM_EVENT_CTRLLINE event.
*/
case CAIOC_GETCTRLLINE:
{
FAR int *ptr = (FAR int *)((uintptr_t)arg);
if (ptr != NULL)
{
*ptr = priv->ctrlline;
}
else
{
ret = -EINVAL;
}
}
break;
#ifdef CONFIG_CDCACM_IFLOWCONTROL
/* CAIOC_NOTIFY
* Send a serial state to the host via the Interrupt IN endpoint.
* Argument: int. This includes the current state of the carrier
* detect, DSR, break, and ring signal. See "Table 69: UART State
* Bitmap Values" and CDC_UART_definitions in include/nuttx/usb/cdc.h.
*/
case CAIOC_NOTIFY:
{
DEBUGASSERT(arg < UINT8_MAX);
priv->serialstate = (uint8_t)arg;
ret = cdcacm_serialstate(priv);
}
break;
#endif
#ifdef CONFIG_SERIAL_TERMIOS
case TCGETS:
{
struct termios *termiosp = (FAR struct termios *)arg;
if (!termiosp)
{
ret = -EINVAL;
break;
}
/* And update with flags from this layer */
termiosp->c_cflag =
((priv->linecoding.parity != CDC_PARITY_NONE) ? PARENB : 0) |
((priv->linecoding.parity == CDC_PARITY_ODD) ? PARODD : 0) |
((priv->linecoding.stop == CDC_CHFMT_STOP2) ? CSTOPB : 0) |
CS8;
#ifdef CONFIG_CDCACM_OFLOWCONTROL
/* Report state of output flow control */
# warning Missing logic
#endif
#ifdef CONFIG_CDCACM_IFLOWCONTROL
/* Report state of input flow control */
termiosp->c_cflag |= (priv->iflow) ? CRTS_IFLOW : 0;
#endif
cfsetispeed(termiosp, (speed_t)priv->linecoding.baud[3] << 24 |
(speed_t)priv->linecoding.baud[2] << 16 |
(speed_t)priv->linecoding.baud[1] << 8 |
(speed_t)priv->linecoding.baud[0]);
}
break;
case TCSETS:
{
struct termios *termiosp = (FAR struct termios *)arg;
#ifdef CONFIG_CDCACM_IFLOWCONTROL
bool iflow;
#endif
if (!termiosp)
{
ret = -EINVAL;
break;
}
/* Update the flags we keep at this layer */
#ifdef CONFIG_CDCACM_OFLOWCONTROL
/* Handle changes to output flow control */
# warning Missing logic
#endif
#ifdef CONFIG_CDCACM_IFLOWCONTROL
/* Handle changes to input flow control */
iflow = ((termiosp->c_cflag & CRTS_IFLOW) != 0);
if (iflow != priv->iflow)
{
/* Check if flow control has been disabled. */
if (!iflow)
{
/* Flow control has been disabled. We need to make sure
* that DSR is set unconditionally.
*/
if ((priv->serialstate & CDCACM_UART_DSR) == 0)
{
priv->serialstate |= (CDCACM_UART_DSR | CDCACM_UART_DCD);
ret = cdcacm_serialstate(priv);
}
/* Save the new flow control setting. */
priv->iflow = false;
priv->iactive = false;
/* During the time that flow control was disabled, incoming
* packets were queued in priv->rxpending. We must now
* process all of them (unless RX interrupts are also
* disabled)
*/
cdcacm_release_rxpending(priv);
}
/* Flow control has been enabled. */
else
{
/* Save the new flow control setting. */
priv->iflow = true;
priv->iactive = false;
/* If the RX buffer is already (nearly) full, the we need to
* make sure the DSR is clear.
*
* NOTE: Here we assume that DSR is set so we don't check its
* current value nor to we handle the case where we would set
* DSR because the RX buffer is (nearly) empty!
*/
if (priv->upper)
{
priv->serialstate &= ~CDCACM_UART_DSR;
priv->serialstate |= CDCACM_UART_DCD;
ret = cdcacm_serialstate(priv);
/* Input flow control is now active */
priv->iactive = true;
}
}
/* RX "interrupts are no longer disabled */
priv->rxenabled = true;
}
#endif
}
break;
#endif
/* Get the number of bytes that may be read from the RX buffer (without
* waiting)
*/
case FIONREAD:
{
int count;
irqstate_t flags = enter_critical_section();
/* Determine the number of bytes available in the RX buffer. */
if (serdev->recv.tail <= serdev->recv.head)
{
count = serdev->recv.head - serdev->recv.tail;
}
else
{
count = serdev->recv.size -
(serdev->recv.tail - serdev->recv.head);
}
leave_critical_section(flags);
*(FAR int *)arg = count;
ret = 0;
}
break;
/* Get the number of bytes that have been written to the TX buffer. */
case FIONWRITE:
{
int count;
irqstate_t flags = enter_critical_section();
/* Determine the number of bytes waiting in the TX buffer. */
if (serdev->xmit.tail <= serdev->xmit.head)
{
count = serdev->xmit.head - serdev->xmit.tail;
}
else
{
count = serdev->xmit.size -
(serdev->xmit.tail - serdev->xmit.head);
}
leave_critical_section(flags);
*(FAR int *)arg = count;
ret = 0;
}
break;
/* Get the number of free bytes in the TX buffer */
case FIONSPACE:
{
int count;
irqstate_t flags = enter_critical_section();
/* Determine the number of bytes free in the TX buffer */
if (serdev->xmit.head < serdev->xmit.tail)
{
count = serdev->xmit.tail - serdev->xmit.head - 1;
}
else
{
count = serdev->xmit.size -
(serdev->xmit.head - serdev->xmit.tail) - 1;
}
leave_critical_section(flags);
*(FAR int *)arg = count;
ret = 0;
}
break;
default:
ret = -ENOTTY;
break;
}
return ret;
}
/****************************************************************************
* Name: cdcuart_rxint
*
* Description:
* Called by the serial driver to enable or disable RX interrupts. We, of
* course, have no RX interrupts but must behave consistently. This method
* is called under the conditions:
*
* 1. With enable==true when the port is opened (just after cdcuart_setup
* and cdcuart_attach are called called)
* 2. With enable==false while transferring data from the RX buffer
* 2. With enable==true while waiting for more incoming data
* 3. With enable==false when the port is closed (just before
* cdcuart_detach and cdcuart_shutdown are called).
*
* Assumptions:
* Called from the serial upper-half driver running on the thread of
* execution of the caller of the driver or, possibly, on from the
* USB interrupt handler (at least for the case where the RX interrupt
* is disabled)
*
****************************************************************************/
static void cdcuart_rxint(FAR struct uart_dev_s *dev, bool enable)
{
FAR struct cdcacm_dev_s *priv;
irqstate_t flags;
usbtrace(CDCACM_CLASSAPI_RXINT, (uint16_t)enable);
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (!dev || !dev->priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract reference to private data */
priv = (FAR struct cdcacm_dev_s *)dev->priv;
/* We need exclusive access to the RX buffer and private structure
* in the following.
*/
flags = enter_critical_section();
if (enable)
{
/* RX "interrupts" are enabled. Is this a transition from disabled
* to enabled state?
*/
if (!priv->rxenabled)
{
/* Yes.. RX "interrupts are no longer disabled */
priv->rxenabled = true;
}
/* During the time that RX interrupts was disabled, incoming
* packets were queued in priv->rxpending. We must now process
* all of them (unless flow control is enabled)
*
* NOTE: This action may cause this function to be re-entered
* with enable == false , anyway the pend-list should be flushed
*/
cdcacm_release_rxpending(priv);
}
/* RX "interrupts" are disabled. Nothing special needs to be done on a
* transition from the enabled to the disabled state.
*/
else
{
priv->rxenabled = false;
}
leave_critical_section(flags);
}
/****************************************************************************
* Name: cdcuart_rxflowcontrol
*
* Description:
* Called when Rx buffer is full (or exceeds configured watermark levels
* if CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS is defined).
* Return true if UART activated RX flow control to block more incoming
* data
*
* Input Parameters:
* dev - UART device instance
* nbuffered - the number of characters currently buffered
* (if CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS is
* not defined the value will be 0 for an empty buffer or the
* defined buffer size for a full buffer)
* upper - true indicates the upper watermark was crossed where
* false indicates the lower watermark has been crossed
*
* Returned Value:
* true if RX flow control activated.
*
****************************************************************************/
#ifdef CONFIG_SERIAL_IFLOWCONTROL
static bool cdcuart_rxflowcontrol(FAR struct uart_dev_s *dev,
unsigned int nbuffered, bool upper)
{
#ifdef CONFIG_CDCACM_IFLOWCONTROL
FAR struct cdcacm_dev_s *priv;
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (dev == NULL || dev->priv == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return false;
}
#endif
/* Extract reference to private data */
priv = (FAR struct cdcacm_dev_s *)dev->priv;
/* Is input flow control enabled? */
priv->upper = upper;
if (priv->iflow)
{
/* Yes.. Set DSR (TX carrier) if the lower water mark has been crossed
* or clear it if the upper water mark has been crossed.
*/
if (upper)
{
/* Don't do anything unless this results in a change in the
* setting of DSR.
*/
if ((priv->serialstate & CDCACM_UART_DSR) != 0)
{
/* Clear DSR (set DCD in any case). */
priv->serialstate &= ~CDCACM_UART_DSR;
priv->serialstate |= CDCACM_UART_DCD;
/* And send the SerialState message.
* REVISIT: Error return case. Would an error mean DSR is not
* set?
*/
cdcacm_serialstate(priv);
}
/* Flow control is active */
priv->iactive = true;
}
/* Lower watermark crossing. Don't do anything unless this results in
* a change in the setting of DSR.
*/
else
{
/* Flow control is not active (Needed before calling
* cdcacm_release_rxpending())
*/
priv->iactive = false;
/* Set DSR if it is not already set */
if ((priv->serialstate & CDCACM_UART_DSR) == 0)
{
priv->serialstate |= (CDCACM_UART_DSR | CDCACM_UART_DCD);
/* And send the SerialState message.
* REVISIT: Error return case. Would an error mean DSR is
* still clear?
*/
cdcacm_serialstate(priv);
}
/* During the time that flow control ws disabled, incoming packets
* were queued in priv->rxpending. We must now process all of
* them (unless RX interrupts becomes enabled)
*
* NOTE: This action may cause this function to be re-entered with
* upper == false.
*/
cdcacm_release_rxpending(priv);
}
}
else
{
/* Flow control is disabled ... DSR must be set */
if ((priv->serialstate & CDCACM_UART_DSR) == 0)
{
/* Set DSR and DCD */
priv->serialstate |= (CDCACM_UART_DSR | CDCACM_UART_DCD);
/* And send the SerialState message
* REVISIT: Error return case. Would an error mean DSR is still
* not set?
*/
cdcacm_serialstate(priv);
/* Flow control is not active */
priv->iactive = false;
}
}
/* Return true flow control is active */
return priv->iactive;
#else
return false;
#endif
}
#endif
/****************************************************************************
* Name: cdcuart_txint
*
* Description:
* Called by the serial driver to enable or disable TX interrupts. We, of
* course, have no TX interrupts but must behave consistently. Initially,
* TX interrupts are disabled. This method is called under the conditions:
*
* 1. With enable==false while transferring data into the TX buffer
* 2. With enable==true when data may be taken from the buffer.
* 3. With enable==false when the TX buffer is empty
*
****************************************************************************/
static void cdcuart_txint(FAR struct uart_dev_s *dev, bool enable)
{
FAR struct cdcacm_dev_s *priv;
usbtrace(CDCACM_CLASSAPI_TXINT, (uint16_t)enable);
/* Sanity checks */
#ifdef CONFIG_DEBUG_FEATURES
if (!dev || !dev->priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract references to private data */
priv = (FAR struct cdcacm_dev_s *)dev->priv;
/* If the new state is enabled and if there is data in the XMIT buffer,
* send the next packet now.
*/
uinfo("enable=%d head=%d tail=%d\n",
enable, priv->serdev.xmit.head, priv->serdev.xmit.tail);
if (enable && priv->serdev.xmit.head != priv->serdev.xmit.tail)
{
cdcacm_sndpacket(priv);
}
}
/****************************************************************************
* Name: cdcuart_txempty
*
* Description:
* Return true when all data has been sent. This is called from the
* serial driver when the driver is closed. It will call this API
* periodically until it reports true. NOTE that the serial driver takes
* all responsibility for flushing TX data through the hardware so we can
* be a bit sloppy about that.
*
****************************************************************************/
static bool cdcuart_txempty(FAR struct uart_dev_s *dev)
{
FAR struct cdcacm_dev_s *priv = (FAR struct cdcacm_dev_s *)dev->priv;
usbtrace(CDCACM_CLASSAPI_TXEMPTY, 0);
#ifdef CONFIG_DEBUG_FEATURES
if (!priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return true;
}
#endif
/* When all of the allocated write requests have been returned to the
* txfree, then there is no longer any TX data in flight.
*/
return priv->nwrq >= CONFIG_CDCACM_NWRREQS;
}
/****************************************************************************
* Name: cdcuart_release
*
* Description:
* This is called to release some resource about the device when device
* was close and unregistered.
*
****************************************************************************/
static int cdcuart_release(FAR struct uart_dev_s *dev)
{
FAR struct cdcacm_dev_s *priv = (FAR struct cdcacm_dev_s *)dev->priv;
usbtrace(CDCACM_CLASSAPI_RELEASE, 0);
/* And free the memory resources. */
wd_cancel(&priv->rxfailsafe);
kmm_free(priv);
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: cdcacm_classobject
*
* Description:
* Register USB serial port (and USB serial console if so configured) and
* return the class object.
*
* Input Parameters:
* minor - Device minor number. E.g., minor 0 would correspond to
* /dev/ttyACM0.
* classdev - The location to return the CDC serial class' device
* instance.
*
* Returned Value:
* A pointer to the allocated class object (NULL on failure).
*
****************************************************************************/
#ifndef CONFIG_CDCACM_COMPOSITE
static
#endif
int cdcacm_classobject(int minor, FAR struct usbdev_devinfo_s *devinfo,
FAR struct usbdevclass_driver_s **classdev)
{
FAR struct cdcacm_alloc_s *alloc;
FAR struct cdcacm_dev_s *priv;
FAR struct cdcacm_driver_s *drvr;
char devname[CDCACM_DEVNAME_SIZE];
int ret;
/* Allocate the structures needed */
alloc = (FAR struct cdcacm_alloc_s *)
kmm_malloc(sizeof(struct cdcacm_alloc_s));
if (!alloc)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_ALLOCDEVSTRUCT), 0);
return -ENOMEM;
}
/* Convenience pointers into the allocated blob */
priv = &alloc->dev;
drvr = &alloc->drvr;
/* Initialize the USB serial driver structure */
memset(priv, 0, sizeof(struct cdcacm_dev_s));
sq_init(&priv->txfree);
sq_init(&priv->rxpending);
priv->minor = minor;
/* Save the caller provided device description (composite only) */
memcpy(&priv->devinfo, devinfo,
sizeof(struct usbdev_devinfo_s));
#ifdef CONFIG_CDCACM_IFLOWCONTROL
/* SerialState */
priv->serialstate = (CDCACM_UART_DCD | CDCACM_UART_DSR);
#endif
/* Fake line status */
priv->linecoding.baud[0] = (115200) & 0xff; /* Baud=115200 */
priv->linecoding.baud[1] = (115200 >> 8) & 0xff;
priv->linecoding.baud[2] = (115200 >> 16) & 0xff;
priv->linecoding.baud[3] = (115200 >> 24) & 0xff;
priv->linecoding.stop = CDC_CHFMT_STOP1; /* One stop bit */
priv->linecoding.parity = CDC_PARITY_NONE; /* No parity */
priv->linecoding.nbits = 8; /* 8 data bits */
/* Initialize the serial driver sub-structure */
/* The initial state is disconnected */
#ifdef CONFIG_SERIAL_REMOVABLE
priv->serdev.disconnected = true;
#endif
priv->serdev.recv.size = CONFIG_CDCACM_RXBUFSIZE;
priv->serdev.recv.buffer = priv->rxbuffer;
priv->serdev.xmit.size = CONFIG_CDCACM_TXBUFSIZE;
priv->serdev.xmit.buffer = priv->txbuffer;
priv->serdev.ops = &g_uartops;
priv->serdev.priv = priv;
/* Initialize the USB class driver structure */
#if defined(CONFIG_USBDEV_SUPERSPEED)
drvr->drvr.speed = USB_SPEED_SUPER;
#elif defined(CONFIG_USBDEV_DUALSPEED)
drvr->drvr.speed = USB_SPEED_HIGH;
#else
drvr->drvr.speed = USB_SPEED_FULL;
#endif
drvr->drvr.ops = &g_driverops;
drvr->dev = priv;
/* Register the USB serial console */
#ifdef CONFIG_CDCACM_CONSOLE
if (minor == 0)
{
priv->serdev.isconsole = true;
ret = uart_register("/dev/console", &priv->serdev);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_CONSOLEREGISTER),
(uint16_t)-ret);
goto errout_with_class;
}
}
#endif
/* Register the CDC/ACM TTY device */
snprintf(devname, sizeof(devname), CDCACM_DEVNAME_FORMAT, minor);
ret = uart_register(devname, &priv->serdev);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UARTREGISTER),
(uint16_t)-ret);
goto errout_with_class;
}
*classdev = &drvr->drvr;
return OK;
errout_with_class:
kmm_free(alloc);
return ret;
}
/****************************************************************************
* Name: cdcacm_initialize
*
* Description:
* Register USB serial port (and USB serial console if so configured).
*
* Input Parameters:
* minor - Device minor number. E.g., minor 0 would correspond to
* /dev/ttyACM0.
* handle - An optional opaque reference to the CDC/ACM class object that
* may subsequently be used with cdcacm_uninitialize().
*
* Returned Value:
* Zero (OK) means that the driver was successfully registered. On any
* failure, a negated errno value is returned.
*
****************************************************************************/
#ifndef CONFIG_CDCACM_COMPOSITE
int cdcacm_initialize(int minor, FAR void **handle)
{
FAR struct usbdevclass_driver_s *drvr = NULL;
struct usbdev_devinfo_s devinfo;
int ret;
memset(&devinfo, 0, sizeof(struct usbdev_devinfo_s));
/* Interfaces.
*
* ifnobase must be provided by board-specific logic
*/
devinfo.ninterfaces = CDCACM_NINTERFACES; /* Number of interfaces in the configuration */
/* Strings.
*
* strbase must be provided by board-specific logic
*/
devinfo.nstrings = CDCACM_NSTRIDS; /* Number of Strings */
/* Endpoints.
*
* Endpoint numbers must be provided by board-specific logic when
* CDC/ACM is used in a composite device.
*/
devinfo.nendpoints = CDCACM_NUM_EPS;
devinfo.epno[CDCACM_EP_INTIN_IDX] = CONFIG_CDCACM_EPINTIN;
devinfo.epno[CDCACM_EP_BULKIN_IDX] = CONFIG_CDCACM_EPBULKIN;
devinfo.epno[CDCACM_EP_BULKOUT_IDX] = CONFIG_CDCACM_EPBULKOUT;
/* Get an instance of the serial driver class object */
ret = cdcacm_classobject(minor, &devinfo, &drvr);
if (ret == OK)
{
/* Register the USB serial class driver */
ret = usbdev_register(drvr);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_DEVREGISTER),
(uint16_t)-ret);
}
}
/* Return the driver instance (if any) if the caller has requested it
* by provided a pointer to the location to return it.
*/
if (handle)
{
*handle = (FAR void *)drvr;
}
return ret;
}
#endif
/****************************************************************************
* Name: cdcacm_uninitialize
*
* Description:
* Un-initialize the USB storage class driver. This function is used
* internally by the USB composite driver to uninitialize the CDC/ACM
* driver. This same interface is available (with an untyped input
* parameter) when the CDC/ACM driver is used standalone.
*
* Input Parameters:
* There is one parameter, it differs in typing depending upon whether the
* CDC/ACM driver is an internal part of a composite device, or a
* standalone USB driver:
*
* classdev - The class object returned by cdcacm_classobject()
*
* Returned Value:
* None
*
****************************************************************************/
void cdcacm_uninitialize(FAR struct usbdevclass_driver_s *classdev)
{
FAR struct cdcacm_driver_s *drvr = (FAR struct cdcacm_driver_s *)classdev;
FAR struct cdcacm_dev_s *priv = drvr->dev;
char devname[CDCACM_DEVNAME_SIZE];
int ret;
#ifndef CONFIG_CDCACM_COMPOSITE
usbdev_unregister(&drvr->drvr);
#endif
/* Un-register the CDC/ACM TTY device */
snprintf(devname, sizeof(devname), CDCACM_DEVNAME_FORMAT, priv->minor);
ret = unregister_driver(devname);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UARTUNREGISTER),
(uint16_t)-ret);
}
}
/****************************************************************************
* Name: cdcacm_get_composite_devdesc
*
* Description:
* Helper function to fill in some constants into the composite
* configuration struct.
*
* Input Parameters:
* dev - Pointer to the configuration struct we should fill
*
* Returned Value:
* None
*
****************************************************************************/
#if defined(CONFIG_USBDEV_COMPOSITE) && defined(CONFIG_CDCACM_COMPOSITE)
void cdcacm_get_composite_devdesc(struct composite_devdesc_s *dev)
{
memset(dev, 0, sizeof(struct composite_devdesc_s));
/* The callback functions for the CDC/ACM class.
*
* classobject() and uninitialize() must be provided by board-specific
* logic
*/
dev->mkconfdesc = cdcacm_mkcfgdesc;
dev->mkstrdesc = cdcacm_mkstrdesc;
dev->nconfigs = CDCACM_NCONFIGS; /* Number of configurations supported */
dev->configid = CDCACM_CONFIGID; /* The only supported configuration ID */
/* Let the construction function calculate the size of config descriptor */
dev->cfgdescsize = cdcacm_mkcfgdesc(NULL, NULL, USB_SPEED_UNKNOWN, 0);
/* Board-specific logic must provide the device minor */
/* Interfaces.
*
* ifnobase must be provided by board-specific logic
*/
dev->devinfo.ninterfaces = CDCACM_NINTERFACES; /* Number of interfaces in the configuration */
/* Strings.
*
* strbase must be provided by board-specific logic
*/
dev->devinfo.nstrings = CDCACM_NSTRIDS; /* Number of Strings */
/* Endpoints.
*
* Endpoint numbers must be provided by board-specific logic.
*/
dev->devinfo.nendpoints = CDCACM_NUM_EPS;
}
#endif