nuttx/drivers/net/e1000.c

1276 lines
34 KiB
C

/****************************************************************************
* drivers/net/e1000.c
*
* Copyright (C) 2011 Yu Qiang. All rights reserved.
* Author: Yu Qiang <yuq825@gmail.com>
*
* This file is a part of NuttX:
*
* Copyright (C) 2011, 2014 Gregory Nutt. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/kmalloc.h>
#include <stdint.h>
#include <stdbool.h>
#include <time.h>
#include <debug.h>
#include <errno.h>
#include <arpa/inet.h>
#include <nuttx/arch.h>
#include <nuttx/irq.h>
#include <nuttx/wdog.h>
#include <nuttx/kmalloc.h>
#include <nuttx/net/arp.h>
#include <nuttx/net/netdev.h>
#ifdef CONFIG_NET_PKT
# include <nuttx/net/pkt.h>
#endif
#include <rgmp/pmap.h>
#include <rgmp/string.h>
#include <rgmp/stdio.h>
#include <rgmp/utils.h>
#include <rgmp/arch/pci.h>
#include <rgmp/memio.h>
#include "e1000.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* TX poll deley = 1 seconds. CLK_TCK is the number of clock ticks per second */
#define E1000_WDDELAY (1*CLK_TCK)
/* TX timeout = 1 minute */
#define E1000_TXTIMEOUT (60*CLK_TCK)
/* This is a helper pointer for accessing the contents of the Ethernet header */
#define BUF ((struct eth_hdr_s *)e1000->netdev.d_buf)
/****************************************************************************
* Private Types
****************************************************************************/
struct tx_ring
{
struct tx_desc *desc;
char *buf;
int tail; /* where to write desc */
};
struct rx_ring
{
struct rx_desc *desc;
char *buf;
int head; /* where to read */
int tail; /* where to release free desc */
int free; /* number of freed desc */
};
struct e1000_dev
{
uint32_t phy_mem_base;
uint32_t io_mem_base;
uint32_t mem_size;
int pci_dev_id;
uint16_t pci_addr;
unsigned char src_mac[6];
unsigned char dst_mac[6];
struct irq_action int_desc;
struct tx_ring tx_ring;
struct rx_ring rx_ring;
struct e1000_dev *next;
/* NuttX net data */
bool bifup; /* true:ifup false:ifdown */
WDOG_ID txpoll; /* TX poll timer */
WDOG_ID txtimeout; /* TX timeout timer */
/* This holds the information visible to uIP/NuttX */
struct net_driver_s netdev; /* Interface understood by networking layer */
};
struct e1000_dev_head
{
struct e1000_dev *next;
};
/****************************************************************************
* Private Data
****************************************************************************/
static struct e1000_dev_head e1000_list =
{
0
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Common TX logic */
static int e1000_transmit(struct e1000_dev *e1000);
static int e1000_txpoll(struct net_driver_s *dev);
/* Interrupt handling */
static void e1000_receive(struct e1000_dev *e1000);
/* Watchdog timer expirations */
static void e1000_polltimer(int argc, uint32_t arg, ...);
static void e1000_txtimeout(int argc, uint32_t arg, ...);
/* NuttX callback functions */
static int e1000_ifup(struct net_driver_s *dev);
static int e1000_ifdown(struct net_driver_s *dev);
static int e1000_txavail(struct net_driver_s *dev);
#ifdef CONFIG_NET_IGMP
static int e1000_addmac(struct net_driver_s *dev, const uint8_t *mac);
static int e1000_rmmac(struct net_driver_s *dev, const uint8_t *mac);
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
static inline void e1000_outl(struct e1000_dev *dev, int reg, uint32_t val)
{
writel(dev->io_mem_base+reg, val);
}
static inline uint32_t e1000_inl(struct e1000_dev *dev, int reg)
{
return readl(dev->io_mem_base+reg);
}
/****************************** e1000 driver ********************************/
void e1000_reset(struct e1000_dev *dev)
{
uint32_t dev_control;
/* Reset the network controller hardware */
dev_control = 0;
dev_control |= (1 << 0); /* FD-bit (Full Duplex) */
dev_control |= (0 << 2); /* GIOMD-bit (GIO Master Disable) */
dev_control |= (1 << 3); /* LRST-bit (Link Reset) */
dev_control |= (1 << 6); /* SLU-bit (Set Link Up) */
dev_control |= (2 << 8); /* SPEED=2 (1000Mbps) */
dev_control |= (0 << 11); /* FRCSPD-bit (Force Speed) */
dev_control |= (0 << 12); /* FRCDPLX-bit (Force Duplex) */
dev_control |= (0 << 20); /* ADVD3WUC-bit (Advertise D3 Wake Up Cap) */
dev_control |= (1 << 26); /* RST-bit (Device Reset) */
dev_control |= (1 << 27); /* RFCE-bit (Receive Flow Control Enable) */
dev_control |= (1 << 28); /* TFCE-bit (Transmit Flow Control Enable) */
dev_control |= (0 << 30); /* VME-bit (VLAN Mode Enable) */
dev_control |= (0 << 31); /* PHY_RST-bit (PHY Reset) */
e1000_outl(dev, E1000_IMC, 0xFFFFFFFF);
e1000_outl(dev, E1000_STATUS, 0x00000000);
e1000_outl(dev, E1000_CTRL, dev_control);
dev_control &= ~(1 << 26); /* clear RST-bit (Device Reset) */
e1000_outl(dev, E1000_CTRL, dev_control);
up_mdelay(10);
e1000_outl(dev, E1000_CTRL_EXT, 0x001401C0);
e1000_outl(dev, E1000_IMC, 0xFFFFFFFF);
}
void e1000_turn_on(struct e1000_dev *dev)
{
int tx_control;
int rx_control;
uint32_t ims = 0;
/* turn on the controller's receive engine */
rx_control = e1000_inl(dev, E1000_RCTL);
rx_control |= (1 << 1);
e1000_outl(dev, E1000_RCTL, rx_control);
/* turn on the controller's transmit engine */
tx_control = e1000_inl(dev, E1000_TCTL);
tx_control |= (1 << 1);
e1000_outl(dev, E1000_TCTL, tx_control);
/* enable the controller's interrupts */
e1000_outl(dev, E1000_ICR, 0xFFFFFFFF);
e1000_outl(dev, E1000_IMC, 0xFFFFFFFF);
ims |= 1 << 0; /* TXDW */
ims |= 1 << 1; /* TXQE */
ims |= 1 << 2; /* LSC */
ims |= 1 << 4; /* RXDMT0 */
ims |= 1 << 7; /* RXT0 */
e1000_outl(dev, E1000_IMS, ims);
}
void e1000_turn_off(struct e1000_dev *dev)
{
int tx_control;
int rx_control;
/* turn off the controller's receive engine */
rx_control = e1000_inl(dev, E1000_RCTL);
rx_control &= ~(1 << 1);
e1000_outl(dev, E1000_RCTL, rx_control);
/* turn off the controller's transmit engine */
tx_control = e1000_inl(dev, E1000_TCTL);
tx_control &= ~(1 << 1);
e1000_outl(dev, E1000_TCTL, tx_control);
/* turn off the controller's interrupts */
e1000_outl(dev, E1000_IMC, 0xFFFFFFFF);
}
void e1000_init(struct e1000_dev *dev)
{
uint32_t rxd_phys;
uint32_t txd_phys;
uint32_t kmem_phys;
uint32_t rx_control;
uint32_t tx_control;
uint32_t pba;
int i;
e1000_reset(dev);
/* configure the controller's 'receive' engine */
rx_control = 0;
rx_control |= (0 << 1); /* EN-bit (Enable) */
rx_control |= (0 << 2); /* SPB-bit (Store Bad Packets) */
rx_control |= (0 << 3); /* UPE-bit (Unicast Promiscuous Mode) */
rx_control |= (1 << 4); /* MPE-bit (Multicast Promiscuous Mode) */
rx_control |= (0 << 5); /* LPE-bit (Long Packet Enable) */
rx_control |= (0 << 6); /* LBM=0 (Loop-Back Mode) */
rx_control |= (0 << 8); /* RDMTS=0 (Rx Descriptor Min Threshold Size) */
rx_control |= (0 << 10); /* DTYPE=0 (Descriptor Type) */
rx_control |= (0 << 12); /* MO=0 (Multicast Offset) */
rx_control |= (1 << 15); /* BAM-bit (Broadcast Address Mode) */
rx_control |= (0 << 16); /* BSIZE=0 (Buffer Size = 2048) */
rx_control |= (0 << 18); /* VLE-bit (VLAN filter Enable) */
rx_control |= (0 << 19); /* CFIEN-bit (Canonical Form Indicator Enable) */
rx_control |= (0 << 20); /* CFI-bit (Canonical Form Indicator) */
rx_control |= (1 << 22); /* DPF-bit (Discard Pause Frames) */
rx_control |= (0 << 23); /* PMCF-bit (Pass MAC Control Frames) */
rx_control |= (0 << 25); /* BSEX=0 (Buffer Size EXtension) */
rx_control |= (1 << 26); /* SECRC-bit (Strip Ethernet CRC) */
rx_control |= (0 << 27); /* FLEXBUF=0 (Flexible Buffer size) */
e1000_outl(dev, E1000_RCTL, rx_control);
/* configure the controller's 'transmit' engine */
tx_control = 0;
tx_control |= (0 << 1); /* EN-bit (Enable) */
tx_control |= (1 << 3); /* PSP-bit (Pad Short Packets) */
tx_control |= (15 << 4); /* CT=15 (Collision Threshold) */
tx_control |= (63 << 12); /* COLD=63 (Collision Distance) */
tx_control |= (0 << 22); /* SWXOFF-bit (Software XOFF) */
tx_control |= (1 << 24); /* RTLC-bit (Re-Transmit on Late Collision) */
tx_control |= (0 << 25); /* UNORTX-bit (Underrun No Re-Transmit) */
tx_control |= (0 << 26); /* TXCSCMT=0 (TxDesc Mininum Threshold) */
tx_control |= (0 << 28); /* MULR-bit (Multiple Request Support) */
e1000_outl(dev, E1000_TCTL, tx_control);
/* hardware flow control */
pba = e1000_inl(dev, E1000_PBA);
/* get receive FIFO size */
pba = (pba & 0x000000ff) << 10;
e1000_outl(dev, E1000_FCAL, 0x00C28001);
e1000_outl(dev, E1000_FCAH, 0x00000100);
e1000_outl(dev, E1000_FCT, 0x00008808);
e1000_outl(dev, E1000_FCTTV, 0x00000680);
e1000_outl(dev, E1000_FCRTL, (pba * 8 / 10) | 0x80000000);
e1000_outl(dev, E1000_FCRTH, pba * 9 / 10);
/* setup tx rings */
txd_phys = PADDR((uintptr_t)dev->tx_ring.desc);
kmem_phys = PADDR((uintptr_t)dev->tx_ring.buf);
for (i = 0; i < CONFIG_E1000_N_TX_DESC; i++, kmem_phys += CONFIG_E1000_BUFF_SIZE)
{
dev->tx_ring.desc[i].base_address = kmem_phys;
dev->tx_ring.desc[i].packet_length = 0;
dev->tx_ring.desc[i].cksum_offset = 0;
dev->tx_ring.desc[i].cksum_origin = 0;
dev->tx_ring.desc[i].desc_status = 1;
dev->tx_ring.desc[i].desc_command = (1 << 0) | (1 << 1) | (1 << 3);
dev->tx_ring.desc[i].special_info = 0;
}
dev->tx_ring.tail = 0;
e1000_outl(dev, E1000_TDT, 0);
e1000_outl(dev, E1000_TDH, 0);
/* tell controller the location, size, and fetch-policy for Tx queue */
e1000_outl(dev, E1000_TDBAL, txd_phys);
e1000_outl(dev, E1000_TDBAH, 0x00000000);
e1000_outl(dev, E1000_TDLEN, CONFIG_E1000_N_TX_DESC * 16);
e1000_outl(dev, E1000_TXDCTL, 0x01010000);
/* setup rx rings */
rxd_phys = PADDR((uintptr_t)dev->rx_ring.desc);
kmem_phys = PADDR((uintptr_t)dev->rx_ring.buf);
for (i = 0; i < CONFIG_E1000_N_RX_DESC; i++, kmem_phys += CONFIG_E1000_BUFF_SIZE)
{
dev->rx_ring.desc[i].base_address = kmem_phys;
dev->rx_ring.desc[i].packet_length = 0;
dev->rx_ring.desc[i].packet_cksum = 0;
dev->rx_ring.desc[i].desc_status = 0;
dev->rx_ring.desc[i].desc_errors = 0;
dev->rx_ring.desc[i].vlan_tag = 0;
}
dev->rx_ring.head = 0;
dev->rx_ring.tail = CONFIG_E1000_N_RX_DESC-1;
dev->rx_ring.free = 0;
/* give the controller ownership of all receive descriptors */
e1000_outl(dev, E1000_RDH, 0);
e1000_outl(dev, E1000_RDT, CONFIG_E1000_N_RX_DESC-1);
/* tell controller the location, size, and fetch-policy for RX queue */
e1000_outl(dev, E1000_RDBAL, rxd_phys);
e1000_outl(dev, E1000_RDBAH, 0x00000000);
e1000_outl(dev, E1000_RDLEN, CONFIG_E1000_N_RX_DESC*16);
e1000_outl(dev, E1000_RXDCTL, 0x01010000);
e1000_turn_on(dev);
}
/****************************************************************************
* Function: e1000_transmit
*
* Description:
* Start hardware transmission. Called either from the txdone interrupt
* handling or from watchdog based polling.
*
* Parameters:
* e1000 - Reference to the driver state structure
*
* Returned Value:
* OK on success; a negated errno on failure
*
* Assumptions:
* May or may not be called from an interrupt handler. In either case,
* global interrupts are disabled, either explicitly or indirectly through
* interrupt handling logic.
*
****************************************************************************/
static int e1000_transmit(struct e1000_dev *e1000)
{
int tail = e1000->tx_ring.tail;
unsigned char *cp = (unsigned char *)
(e1000->tx_ring.buf + tail * CONFIG_E1000_BUFF_SIZE);
int count = e1000->netdev.d_len;
/* Verify that the hardware is ready to send another packet. If we get
* here, then we are committed to sending a packet; Higher level logic
* must have assured that there is not transmission in progress.
*/
if (!e1000->tx_ring.desc[tail].desc_status)
{
return -1;
}
/* Send the packet: address=skel->sk_dev.d_buf, length=skel->sk_dev.d_len */
memcpy(cp, e1000->netdev.d_buf, e1000->netdev.d_len);
/* prepare the transmit-descriptor */
e1000->tx_ring.desc[tail].packet_length = count < 60 ? 60 : count;
e1000->tx_ring.desc[tail].desc_status = 0;
/* give ownership of this descriptor to the network controller */
tail = (tail + 1) % CONFIG_E1000_N_TX_DESC;
e1000->tx_ring.tail = tail;
e1000_outl(e1000, E1000_TDT, tail);
/* Enable Tx interrupts */
/* Setup the TX timeout watchdog (perhaps restarting the timer) */
wd_start(e1000->txtimeout, E1000_TXTIMEOUT, e1000_txtimeout, 1,
(wdparm_t)e1000);
return OK;
}
/****************************************************************************
* Function: e1000_txpoll
*
* Description:
* The transmitter is available, check if uIP has any outgoing packets ready
* to send. This is a callback from devif_poll(). devif_poll() may be called:
*
* 1. When the preceding TX packet send is complete,
* 2. When the preceding TX packet send timesout and the interface is reset
* 3. During normal TX polling
*
* Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* OK on success; a negated errno on failure
*
* Assumptions:
* May or may not be called from an interrupt handler. In either case,
* global interrupts are disabled, either explicitly or indirectly through
* interrupt handling logic.
*
****************************************************************************/
static int e1000_txpoll(struct net_driver_s *dev)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev->d_private;
int tail = e1000->tx_ring.tail;
/* If the polling resulted in data that should be sent out on the network,
* the field d_len is set to a value > 0.
*/
if (e1000->netdev.d_len > 0)
{
/* Look up the destination MAC address and add it to the Ethernet
* header.
*/
#ifdef CONFIG_NET_IPv4
#ifdef CONFIG_NET_IPv6
if (IFF_IS_IPv4(e1000->netdev.d_flags))
#endif
{
arp_out(&e1000->netdev);
}
#endif /* CONFIG_NET_IPv4 */
#ifdef CONFIG_NET_IPv6
#ifdef CONFIG_NET_IPv4
else
#endif
{
neighbor_out(&e1000->netdev);
}
#endif /* CONFIG_NET_IPv6 */
/* Send the packet */
e1000_transmit(e1000);
/* Check if there is room in the device to hold another packet. If not,
* return a non-zero value to terminate the poll.
*/
if (!e1000->tx_ring.desc[tail].desc_status)
{
return -1;
}
}
/* If zero is returned, the polling will continue until all connections have
* been examined.
*/
return 0;
}
/****************************************************************************
* Function: e1000_receive
*
* Description:
* An interrupt was received indicating the availability of a new RX packet
*
* Parameters:
* e1000 - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Global interrupts are disabled by interrupt handling logic.
*
****************************************************************************/
static void e1000_receive(struct e1000_dev *e1000)
{
int head = e1000->rx_ring.head;
unsigned char *cp = (unsigned char *)
(e1000->rx_ring.buf + head * CONFIG_E1000_BUFF_SIZE);
int cnt;
while (e1000->rx_ring.desc[head].desc_status)
{
/* Here we do not handle packets that exceed packet-buffer size */
if ((e1000->rx_ring.desc[head].desc_status & 3) == 1)
{
cprintf("NIC READ: Oversized packet\n");
goto next;
}
/* Check if the packet is a valid size for the uIP buffer configuration */
/* get the number of actual data-bytes in this packet */
cnt = e1000->rx_ring.desc[head].packet_length;
if (cnt > CONFIG_NET_ETH_MTU || cnt < 14)
{
cprintf("NIC READ: invalid package size\n");
goto next;
}
/* Copy the data data from the hardware to e1000->netdev.d_buf. Set
* amount of data in e1000->netdev.d_len
*/
/* now we try to copy these data-bytes to the UIP buffer */
memcpy(e1000->netdev.d_buf, cp, cnt);
e1000->netdev.d_len = cnt;
#ifdef CONFIG_NET_PKT
/* When packet sockets are enabled, feed the frame into the packet tap */
pkt_input(&e1000->netdev);
#endif
/* We only accept IP packets of the configured type and ARP packets */
#ifdef CONFIG_NET_IPv4
if (BUF->type == HTONS(ETHTYPE_IP))
{
nllvdbg("IPv4 frame\n");
/* Handle ARP on input then give the IPv4 packet to the network
* layer
*/
arp_ipin(&e1000->netdev);
ipv4_input(&e1000->netdev);
/* If the above function invocation resulted in data that should be
* sent out on the network, the field d_len will set to a value > 0.
*/
if (e1000->netdev.d_len > 0)
{
/* Update the Ethernet header with the correct MAC address */
#ifdef CONFIG_NET_IPv6
if (IFF_IS_IPv4(e1000->netdev.d_flags))
#endif
{
arp_out(&e1000->netdev);
}
#ifdef CONFIG_NET_IPv6
else
{
neighbor_out(&e1000->netdev);
}
#endif
/* And send the packet */
e1000_transmit(e1000);
}
}
else
#endif
#ifdef CONFIG_NET_IPv6
if (BUF->type == HTONS(ETHTYPE_IP6))
{
nllvdbg("Iv6 frame\n");
/* Give the IPv6 packet to the network layer */
ipv6_input(&e1000->netdev);
/* If the above function invocation resulted in data that should be
* sent out on the network, the field d_len will set to a value > 0.
*/
if (e1000->netdev.d_len > 0)
{
/* Update the Ethernet header with the correct MAC address */
#ifdef CONFIG_NET_IPv4
if (IFF_IS_IPv4(e1000->netdev.d_flags))
{
arp_out(&e1000->netdev);
}
else
#endif
#ifdef CONFIG_NET_IPv6
{
neighbor_out(&e1000->netdev);
}
#endif
/* And send the packet */
e1000_transmit(e1000);
}
}
else
#endif
#ifdef CONFIG_NET_ARP
if (BUF->type == htons(ETHTYPE_ARP))
{
arp_arpin(&e1000->netdev);
/* If the above function invocation resulted in data that should be
* sent out on the network, the field d_len will set to a value > 0.
*/
if (e1000->netdev.d_len > 0)
{
e1000_transmit(e1000);
}
#endif
}
next:
e1000->rx_ring.desc[head].desc_status = 0;
e1000->rx_ring.head = (head + 1) % CONFIG_E1000_N_RX_DESC;
e1000->rx_ring.free++;
head = e1000->rx_ring.head;
cp = (unsigned char *)(e1000->rx_ring.buf + head * CONFIG_E1000_BUFF_SIZE);
}
}
/****************************************************************************
* Function: e1000_txtimeout
*
* Description:
* Our TX watchdog timed out. Called from the timer interrupt handler.
* The last TX never completed. Reset the hardware and start again.
*
* Parameters:
* argc - The number of available arguments
* arg - The first argument
*
* Returned Value:
* None
*
* Assumptions:
* Global interrupts are disabled by the watchdog logic.
*
****************************************************************************/
static void e1000_txtimeout(int argc, uint32_t arg, ...)
{
struct e1000_dev *e1000 = (struct e1000_dev *)arg;
/* Then reset the hardware */
e1000_init(e1000);
/* Then poll uIP for new XMIT data */
(void)devif_poll(&e1000->netdev, e1000_txpoll);
}
/****************************************************************************
* Function: e1000_polltimer
*
* Description:
* Periodic timer handler. Called from the timer interrupt handler.
*
* Parameters:
* argc - The number of available arguments
* arg - The first argument
*
* Returned Value:
* None
*
* Assumptions:
* Global interrupts are disabled by the watchdog logic.
*
****************************************************************************/
static void e1000_polltimer(int argc, uint32_t arg, ...)
{
struct e1000_dev *e1000 = (struct e1000_dev *)arg;
int tail = e1000->tx_ring.tail;
/* Check if there is room in the send another TX packet. We cannot perform
* the TX poll if he are unable to accept another packet for transmission.
*/
if (!e1000->tx_ring.desc[tail].desc_status)
{
return;
}
/* If so, update TCP timing states and poll uIP for new XMIT data. Hmmm..
* might be bug here. Does this mean if there is a transmit in progress,
* we will missing TCP time state updates?
*/
(void)devif_timer(&e1000->netdev, e1000_txpoll);
/* Setup the watchdog poll timer again */
(void)wd_start(e1000->txpoll, E1000_WDDELAY, e1000_polltimer, 1,
(wdparm_t)arg);
}
/****************************************************************************
* Function: e1000_ifup
*
* Description:
* NuttX Callback: Bring up the Ethernet interface when an IP address is
* provided
*
* Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int e1000_ifup(struct net_driver_s *dev)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev->d_private;
ndbg("Bringing up: %d.%d.%d.%d\n",
dev->d_ipaddr & 0xff, (dev->d_ipaddr >> 8) & 0xff,
(dev->d_ipaddr >> 16) & 0xff, dev->d_ipaddr >> 24);
/* Initialize PHYs, the Ethernet interface, and setup up Ethernet interrupts */
e1000_init(e1000);
/* Set and activate a timer process */
(void)wd_start(e1000->txpoll, E1000_WDDELAY, e1000_polltimer, 1,
(wdparm_t)e1000);
if (e1000_inl(e1000, E1000_STATUS) & 2)
{
e1000->bifup = true;
}
else
{
e1000->bifup = false;
}
return OK;
}
/****************************************************************************
* Function: e1000_ifdown
*
* Description:
* NuttX Callback: Stop the interface.
*
* Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int e1000_ifdown(struct net_driver_s *dev)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev->d_private;
irqstate_t flags;
/* Disable the Ethernet interrupt */
flags = enter_critical_section();
e1000_turn_off(e1000);
/* Cancel the TX poll timer and TX timeout timers */
wd_cancel(e1000->txpoll);
wd_cancel(e1000->txtimeout);
/* Put the EMAC is its reset, non-operational state. This should be
* a known configuration that will guarantee the skel_ifup() always
* successfully brings the interface back up.
*/
//e1000_reset(e1000);
/* Mark the device "down" */
e1000->bifup = false;
leave_critical_section(flags);
return OK;
}
/****************************************************************************
* Function: e1000_txavail
*
* Description:
* Driver callback invoked when new TX data is available. This is a
* stimulus perform an out-of-cycle poll and, thereby, reduce the TX
* latency.
*
* Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Called in normal user mode
*
****************************************************************************/
static int e1000_txavail(struct net_driver_s *dev)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev->d_private;
int tail = e1000->tx_ring.tail;
irqstate_t flags;
/* Disable interrupts because this function may be called from interrupt
* level processing.
*/
flags = enter_critical_section();
/* Ignore the notification if the interface is not yet up */
if (e1000->bifup)
{
/* Check if there is room in the hardware to hold another outgoing packet. */
if (e1000->tx_ring.desc[tail].desc_status)
{
(void)devif_poll(&e1000->netdev, e1000_txpoll);
}
}
leave_critical_section(flags);
return OK;
}
/****************************************************************************
* Function: e1000_addmac
*
* Description:
* NuttX Callback: Add the specified MAC address to the hardware multicast
* address filtering
*
* Parameters:
* dev - Reference to the NuttX driver state structure
* mac - The MAC address to be added
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
#ifdef CONFIG_NET_IGMP
static int e1000_addmac(struct net_driver_s *dev, const uint8_t *mac)
{
/* Add the MAC address to the hardware multicast routing table */
return OK;
}
#endif
/****************************************************************************
* Function: e1000_rmmac
*
* Description:
* NuttX Callback: Remove the specified MAC address from the hardware multicast
* address filtering
*
* Parameters:
* dev - Reference to the NuttX driver state structure
* mac - The MAC address to be removed
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
#ifdef CONFIG_NET_IGMP
static int e1000_rmmac(struct net_driver_s *dev, const uint8_t *mac)
{
/* Add the MAC address to the hardware multicast routing table */
return OK;
}
#endif
static irqreturn_t e1000_interrupt_handler(int irq, void *dev_id)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev_id;
/* Get and clear interrupt status bits */
int intr_cause = e1000_inl(e1000, E1000_ICR);
e1000_outl(e1000, E1000_ICR, intr_cause);
/* not for me */
if (intr_cause == 0)
{
return IRQ_NONE;
}
/* Handle interrupts according to status bit settings */
/* Link status change */
if (intr_cause & (1 << 2))
{
if (e1000_inl(e1000, E1000_STATUS) & 2)
{
e1000->bifup = true;
}
else
{
e1000->bifup = false;
}
}
/* Check if we received an incoming packet, if so, call skel_receive() */
/* Rx-descriptor Timer expired */
if (intr_cause & (1 << 7))
{
e1000_receive(e1000);
}
/* Tx queue empty */
if (intr_cause & (1 << 1))
{
wd_cancel(e1000->txtimeout);
}
/* Tx-descriptor Written back */
if (intr_cause & (1 << 0))
{
devif_poll(&e1000->netdev, e1000_txpoll);
}
/* Rx-Descriptors Low */
if (intr_cause & (1 << 4))
{
int tail;
tail = e1000->rx_ring.tail + e1000->rx_ring.free;
tail %= CONFIG_E1000_N_RX_DESC;
e1000->rx_ring.tail = tail;
e1000->rx_ring.free = 0;
e1000_outl(e1000, E1000_RDT, tail);
}
return IRQ_HANDLED;
}
/******************************* PCI driver *********************************/
static pci_id_t e1000_id_table[] =
{
{
.sep =
{
INTEL_VENDERID, E1000_82573L
}
},
{
.sep =
{
INTEL_VENDERID, E1000_82540EM
}
},
{
.sep =
{
INTEL_VENDERID, E1000_82574L
}
},
{
.sep =
{
INTEL_VENDERID, E1000_82567LM
}
},
{
.sep =
{
INTEL_VENDERID, E1000_82541PI
}
},
{
.sep =
{
0, 0
}
}
};
static int e1000_probe(uint16_t addr, pci_id_t id)
{
uint32_t mmio_base, mmio_size;
uint32_t size;
int err;
void *kmem;
void *omem;
struct e1000_dev *dev;
/* alloc e1000_dev memory */
if ((dev = kmm_zalloc(sizeof(struct e1000_dev))) == NULL)
{
return -1;
}
/* save pci addr */
dev->pci_addr = addr;
/* enable device */
if ((err = pci_enable_device(addr, PCI_BUS_MASTER)) < 0)
{
goto error;
}
/* get e1000 device type */
dev->pci_dev_id = id.join;
/* remap the controller's i/o-memory into kernel's address-space */
mmio_base = pci_resource_start(addr, 0);
mmio_size = pci_resource_len(addr, 0);
err = rgmp_memmap_nocache(mmio_base, mmio_size, mmio_base);
if (err)
{
goto error;
}
dev->phy_mem_base = mmio_base;
dev->io_mem_base = mmio_base;
dev->mem_size = mmio_size;
/* MAC address */
memset(dev->dst_mac, 0xFF, 6);
memcpy(dev->src_mac, (void *)(dev->io_mem_base+E1000_RA), 6);
/* IRQ setup */
dev->int_desc.handler = e1000_interrupt_handler;
dev->int_desc.dev_id = dev;
if ((err = pci_request_irq(addr, &dev->int_desc, 0)) < 0)
{
goto err0;
}
/* Here we alloc a big block of memory once and make it
* aligned to page boundary and multiple of page size. This
* is because the memory can be modified by E1000 DMA and
* should be mapped no-cache which will hugely reduce memory
* access performance. The page size alloc will restrict
* this bad effect only within the memory we alloc here.
*
* NEED FIX: the memalign may alloc memory continuous in
* virtual address but dis-continuous in physical address
* due to RGMP memory setup.
*/
size = CONFIG_E1000_N_TX_DESC * sizeof(struct tx_desc) +
CONFIG_E1000_N_TX_DESC * CONFIG_E1000_BUFF_SIZE +
CONFIG_E1000_N_RX_DESC * sizeof(struct rx_desc) +
CONFIG_E1000_N_RX_DESC * CONFIG_E1000_BUFF_SIZE;
size = ROUNDUP(size, PGSIZE);
omem = kmem = memalign(PGSIZE, size);
if (kmem == NULL)
{
err = -ENOMEM;
goto err1;
}
rgmp_memremap_nocache((uintptr_t)kmem, size);
/* alloc memory for tx ring */
dev->tx_ring.desc = (FAR struct tx_desc *)kmem;
kmem += CONFIG_E1000_N_TX_DESC * sizeof(struct tx_desc);
dev->tx_ring.buf = kmem;
kmem += CONFIG_E1000_N_TX_DESC * CONFIG_E1000_BUFF_SIZE;
/* alloc memory for rx rings */
dev->rx_ring.desc = (FAR struct rx_desc *)kmem;
kmem += CONFIG_E1000_N_RX_DESC * sizeof(struct rx_desc);
dev->rx_ring.buf = kmem;
/* Initialize the driver structure */
dev->netdev.d_ifup = e1000_ifup; /* I/F up (new IP address) callback */
dev->netdev.d_ifdown = e1000_ifdown; /* I/F down callback */
dev->netdev.d_txavail = e1000_txavail; /* New TX data callback */
#ifdef CONFIG_NET_IGMP
dev->netdev.d_addmac = e1000_addmac; /* Add multicast MAC address */
dev->netdev.d_rmmac = e1000_rmmac; /* Remove multicast MAC address */
#endif
dev->netdev.d_private = dev; /* Used to recover private state from dev */
/* Create a watchdog for timing polling for and timing of transmisstions */
dev->txpoll = wd_create(); /* Create periodic poll timer */
dev->txtimeout = wd_create(); /* Create TX timeout timer */
/* Put the interface in the down state.
* e1000 reset
*/
e1000_reset(dev);
/* Read the MAC address from the hardware */
memcpy(dev->netdev.d_mac.ether_addr_octet, (void *)(dev->io_mem_base+E1000_RA), 6);
/* Register the device with the OS so that socket IOCTLs can be performed */
err = netdev_register(&dev->netdev, NET_LL_ETHERNET);
if (err)
{
goto err2;
}
/* insert into e1000_list */
dev->next = e1000_list.next;
e1000_list.next = dev;
cprintf("bring up e1000 device: %04x %08x\n", addr, id.join);
return 0;
err2:
rgmp_memremap((uintptr_t)omem, size);
free(omem);
err1:
pci_free_irq(addr);
err0:
rgmp_memunmap(mmio_base, mmio_size);
error:
kmm_free(dev);
cprintf("e1000 device probe fail: %d\n", err);
return err;
}
/****************************************************************************
* Public Functions
****************************************************************************/
void e1000_mod_init(void)
{
pci_probe_device(e1000_id_table, e1000_probe);
}
void e1000_mod_exit(void)
{
uint32_t size;
struct e1000_dev *dev;
size = CONFIG_E1000_N_TX_DESC * sizeof(struct tx_desc) +
CONFIG_E1000_N_TX_DESC * CONFIG_E1000_BUFF_SIZE +
CONFIG_E1000_N_RX_DESC * sizeof(struct rx_desc) +
CONFIG_E1000_N_RX_DESC * CONFIG_E1000_BUFF_SIZE;
size = ROUNDUP(size, PGSIZE);
for (dev = e1000_list.next; dev != NULL; dev = dev->next)
{
netdev_unregister(&dev->netdev);
e1000_reset(dev);
wd_delete(dev->txpoll);
wd_delete(dev->txtimeout);
rgmp_memremap((uintptr_t)dev->tx_ring.desc, size);
free(dev->tx_ring.desc);
pci_free_irq(dev->pci_addr);
rgmp_memunmap((uintptr_t)dev->io_mem_base, dev->mem_size);
kmm_free(dev);
}
e1000_list.next = NULL;
}