nuttx/drivers/mtd/sst26.c
Xiang Xiao cde88cabcc Run codespell -w with the latest dictonary again
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
2020-02-23 22:27:46 +01:00

996 lines
33 KiB
C

/************************************************************************************
* drivers/mtd/sst26.c
* Driver for SPI-based or QSPI-based SST26VF parts of 32 or 64MBit.
*
* For smaller SST25 parts, use the sst25.c driver instead as support
* a different program mechanism (byte or word writing vs page writing
* supported in this driver).
*
* For SST25VF064, see sst25cxx.c driver instead.
*
* Copyright (C) 2009-2011, 2013, 2016-2017, 2019 Gregory Nutt. All rights
* reserved.
* Author: Ken Pettit <pettitkd@gmail.com>
* Author: Sebastien Lorquet <sebastien@lorquet.fr>
*
* Copied from / based on sst25.c driver written by
* Gregory Nutt <gnutt@nuttx.org>
* Ken Pettit <pettitkd@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/spi/spi.h>
#include <nuttx/mtd/mtd.h>
/************************************************************************************
* Pre-processor Definitions
************************************************************************************/
/* Configuration ********************************************************************/
/* Per the data sheet, SST26 parts can be driven with either SPI mode 0 (CPOL=0 and
* CPHA=0) or mode 3 (CPOL=1 and CPHA=1). So you may need to specify
* CONFIG_SST26_SPIMODE to select the best mode for your device. If
* CONFIG_SST26_SPIMODE is not defined, mode 0 will be used.
*/
#ifndef CONFIG_SST26_SPIMODE
# define CONFIG_SST26_SPIMODE SPIDEV_MODE0
#endif
/* SPI Frequency. May be up to 104 MHz. */
#ifndef CONFIG_SST26_SPIFREQUENCY
# define CONFIG_SST26_SPIFREQUENCY 20000000
#endif
/* Various manufacturers may have produced the parts. 0xBF is the manufacturer ID
* for the SST serial FLASH.
*/
#ifndef CONFIG_SST26_MANUFACTURER
# define CONFIG_SST26_MANUFACTURER 0xBF
#endif
#ifndef CONFIG_SST26_MEMORY_TYPE
# define CONFIG_SST26_MEMORY_TYPE 0x26
#endif
/* SST26 Registers *******************************************************************/
/* Identification register values */
#define SST26_MANUFACTURER CONFIG_SST26_MANUFACTURER
#define SST26_MEMORY_TYPE CONFIG_SST26_MEMORY_TYPE
#define SST26_SST26VF016_CAPACITY 0x41 /* 16 M-bit */
#define SST26_SST26VF032_CAPACITY 0x42 /* 32 M-bit */
#define SST26_SST26VF064_CAPACITY 0x43 /* 64 M-bit */
/* SST26VF016 capacity is 2,097,152 bytes:
* (512 sectors) * (4,096 bytes per sector)
* (8192 pages) * (256 bytes per page)
*/
#define SST26_SST26VF016_SECTOR_SHIFT 12 /* Sector size 1 << 15 = 65,536 */
#define SST26_SST26VF016_NSECTORS 512
#define SST26_SST26VF016_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define SST26_SST26VF016_NPAGES 8192
/* SST26VF032 capacity is 4,194,304 bytes:
* (1,024 sectors) * (4,096 bytes per sector)
* (16,384 pages) * (256 bytes per page)
*/
#define SST26_SST26VF032_SECTOR_SHIFT 12 /* Sector size 1 << 15 = 65,536 */
#define SST26_SST26VF032_NSECTORS 1024
#define SST26_SST26VF032_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define SST26_SST26VF032_NPAGES 16384
/* SST26VF064 capacity is 8,388,608 bytes:
* (2,048 sectors) * (4,096 bytes per sector)
* (32,768 pages) * (256 bytes per page)
*/
#define SST26_SST26VF064_SECTOR_SHIFT 12 /* Sector size 1 << 15 = 65,536 */
#define SST26_SST26VF064_NSECTORS 2048
#define SST26_SST26VF064_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define SST26_SST26VF064_NPAGES 32768
/* Instructions */
/* Command Value NN Description Addr Dummy Data */
#define SST26_NOP 0x00 /* 14 No Operation 0 0 0 */
#define SST26_RSTEN 0x66 /* 14 Reset Enable 0 0 0 */
#define SST26_RST 0x99 /* 14 Reset Memory 0 0 0 */
#define SST26_EQIO 0x38 /* 1 Enable Quad I/O 0 0 0 */
#define SST26_RSTQIO 0xFF /* 4 Reset Quad I/O 0 0 0 */
#define SST26_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */
/* 4 Read Status Register 0 1 >=1 */
#define SST26_WRSR 0x01 /* 14 Write Status Register 0 0 2 */
#define SST26_RDCR 0x35 /* 1 Read Config Register 0 0 >=1 */
/* 4 Read Config Register 0 1 >=1 */
#define SST26_READ 0x03 /* 1 Read Data Bytes 3 0 >=1 */
#define SST26_FAST_READ 0x0b /* 1 Higher speed read 3 1 >=1 */
/* 4 Higher speed read 3 3 >=1 */
#define SST26_SQOR 0x6b /* 1 SQI Output Read 3 1 >=1 */
#define SST26_SQIOR 0xeb /* 1 SQI I/O Read 3 3 >=1 */
#define SST26_SDOR 0x3b /* 1 SDI Output Read 3 1 >=1 */
#define SST26_SDIOR 0xbb /* 1 SDI I/O Read 3 1 >=1 */
#define SST26_SB 0xc0 /* 14 Set Burst Length 0 0 1 */
#define SST26_RBSQI 0x0c /* 4 SQI Read Burst w/ Wrap 3 3 >=1 */
#define SST26_RBSPI 0xec /* 1 SPI Read Burst w/ Wrap 3 3 >=1 */
#define SST26_RDID 0x9f /* 1 Read Identification 0 0 >=3 */
#define SST26_QRDID 0xaf /* 4 Quad Read Identification 0 1 >=3 */
#define SST26_SFDP 0x5a /* 1 Serial Flash Discov. Par. 3 1 >=1 */
#define SST26_WREN 0x06 /* 14 Write Enable 0 0 0 */
#define SST26_WRDI 0x04 /* 14 Write Disable 0 0 0 */
#define SST26_SE 0x20 /* 14 Sector Erase 3 0 0 */
#define SST26_BE 0xd8 /* 14 8/32/64K Block Erase 3 0 0 */
#define SST26_CE 0xc7 /* 14 Chip Erase 0 0 0 */
#define SST26_PP 0x02 /* 1 Page Program 3 0 1-256 */
#define SST26_QPP 0x32 /* 1 Quad Page Program 3 0 1-256 */
#define SST26_WRSU 0xb0 /* 14 Suspend Program/Erase 0 0 0 */
#define SST26_WRRE 0x30 /* 14 Resume Program/Erase 0 0 0 */
#define SST26_RBPR 0x72 /* 1 Read Block-Protection reg 0 0 1-18 */
/* 4 Read Block-Protection reg 0 1 1-18 */
#define SST26_WBPR 0x42 /* 14 Write Block-Protection reg 0 0 1-18 */
#define SST26_LBPR 0x8d /* 14 Lock down Block-Prot. reg 0 0 0 */
#define SST26_NVWLDR 0xe8 /* 14 non-Volatile Write L-D reg 0 0 1-18 */
#define SST26_ULBPR 0x98 /* 14 Global Block Protection unlock 0 0 0 */
#define SST26_RSID 0x88 /* 14 Read Security ID 2 1 1-2048*/
/* 4 Read Security ID 2 3 1-2048*/
#define SST26_PSID 0xa5 /* 14 Program User Security ID area 2 0 1-256 */
#define SST26_LSID 0x85 /* 14 Lockout Security ID programming 0 0 0 */
/* NOTE 1: All parts.
* NOTE 2: In SST26VF064 terminology, 0xd8 is block erase and 0x20
* is a sector erase. Block erase provides a faster way to erase
* multiple 4K sectors at once.
*/
/* Status register bit definitions */
#define SST26_SR_WIP (1 << 0) /* Bit 0: Write in progress */
#define SST26_SR_WEL (1 << 1) /* Bit 1: Write enable latch */
#define SST26_SR_WSE (1 << 2) /* Bit 2: Write Suspend-Erase Status */
#define SST26_SR_WSP (1 << 3) /* Bit 3: Write Suspend-Program Status */
#define SST26_SR_WPLD (1 << 4) /* Bit 4: Write Protection Lock-Down Status */
#define SST26_SR_SEC (1 << 5) /* Bit 5: Security ID status */
#define SST26_SR_RES (1 << 6) /* Bit 6: RFU */
#define SST26_SR_WIP2 (1 << 7) /* Bit 7: Write in progress */
#define SST26_DUMMY 0xa5
/* Debug ****************************************************************************/
#ifdef CONFIG_SST26_DEBUG
# define ssterr(format, ...) _err(format, ##__VA_ARGS__)
# define sstinfo(format, ...) _info(format, ##__VA_ARGS__)
#else
# define ssterr(x...)
# define sstinfo(x...)
#endif
/************************************************************************************
* Private Types
************************************************************************************/
/* This type represents the state of the MTD device. The struct mtd_dev_s
* must appear at the beginning of the definition so that you can freely
* cast between pointers to struct mtd_dev_s and struct sst26_dev_s.
*/
struct sst26_dev_s
{
struct mtd_dev_s mtd; /* MTD interface */
FAR struct spi_dev_s *dev; /* Saved SPI interface instance */
bool lastwaswrite;
uint8_t sectorshift;
uint8_t pageshift;
uint16_t nsectors;
uint32_t npages;
};
/************************************************************************************
* Private Function Prototypes
************************************************************************************/
/* Helpers */
static void sst26_lock(FAR struct spi_dev_s *dev);
static inline void sst26_unlock(FAR struct spi_dev_s *dev);
static inline int sst26_readid(struct sst26_dev_s *priv);
static void sst26_waitwritecomplete(struct sst26_dev_s *priv);
static void sst26_writeenable(struct sst26_dev_s *priv);
static void sst26_writedisable(struct sst26_dev_s *priv);
static void sst26_globalunlock(struct sst26_dev_s *priv);
static inline void sst26_sectorerase(struct sst26_dev_s *priv, off_t offset,
uint8_t type);
static inline int sst26_chiperase(struct sst26_dev_s *priv);
static inline void sst26_pagewrite(struct sst26_dev_s *priv,
FAR const uint8_t *buffer, off_t offset);
/* MTD driver methods */
static int sst26_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks);
static ssize_t sst26_bread(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR uint8_t *buf);
static ssize_t sst26_bwrite(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR const uint8_t *buf);
static ssize_t sst26_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR uint8_t *buffer);
#ifdef CONFIG_MTD_BYTE_WRITE
static ssize_t sst26_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR const uint8_t *buffer);
#endif
static int sst26_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg);
/************************************************************************************
* Private Functions
************************************************************************************/
/************************************************************************************
* Name: sst26_lock
************************************************************************************/
static void sst26_lock(FAR struct spi_dev_s *dev)
{
/* On SPI buses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected.
*
* This is a blocking call and will not return until we have exclusive access to
* the SPI bus. We will retain that exclusive access until the bus is unlocked.
*/
SPI_LOCK(dev, true);
/* After locking the SPI bus, then we also need to call the setfrequency, setbits,
* and setmode methods to make sure that the SPI is properly configured for the
* device. If the SPI bus is being shared, then it may have been left in an
* incompatible state.
*/
SPI_SETMODE(dev, CONFIG_SST26_SPIMODE);
SPI_SETBITS(dev, 8);
SPI_HWFEATURES(dev, 0);
SPI_SETFREQUENCY(dev, CONFIG_SST26_SPIFREQUENCY);
}
/************************************************************************************
* Name: sst26_unlock
************************************************************************************/
static inline void sst26_unlock(FAR struct spi_dev_s *dev)
{
SPI_LOCK(dev, false);
}
/************************************************************************************
* Name: sst26_readid
************************************************************************************/
static inline int sst26_readid(struct sst26_dev_s *priv)
{
uint16_t manufacturer;
uint16_t memory;
uint16_t capacity;
sstinfo("priv: %p\n", priv);
/* Lock the SPI bus, configure the bus, and select this FLASH part. */
sst26_lock(priv->dev);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Read ID (RDID)" command and read the first three ID bytes */
SPI_SEND(priv->dev, SST26_RDID);
manufacturer = SPI_SEND(priv->dev, SST26_DUMMY);
memory = SPI_SEND(priv->dev, SST26_DUMMY);
capacity = SPI_SEND(priv->dev, SST26_DUMMY);
/* De-select the FLASH and unlock the bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sst26_unlock(priv->dev);
sstinfo("manufacturer: %02x memory: %02x capacity: %02x\n",
manufacturer, memory, capacity);
/* Check for a valid manufacturer and memory type */
if (manufacturer == SST26_MANUFACTURER && memory == SST26_MEMORY_TYPE)
{
/* Okay.. is it a FLASH capacity that we understand? */
if (capacity == SST26_SST26VF064_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = SST26_SST26VF064_SECTOR_SHIFT;
priv->nsectors = SST26_SST26VF064_NSECTORS;
priv->pageshift = SST26_SST26VF064_PAGE_SHIFT;
priv->npages = SST26_SST26VF064_NPAGES;
return OK;
}
else if (capacity == SST26_SST26VF032_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = SST26_SST26VF032_SECTOR_SHIFT;
priv->nsectors = SST26_SST26VF032_NSECTORS;
priv->pageshift = SST26_SST26VF032_PAGE_SHIFT;
priv->npages = SST26_SST26VF032_NPAGES;
return OK;
}
else if (capacity == SST26_SST26VF016_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = SST26_SST26VF016_SECTOR_SHIFT;
priv->nsectors = SST26_SST26VF016_NSECTORS;
priv->pageshift = SST26_SST26VF016_PAGE_SHIFT;
priv->npages = SST26_SST26VF016_NPAGES;
return OK;
}
}
return -ENODEV;
}
/************************************************************************************
* Name: sst26_waitwritecomplete
************************************************************************************/
static void sst26_waitwritecomplete(struct sst26_dev_s *priv)
{
uint8_t status;
/* Loop as long as the memory is busy with a write cycle */
do
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Read Status Register (RDSR)" command */
SPI_SEND(priv->dev, SST26_RDSR);
/* Send a dummy byte to generate the clock needed to shift out the status */
status = SPI_SEND(priv->dev, SST26_DUMMY);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
/* Given that writing could take up to few tens of milliseconds, and erasing
* could take more. The following short delay in the "busy" case will allow
* other peripherals to access the SPI bus.
*/
if ((status & SST26_SR_WIP) != 0)
{
sst26_unlock(priv->dev);
nxsig_usleep(1000);
sst26_lock(priv->dev);
}
}
while ((status & SST26_SR_WIP) != 0);
sstinfo("Complete\n");
}
/************************************************************************************
* Name: sst26_globalunlock
* Description: SST26 flashes are globally locked after startup. To allow writing,
* this command must be sent once.
************************************************************************************/
static void sst26_globalunlock(struct sst26_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Global Unlock (ULBPR)" command */
SPI_SEND(priv->dev, SST26_ULBPR);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sstinfo("Device unlocked.\n");
}
/************************************************************************************
* Name: sst26_writeenable
************************************************************************************/
static void sst26_writeenable(struct sst26_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Write Enable (WREN)" command */
SPI_SEND(priv->dev, SST26_WREN);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sstinfo("Enabled\n");
}
/************************************************************************************
* Name: sst26_writedisable
************************************************************************************/
static void sst26_writedisable(struct sst26_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Write Disable (WRDI)" command */
SPI_SEND(priv->dev, SST26_WRDI);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sstinfo("Disabled\n");
}
/************************************************************************************
* Name: sst26_sectorerase (4k)
************************************************************************************/
static void sst26_sectorerase(struct sst26_dev_s *priv, off_t sector, uint8_t type)
{
off_t offset;
offset = sector << priv->sectorshift;
sstinfo("sector: %08lx\n", (long)sector);
/* Send write enable instruction */
sst26_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Sector Erase (SE)" or "Block Erase (BE)" instruction
* that was passed in as the erase type.
*/
SPI_SEND(priv->dev, type);
/* Send the sector offset high byte first. For all of the supported
* parts, the sector number is completely contained in the first byte
* and the values used in the following two bytes don't really matter.
*/
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sst26_waitwritecomplete(priv);
sstinfo("Erased\n");
}
/************************************************************************************
* Name: sst26_chiperase
************************************************************************************/
static inline int sst26_chiperase(struct sst26_dev_s *priv)
{
sstinfo("priv: %p\n", priv);
/* Send write enable instruction */
sst26_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Chip Erase (CE)" instruction */
SPI_SEND(priv->dev, SST26_CE);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sst26_waitwritecomplete(priv);
sstinfo("Return: OK\n");
return OK;
}
/************************************************************************************
* Name: sst26_pagewrite
************************************************************************************/
static inline void sst26_pagewrite(struct sst26_dev_s *priv,
FAR const uint8_t *buffer, off_t page)
{
off_t offset = page << priv->pageshift;
sstinfo("page: %08lx offset: %08lx\n", (long)page, (long)offset);
/* Enable the write access to the FLASH */
sst26_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Page Program (PP)" command */
SPI_SEND(priv->dev, SST26_PP);
/* Send the page offset high byte first. */
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
/* Then write the specified number of bytes */
SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift);
/* Deselect the FLASH: Chip Select high */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sst26_waitwritecomplete(priv);
sstinfo("Written\n");
}
/************************************************************************************
* Name: sst26_bytewrite
************************************************************************************/
#ifdef CONFIG_MTD_BYTE_WRITE
static inline void sst26_bytewrite(struct sst26_dev_s *priv,
FAR const uint8_t *buffer, off_t offset,
uint16_t count)
{
sstinfo("offset: %08lx count:%d\n", (long)offset, count);
/* Enable the write access to the FLASH */
sst26_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Page Program (PP)" command */
SPI_SEND(priv->dev, SST26_PP);
/* Send the page offset high byte first. */
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
/* Then write the specified number of bytes */
SPI_SNDBLOCK(priv->dev, buffer, count);
priv->lastwaswrite = true;
/* Deselect the FLASH: Chip Select high */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sst26_waitwritecomplete(priv);
sstinfo("Written\n");
}
#endif
/* Driver routines */
/************************************************************************************
* Name: sst26_erase
************************************************************************************/
static int sst26_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks)
{
FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev;
size_t blocksleft = nblocks;
sstinfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock access to the SPI bus until we complete the erase */
sst26_lock(priv->dev);
while (blocksleft > 0)
{
/* SST26VF parts have complex block overlay structure for the moment
* we just erase in 4k blocks.
*/
sst26_sectorerase(priv, startblock, SST26_SE);
startblock++;
blocksleft--;
}
sst26_unlock(priv->dev);
return (int)nblocks;
}
/************************************************************************************
* Name: sst26_bread
************************************************************************************/
static ssize_t sst26_bread(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR uint8_t *buffer)
{
FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev;
ssize_t nbytes;
sstinfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* On this device, we can handle the block read just like the byte-oriented read */
nbytes = sst26_read(dev, startblock << priv->pageshift, nblocks << priv->pageshift,
buffer);
if (nbytes > 0)
{
return nbytes >> priv->pageshift;
}
return (int)nbytes;
}
/************************************************************************************
* Name: sst26_bwrite
************************************************************************************/
static ssize_t sst26_bwrite(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR const uint8_t *buffer)
{
FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev;
size_t blocksleft = nblocks;
size_t pagesize = 1 << priv->pageshift;
sstinfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock the SPI bus and write each page to FLASH */
sst26_lock(priv->dev);
while (blocksleft-- > 0)
{
sst26_pagewrite(priv, buffer, startblock);
buffer += pagesize;
startblock++;
}
sst26_unlock(priv->dev);
return nblocks;
}
/************************************************************************************
* Name: sst26_read
************************************************************************************/
static ssize_t sst26_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR uint8_t *buffer)
{
FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev;
sstinfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* Lock the SPI bus and select this FLASH part */
sst26_lock(priv->dev);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Read from Memory " instruction */
SPI_SEND(priv->dev, SST26_FAST_READ);
/* Send the page offset high byte first. */
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
/* Dummy read */
SPI_SEND(priv->dev, SST26_DUMMY);
/* Then read all of the requested bytes */
SPI_RECVBLOCK(priv->dev, buffer, nbytes);
/* Deselect the FLASH and unlock the SPI bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sst26_unlock(priv->dev);
sstinfo("return nbytes: %d\n", (int)nbytes);
return nbytes;
}
/************************************************************************************
* Name: sst26_write
************************************************************************************/
#ifdef CONFIG_MTD_BYTE_WRITE
static ssize_t sst26_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR const uint8_t *buffer)
{
FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev;
int startpage;
int endpage;
int count;
int index;
int pagesize;
int bytestowrite;
sstinfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* We must test if the offset + count crosses one or more pages
* and perform individual writes. The devices can only write in
* page increments.
*/
startpage = offset / (1 << priv->pageshift);
endpage = (offset + nbytes) / (1 << priv->pageshift);
sst26_lock(priv->dev);
if (startpage == endpage)
{
/* All bytes within one programmable page. Just do the write. */
sst26_bytewrite(priv, buffer, offset, nbytes);
}
else
{
/* Write the 1st partial-page */
count = nbytes;
pagesize = (1 << priv->pageshift);
bytestowrite = pagesize - (offset & (pagesize - 1));
sst26_bytewrite(priv, buffer, offset, bytestowrite);
/* Update offset and count */
offset += bytestowrite;
count -= bytestowrite;
index = bytestowrite;
/* Write full pages */
while (count >= pagesize)
{
sst26_bytewrite(priv, &buffer[index], offset, pagesize);
/* Update offset and count */
offset += pagesize;
count -= pagesize;
index += pagesize;
}
/* Now write any partial page at the end */
if (count > 0)
{
sst26_bytewrite(priv, &buffer[index], offset, count);
}
priv->lastwaswrite = true;
}
sst26_unlock(priv->dev);
return nbytes;
}
#endif /* CONFIG_MTD_BYTE_WRITE */
/************************************************************************************
* Name: sst26_ioctl
************************************************************************************/
static int sst26_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg)
{
FAR struct sst26_dev_s *priv = (FAR struct sst26_dev_s *)dev;
int ret = -EINVAL; /* Assume good command with bad parameters */
sstinfo("cmd: %d \n", cmd);
switch (cmd)
{
case MTDIOC_GEOMETRY:
{
FAR struct mtd_geometry_s *geo =
(FAR struct mtd_geometry_s *)((uintptr_t)arg);
if (geo != NULL)
{
/* Populate the geometry structure with information need to know
* the capacity and how to access the device.
*
* NOTE: that the device is treated as though it where just an array
* of fixed size blocks. That is most likely not true, but the client
* will expect the device logic to do whatever is necessary to make it
* appear so.
*/
geo->blocksize = (1 << priv->pageshift);
geo->erasesize = (1 << priv->sectorshift);
geo->neraseblocks = priv->nsectors;
ret = OK;
sstinfo("blocksize: %d erasesize: %d neraseblocks: %d\n",
geo->blocksize, geo->erasesize, geo->neraseblocks);
}
}
break;
case MTDIOC_BULKERASE:
{
/* Erase the entire device */
sst26_lock(priv->dev);
ret = sst26_chiperase(priv);
sst26_unlock(priv->dev);
}
break;
case MTDIOC_XIPBASE:
default:
ret = -ENOTTY; /* Bad command */
break;
}
sstinfo("return %d\n", ret);
return ret;
}
/************************************************************************************
* Public Functions
************************************************************************************/
/************************************************************************************
* Name: sst26_initialize
*
* Description:
* Create an initialize MTD device instance. MTD devices are not registered
* in the file system, but are created as instances that can be bound to
* other functions (such as a block or character driver front end).
*
************************************************************************************/
FAR struct mtd_dev_s *sst26_initialize_spi(FAR struct spi_dev_s *dev)
{
FAR struct sst26_dev_s *priv;
int ret;
sstinfo("dev: %p\n", dev);
/* Allocate a state structure (we allocate the structure instead of using
* a fixed, static allocation so that we can handle multiple FLASH devices.
* The current implementation would handle only one FLASH part per SPI
* device (only because of the SPIDEV_FLASH(0) definition) and so would have
* to be extended to handle multiple FLASH parts on the same SPI bus.
*/
priv = (FAR struct sst26_dev_s *)kmm_zalloc(sizeof(struct sst26_dev_s));
if (priv)
{
/* Initialize the allocated structure. (unsupported methods were
* nullified by kmm_zalloc).
*/
priv->mtd.erase = sst26_erase;
priv->mtd.bread = sst26_bread;
priv->mtd.bwrite = sst26_bwrite;
priv->mtd.read = sst26_read;
#ifdef CONFIG_MTD_BYTE_WRITE
priv->mtd.write = sst26_write;
#endif
priv->mtd.ioctl = sst26_ioctl;
priv->mtd.name = "sst26";
priv->dev = dev;
/* Deselect the FLASH */
SPI_SELECT(dev, SPIDEV_FLASH(0), false);
/* Identify the FLASH chip and get its capacity */
ret = sst26_readid(priv);
if (ret != OK)
{
/* Unrecognized! Discard all of that work we just did and return NULL */
ssterr("ERROR: Unrecognized\n");
kmm_free(priv);
return NULL;
}
else
{
/* Make sure that the FLASH is unprotected so that we can write into it */
sst26_writeenable(priv);
sst26_globalunlock(priv);
sst26_writedisable(priv);
}
}
/* Return the implementation-specific state structure as the MTD device */
sstinfo("Return %p\n", priv);
return (FAR struct mtd_dev_s *)priv;
}