nuttx/fs/mnemofs/mnemofs_fsobj.c
Saurav Pal daa3168cfb fs/mnemofs: Fix journal log rw issue, read size issue
Fixes the journal log read and write size and overlap issues, along with read return value issue.

Signed-off-by: Saurav Pal <resyfer.dev@gmail.com>
2024-08-17 09:10:04 -03:00

1064 lines
28 KiB
C

/****************************************************************************
* fs/mnemofs/mnemofs_fsobj.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* Alternatively, the contents of this file may be used under the terms of
* the BSD-3-Clause license:
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2024 Saurav Pal
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of its contributors may
* be used to endorse or promote products derived from this software
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* In mnemofs, all the FS object methods (ie. methods in this file),
* interface directly with the LRU. To these methods, only the methods
* exposed by the LRU are visible, nothing else. The LRU will give them the
* most updated data, which includes data from the flash, the updates from
* the journal and the LRU deltas as well.
*
* TODO: The above menetioned concept.
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/kmalloc.h>
#include <sys/param.h>
#include <sys/stat.h>
#include "mnemofs.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/****************************************************************************
* Private Types
****************************************************************************/
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
static mfs_t nobjs_in_path(FAR const char * relpath);
static const char *next_child(FAR const char *relpath);
static const char *last_child(FAR const char *relpath);
static FAR char *mfs_ser_dirent(FAR const struct mfs_dirent_s * const x,
FAR char * const out);
static FAR const char *mfs_deser_dirent(FAR const char * const in,
FAR struct mfs_dirent_s * const x);
static int search_ctz_by_name(FAR const struct mfs_sb_s * const sb,
FAR struct mfs_path_s * const path,
const mfs_t depth, FAR const char * const name,
const mfs_t namelen, FAR mfs_t *off,
FAR struct mfs_dirent_s **dirent);
/****************************************************************************
* Private Data
****************************************************************************/
const struct mfs_path_s empty_fsobj =
{
0
};
/****************************************************************************
* Public Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: nobjs_in_path
*
* Description:
* Count number of file system objects in path. This includes root in the
* count.
*
* Input Parameters:
* relpath - Relative Path.
*
* Returned Value:
* The number of file system objects in the path including the root.
*
****************************************************************************/
static mfs_t nobjs_in_path(FAR const char *relpath)
{
mfs_t count;
/* If mount point is "/hi", then operations on "/hi/bye" and "/hi/hello/a"
* give respective relpaths as "bye" and "hello/a". Since mnemofs counts
* the root as 1 FS object, these respectively contain 2 and 3 FS objects
* in the path. The last FS object might be a file or a directory, but
* everything else is a directory. The number of FS objects in the path
* is the depth of the FS object the path refers to.
*/
if (*relpath == 0)
{
return 1;
}
count = 2;
while (*relpath != 0)
{
if (*relpath == '/')
{
count++;
}
relpath++;
}
return count;
}
/****************************************************************************
* Name: next_child
*
* Description:
* Give the pointer to next child that appears in the path.
*
* Input Parameters:
* relpath - Relative Path.
*
* Returned Value:
* The pointer to the next child. This is not allocated, but points to the
* inside relpath itself.
*
****************************************************************************/
static const char *next_child(FAR const char *relpath)
{
while (*relpath != 0)
{
if (*relpath == '/')
{
return relpath + 1;
}
relpath++;
}
return relpath;
}
/****************************************************************************
* Name: next_child
*
* Description:
* Give the pointer to next child that appears in the path.
*
* Input Parameters:
* relpath - Relative Path.
*
* Returned Value:
* The pointer to the next child. This is not allocated, but points to the
* inside relpath itself.
*
****************************************************************************/
static const char *last_child(FAR const char *relpath)
{
const mfs_t len = strlen(relpath);
mfs_t i;
for (i = len - 1; i > 0; i--)
{
if (relpath[i - 1] == '/')
{
return relpath + i;
}
}
return relpath;
}
/****************************************************************************
* Name: mfs_ser_dirent
*
* Description:
* Serialize a direntry.
*
* Input Parameters:
* x - Direntry.
* out - Buffer to populate.
*
* Returned Value:
* Pointer to after the end of serialized content in out.
*
****************************************************************************/
static FAR char *mfs_ser_dirent(FAR const struct mfs_dirent_s * const x,
FAR char * const out)
{
FAR char *o = out;
o = mfs_ser_16(x->name_hash, o);
o = mfs_ser_16(x->mode, o);
o = mfs_ser_mfs(x->sz, o);
o = mfs_ser_timespec(&x->st_atim, o);
o = mfs_ser_timespec(&x->st_mtim, o);
o = mfs_ser_timespec(&x->st_ctim, o);
o = mfs_ser_ctz(&x->ctz, o);
o = mfs_ser_8(x->namelen, o);
o = mfs_ser_str(x->name, x->namelen, o);
return o;
}
/****************************************************************************
* Name: mfs_deser_dirent
*
* Description:
* Deserialize a direntry.
*
* Input Parameters:
* in - Buffer.
* x - Direntry to populate.
*
* Returned Value:
* Pointer to after the end of deserialized content in in.
*
****************************************************************************/
static FAR const char *mfs_deser_dirent(FAR const char * const in,
FAR struct mfs_dirent_s * const x)
{
FAR const char *i = in;
i = mfs_deser_16(i, &x->name_hash);
i = mfs_deser_16(i, &x->mode);
i = mfs_deser_mfs(i, &x->sz);
i = mfs_deser_timespec(i, &x->st_atim);
i = mfs_deser_timespec(i, &x->st_mtim);
i = mfs_deser_timespec(i, &x->st_ctim);
i = mfs_deser_ctz(i, &x->ctz);
i = mfs_deser_8(i, &x->namelen);
i = mfs_deser_str(i, x->name, x->namelen);
return i;
}
int pitr_traverse(FAR struct mfs_sb_s *sb, FAR struct mfs_path_s *path,
mfs_t depth, FAR mfs_t *cap)
{
int ret = OK;
mfs_t i;
mfs_t pg;
struct mfs_pitr_s pitr;
struct mfs_ctz_s ctz;
FAR struct mfs_dirent_s *dirent = NULL;
/* TODO: Double traversal can be made faster into a single traversal. */
ctz = path[depth - 1].ctz;
if (ctz.idx_e == 0 && ctz.pg_e == 0)
{
/* Not a valid one. TODO: Does this happens? */
goto errout;
}
for (i = ctz.idx_e; i > 0; i--)
{
mfs_ba_markusedpg(sb, pg);
pg = mfs_ctz_travel(sb, i, pg, i - 1);
if (pg == 0)
{
break;
}
}
memset(path + depth, 0, *cap - depth);
if (depth == *cap)
{
*cap = (*cap * 3) / 2; /* Don't want to double it for memory. */
path = kmm_realloc(path, (*cap) * sizeof(struct mfs_path_s));
if (predict_false(path == NULL))
{
ret = -ENOMEM;
goto errout;
}
}
mfs_pitr_init(sb, path, depth, &pitr, true);
while (true)
{
mfs_pitr_readdirent(sb, path, &pitr, &dirent);
if (dirent == NULL)
{
break;
}
if (S_ISDIR(dirent->mode))
{
path[(depth + 1) - 1].ctz = dirent->ctz;
ret = pitr_traverse(sb, path, depth + 1, cap);
if (predict_false(ret < 0))
{
mfs_free_dirent(dirent);
goto errout;
}
}
mfs_pitr_adv_bydirent(&pitr, dirent);
mfs_free_dirent(dirent);
}
errout:
return ret;
}
/****************************************************************************
* Public Function Prototypes
****************************************************************************/
FAR const char *mfs_path2childname(FAR const char *relpath)
{
FAR const char *last = relpath + strlen(relpath) - 1;
while (last >= relpath && *last != '/')
{
last--;
}
return last + 1;
}
mfs_t mfs_get_fsz(FAR struct mfs_sb_s * const sb,
FAR const struct mfs_path_s * const path,
const mfs_t depth)
{
mfs_t sz;
if (depth == 0)
{
/* Master node. */
return 0;
}
else if (depth == 1)
{
sz = MFS_MN(sb).root_sz; /* Updated size. */
/* Journal updated to the root creates a new master node entry. TODO
* this and moving of the journal.
*/
finfo("File size got as %u for root.", sz);
return sz;
}
return path[depth - 1].sz;
}
bool mfs_obj_isempty(FAR struct mfs_sb_s * const sb,
FAR struct mfs_path_s *path,
FAR struct mfs_pitr_s * const pitr)
{
bool ret;
FAR struct mfs_dirent_s *dirent = NULL;
mfs_pitr_readdirent(sb, path, pitr, &dirent);
ret = (dirent->sz == 0);
mfs_free_dirent(dirent);
return ret;
}
void mfs_free_dirent(FAR struct mfs_dirent_s *dirent)
{
kmm_free(dirent);
finfo("Dirent freed.");
}
bool mfs_searchfopen(FAR const struct mfs_sb_s * const sb,
FAR const struct mfs_path_s * const path,
const mfs_t depth)
{
FAR struct mfs_ofd_s *ofd = NULL;
list_for_every_entry(&sb->of, ofd, struct mfs_ofd_s, list)
{
if (ofd->com->depth != depth)
{
continue;
}
if (mfs_path_eq(&ofd->com->path[depth - 1], &path[depth - 1]))
{
return true;
}
}
return false;
}
int mfs_pitr_rmdirent(FAR struct mfs_sb_s * const sb,
FAR struct mfs_path_s * const path,
const mfs_t depth,
FAR struct mfs_pitr_s * const pitr,
FAR const struct mfs_dirent_s * const dirent)
{
int ret = OK;
struct mfs_pitr_s p_pitr;
FAR struct mfs_dirent_s *p_dirent = NULL;
mfs_pitr_init(sb, path, depth - 1, &p_pitr, true);
mfs_pitr_adv_tochild(&p_pitr, path);
mfs_pitr_readdirent(sb, path, &p_pitr, &p_dirent);
ret = mfs_lru_del(sb, pitr->c_off, MFS_DIRENTSZ(dirent), path, depth);
mfs_free_dirent(p_dirent);
mfs_pitr_free(&p_pitr);
return ret;
}
int mfs_pitr_rm(FAR struct mfs_sb_s * const sb,
FAR struct mfs_path_s * const path,
const mfs_t depth, bool rm_child)
{
int ret = OK;
struct mfs_pitr_s pitr;
FAR struct mfs_dirent_s *dirent = NULL;
mfs_pitr_init(sb, path, depth, &pitr, true);
mfs_pitr_readdirent(sb, path, &pitr, &dirent);
ret = mfs_pitr_rmdirent(sb, path, depth, &pitr, dirent);
if (predict_false(ret < 0))
{
goto errout;
}
if (rm_child)
{
ret = mfs_lru_del(sb, 0, path[depth - 1].sz, path, depth);
if (predict_false(ret < 0))
{
goto errout;
}
}
errout:
mfs_free_dirent(dirent);
mfs_pitr_free(&pitr);
return ret;
}
int mfs_pitr_init(FAR const struct mfs_sb_s * const sb,
FAR const struct mfs_path_s * const path,
const mfs_t depth, FAR struct mfs_pitr_s * const pitr,
bool child)
{
/* Ensure updated CTZ location from the journal before this. */
int ret = OK;
const int diff = child ? 1 : 0;
const mfs_t p_depth = depth - diff;
if (predict_false(depth < diff))
{
ret = -EINVAL;
goto errout;
}
pitr->c_off = 0;
pitr->depth = p_depth;
if (predict_true(p_depth != 0))
{
pitr->p = path[p_depth - 1];
}
else
{
/* 0 or gabage value is fine for master node, not required. */
pitr->p.ctz.idx_e = 0;
pitr->p.ctz.pg_e = 0;
pitr->p.off = 0;
pitr->p.sz = 1; /* For 1 traversal to get root. */
}
finfo("Pitr initialized at depth %u, with CTZ (%u, %u) and size %u.",
p_depth, pitr->p.ctz.idx_e, pitr->p.ctz.pg_e, pitr->p.sz);
errout:
return ret;
}
void mfs_pitr_free(FAR const struct mfs_pitr_s * const pitr)
{
finfo("Pitr at depth %u with CTZ (%u, %u) freed.",
pitr->depth, pitr->p.ctz.idx_e, pitr->p.ctz.pg_e);
}
void mfs_pitr_adv_off(FAR struct mfs_pitr_s * const pitr,
const mfs_t off)
{
pitr->c_off += off;
finfo("Pitr at depth %u with CTZ (%u, %u) advanced by %u to %u offset.",
pitr->depth, pitr->p.ctz.idx_e, pitr->p.ctz.pg_e, off, pitr->c_off);
}
void mfs_pitr_adv_bydirent(FAR struct mfs_pitr_s * const pitr,
FAR const struct mfs_dirent_s * const dirent)
{
mfs_pitr_adv_off(pitr, MFS_DIRENTSZ(dirent));
finfo("Pitr at depth %u with CTZ (%u, %u) advanced by %u to %u offset.",
pitr->depth, pitr->p.ctz.idx_e, pitr->p.ctz.pg_e,
MFS_DIRENTSZ(dirent), pitr->c_off);
}
void mfs_pitr_adv_tochild(FAR struct mfs_pitr_s * const pitr,
FAR const struct mfs_path_s * const path)
{
/* (pitr->depth + 1) - 1 is the child's index. */
pitr->c_off = path[pitr->depth].off;
finfo("Pitr at depth %u with CTZ (%u, %u) advanced to %u offset.",
pitr->depth, pitr->p.ctz.idx_e, pitr->p.ctz.pg_e, pitr->c_off);
}
int mfs_pitr_readdirent(FAR const struct mfs_sb_s * const sb,
FAR struct mfs_path_s *path,
FAR struct mfs_pitr_s * const pitr,
FAR struct mfs_dirent_s **dirent)
{
int ret = OK;
mfs_t sz;
const mfs_t len = sizeof(struct mfs_dirent_s) \
+ NAME_MAX + 1;
char rd[len];
FAR struct mfs_dirent_s *d = NULL;
FAR struct mfs_dirent_s *tmp = NULL;
if (dirent == NULL)
{
return ret;
}
*dirent = NULL;
memset(rd, 0, len);
d = kmm_zalloc(len);
if (predict_false(d == NULL))
{
ret = -ENOMEM;
goto errout;
}
else if (pitr->c_off >= pitr->p.sz)
{
goto errout_with_d;
}
else if (pitr->depth == 0)
{
d->name[0] = 0;
d->namelen = 0;
d->ctz = MFS_MN(sb).root_ctz;
d->mode = MFS_MN(sb).root_mode;
d->name_hash = mfs_hash(d->name, d->namelen);
d->st_atim = MFS_MN(sb).root_st_atim;
d->st_ctim = MFS_MN(sb).root_st_ctim;
d->st_mtim = MFS_MN(sb).root_st_mtim;
d->sz = MFS_MN(sb).root_sz;
pitr->c_off = 1; /* To prevent infinite loop. */
}
else
{
ret = mfs_lru_rdfromoff(sb, pitr->c_off, path, pitr->depth, rd, len);
if (predict_false(ret < 0))
{
goto errout_with_d;
}
mfs_deser_dirent(rd, d);
}
sz = MFS_DIRENTSZ(d);
tmp = kmm_realloc(d, sz);
if (predict_true(tmp != NULL))
{
d = tmp;
}
*dirent = d;
DEBUGASSERT(pitr->depth == 0 || strcmp(d->name, ""));
finfo("Read direntry at %u offset, %u depth for CTZ (%u, %u). " \
"Direntry name: \"%.*s\" with name length %u and size %u.",
pitr->c_off, pitr->depth, pitr->p.ctz.idx_e, pitr->p.ctz.pg_e,
d->namelen, d->name, d->namelen, d->sz);
return ret;
errout_with_d:
kmm_free(d);
if (ret < 0)
{
finfo("Direntry could not be allocated.");
}
else if (*dirent == NULL)
{
finfo("No direntry found.");
}
errout:
return ret;
}
int mfs_pitr_adv(FAR struct mfs_sb_s * const sb,
FAR struct mfs_path_s *path,
FAR struct mfs_pitr_s * const pitr)
{
int ret = OK;
FAR struct mfs_dirent_s *dirent;
ret = mfs_pitr_readdirent(sb, path, pitr, &dirent);
if (predict_false(ret < 0))
{
goto errout;
}
mfs_pitr_adv_bydirent(pitr, dirent);
mfs_free_dirent(dirent);
finfo("Pitr for CTZ (%u, %u) advanced to offset %u.",
pitr->p.ctz.idx_e, pitr->p.ctz.pg_e, pitr->c_off);
errout:
return ret;
}
static int search_ctz_by_name(FAR const struct mfs_sb_s * const sb,
FAR struct mfs_path_s * const path,
const mfs_t depth, FAR const char * const name,
const mfs_t namelen, FAR mfs_t *off,
FAR struct mfs_dirent_s **dirent)
{
/* NOTE: depth is of the parent here. */
/* Applies LRU updates. */
int ret = OK;
bool found = false;
uint16_t name_hash;
struct mfs_pitr_s pitr;
FAR struct mfs_dirent_s *nd;
*dirent = NULL;
if (depth == 0)
{
DEBUGASSERT(namelen == 0);
nd = kmm_zalloc(sizeof(struct mfs_dirent_s));
if (predict_false(nd == NULL))
{
ret = -ENOMEM;
goto errout;
}
*off = 0;
nd->namelen = namelen;
nd->ctz = MFS_MN(sb).root_ctz;
nd->mode = MFS_MN(sb).root_mode;
nd->name_hash = mfs_hash(nd->name, nd->namelen);
nd->st_atim = MFS_MN(sb).root_st_atim;
nd->st_ctim = MFS_MN(sb).root_st_ctim;
nd->st_mtim = MFS_MN(sb).root_st_mtim;
nd->sz = MFS_MN(sb).root_sz;
*dirent = nd;
goto errout;
}
name_hash = mfs_hash(name, namelen);
ret = mfs_lru_updatedinfo(sb, path, depth);
if (predict_false(ret < 0))
{
goto errout;
}
ret = mfs_pitr_init(sb, path, depth, &pitr, false);
if (predict_false(ret < 0))
{
goto errout;
}
for (; ; )
{
/* Readdirent takes care of LRU updates. */
ret = mfs_pitr_readdirent(sb, path, &pitr, &nd);
if (predict_false(ret < 0 || nd == NULL))
{
ret = -ENONET;
goto errout;
}
if (nd->name_hash == name_hash &&
!strncmp(nd->name, name, MIN(nd->namelen, namelen)))
{
found = true;
path[depth].sz = nd->sz;
path[depth].ctz = nd->ctz;
path[depth].off = pitr.c_off;
*off = pitr.c_off;
break;
}
mfs_pitr_adv_bydirent(&pitr, nd);
mfs_free_dirent(nd);
}
errout:
if (found)
{
finfo("Searched \"%.*s\" direntry inside CTZ (%u, %u) at depth %u,"
" size %u.", namelen, name, path[depth - 1].ctz.idx_e,
path[depth - 1].ctz.pg_e, depth, path[depth - 1].sz);
*dirent = nd;
}
else
{
ret = -ENOENT;
finfo("Can not find requested direntry in parent. Ret: %d.", ret);
}
return ret;
}
int mfs_get_patharr(FAR const struct mfs_sb_s * const sb,
FAR const char * relpath, FAR struct mfs_path_s **path,
FAR mfs_t *depth)
{
int ret = OK;
int ret_flags = 0;
mfs_t i;
mfs_t sz;
mfs_t off;
mfs_t n_objs;
mfs_t name_len;
FAR const char *cur = NULL;
FAR const char *next = NULL;
struct mfs_ctz_s ctz;
FAR struct mfs_path_s *np = NULL;
FAR struct mfs_dirent_s *dirent = NULL;
*path = NULL;
n_objs = nobjs_in_path(relpath);
np = kmm_zalloc(n_objs * sizeof(struct mfs_path_s));
if (predict_false(np == NULL))
{
ret = -ENOMEM;
goto errout;
}
ctz = MFS_MN(sb).root_ctz;
sz = MFS_MN(sb).root_sz;
np[0].sz = sz;
np[0].ctz = ctz;
np[0].off = 0;
cur = relpath;
next = next_child(cur);
name_len = *next == 0 ? next - cur : next - cur - 1;
if (predict_false(n_objs == 1))
{
ret_flags |= MFS_ISDIR | MFS_EXIST;
/* This will not go into the loop. */
}
else if (predict_false(n_objs == 2))
{
ret_flags |= MFS_P_EXIST | MFS_P_ISDIR;
}
/* MFS_MN(sb).root_* is always up to date, no need for journal update. */
for (i = 1; i < n_objs; i++)
{
/* np[i] is the fs object at depth i + 1. */
/* Need to update journal for every level in the path as, for eg., the
* child can be deleted, etc. Same goes for LRU, which is taken care of
* by search_ctz_by_name function.
*/
ret = search_ctz_by_name(sb, np, i, cur, name_len, &off, &dirent);
if (predict_false(ret < 0))
{
goto errout_with_ret_flags;
}
if (i < n_objs - 2 && !S_ISDIR(dirent->mode))
{
ret_flags |= MFS_FINPATH;
goto errout_with_ret_flags;
}
else if (i == n_objs - 2)
{
ret_flags |= MFS_P_EXIST;
if (S_ISDIR(dirent->mode))
{
ret_flags |= MFS_P_ISDIR;
}
else
{
ret_flags |= MFS_FINPATH;
goto errout_with_ret_flags;
}
}
else /* if (i == n_objs - 1) */
{
ret_flags |= MFS_EXIST;
if (S_ISDIR(dirent->mode))
{
ret_flags |= MFS_ISDIR;
}
else
{
ret_flags |= MFS_ISFILE;
}
}
np[i].ctz = dirent->ctz;
np[i].off = off;
np[i].sz = dirent->sz;
ctz = dirent->ctz;
mfs_free_dirent(dirent);
cur = next;
next = next_child(cur);
name_len = *next == 0 ? next - cur : next - cur - 1;
}
ret = ret_flags;
*depth = n_objs;
*path = np;
finfo("Got path array with flags %u, depth %u.", ret, n_objs);
return ret;
errout_with_ret_flags:
ret = ret_flags;
*depth = n_objs;
*path = np;
/* mfs_free_patharr(np) : All callers will free np (ie. path) when done
* with it.
*/
errout:
finfo("Got path array with flags %u, depth %u.", ret, n_objs);
return ret;
}
void mfs_free_patharr(FAR struct mfs_path_s *path)
{
kmm_free(path);
}
void mfs_pitr_reset(FAR struct mfs_pitr_s * const pitr)
{
pitr->c_off = 0;
finfo("Pitr for CTZ (%u, %u) reset.",
pitr->p.ctz.idx_e, pitr->p.ctz.pg_e);
}
int mfs_pitr_appenddirent(FAR struct mfs_sb_s * const sb,
FAR struct mfs_path_s * const path,
const mfs_t depth,
FAR struct mfs_pitr_s * const pitr,
FAR const struct mfs_dirent_s * const dirent)
{
/* Depth is depth of the child to be appended. */
int ret = OK;
const mfs_t len = MFS_DIRENTSZ(dirent);
char wd[len];
if (pitr->depth == 0)
{
/* Root is the only child of the master node. */
ret = -EINVAL;
goto errout;
}
/* TODO: If the parent directory is newly formed (ie. size is 0), then
* allocate space for it. This can be done better. Just allocate page when
* its created and added first to LRU, and then add a check to ensure it
* doesn't get re-allocated when written. A field like "new" would be
* helpful in the LRU node for this.
*/
memset(wd, 0, len);
mfs_ser_dirent(dirent, wd);
ret = mfs_lru_wr(sb, pitr->p.sz, len, path, pitr->depth, wd);
if (predict_false(ret < 0))
{
goto errout;
}
errout:
return ret;
}
int mfs_pitr_appendnew(FAR struct mfs_sb_s * const sb,
FAR struct mfs_path_s * const path, const mfs_t depth,
FAR struct mfs_pitr_s * const pitr,
FAR const char * const relpath, const mode_t mode)
{
/* Depth is depth of the child to be appended. */
int ret = OK;
FAR const char *cur = last_child(relpath);
FAR const char *next = next_child(cur);
const mfs_t len = *next == 0 ? next - cur : next - cur - 1;
struct timespec ts;
FAR struct mfs_dirent_s *d = NULL;
DEBUGASSERT(depth > 0);
d = kmm_zalloc(sizeof(struct mfs_dirent_s) + len);
if (predict_false(d == NULL))
{
ret = -ENOMEM;
goto errout;
}
clock_gettime(CLOCK_REALTIME, &ts);
d->ctz = empty_fsobj.ctz;
d->mode = mode;
d->st_atim = ts;
d->st_mtim = ts;
d->st_ctim = ts;
d->namelen = len;
strncpy(d->name, cur, d->namelen);
d->name_hash = mfs_hash(d->name, d->namelen);
d->sz = 0;
/* Add the new direntry in this path. */
path[depth - 1].ctz = d->ctz;
path[depth - 1].off = pitr->p.sz;
path[depth - 1].sz = d->sz;
ret = mfs_pitr_appenddirent(sb, path, depth, pitr, d);
if (predict_false(ret < 0))
{
goto errout_with_d;
}
finfo("Direntry appended to Pitr with %u depth, and CTZ (%u, %u). " \
"Direntry name: \"%.*s\" with name length %u at offset %u.",
pitr->depth, pitr->p.ctz.idx_e, pitr->p.ctz.pg_e, d->namelen,
d->name, d->namelen, path[depth - 1].off);
errout_with_d:
mfs_free_dirent(d);
errout:
return ret;
}
/* Only for initialization of the block allocator. */
int mfs_pitr_traversefs(FAR struct mfs_sb_s * sb, const struct mfs_ctz_s ctz,
int type)
{
/* type takes in MFS_ISFILE & MFS_ISDIR. */
int ret = OK;
mfs_t capacity;
FAR struct mfs_path_s *path = NULL;
capacity = MFS_TRAVERSE_INITSZ;
path = kmm_zalloc(capacity * sizeof(struct mfs_path_s));
if (predict_false(path == NULL))
{
ret = -ENOMEM;
goto errout;
}
path[0].off = 0;
path[0].ctz = MFS_MN(sb).root_ctz;
path[0].sz = MFS_MN(sb).root_sz;
ret = pitr_traverse(sb, path, 0, &capacity);
mfs_free_patharr(path);
errout:
return ret;
}