nuttx/Documentation/platforms/risc-v/esp32c6/index.rst
Tiago Medicci Serrano 5ff6362d0f Documentation: improve documentation about ESP32 family
In particular, sections regarding the toolchain setup and usage
were updated, as well as the bootloader options. Also, minor issues
were fixed.
2024-04-22 23:45:22 +08:00

178 lines
5.4 KiB
ReStructuredText

==================
Espressif ESP32-C6
==================
The ESP32-C6 is an ultra-low-power and highly integrated SoC with a RISC-V
core and supports 2.4 GHz Wi-Fi 6, Bluetooth 5 (LE) and the 802.15.4 protocol.
* Address Space
- 800 KB of internal memory address space accessed from the instruction bus
- 560 KB of internal memory address space accessed from the data bus
- 1016 KB of peripheral address space
- 8 MB of external memory virtual address space accessed from the instruction bus
- 8 MB of external memory virtual address space accessed from the data bus
- 480 KB of internal DMA address space
* Internal Memory
- 320 KB ROM
- 512 KB SRAM (16 KB can be configured as Cache)
- 16 KB of SRAM in RTC
* External Memory
- Up to 16 MB of external flash
* Peripherals
- 35 peripherals
* GDMA
- 7 modules are capable of DMA operations.
ESP32-C6 Toolchain
==================
A generic RISC-V toolchain can be used to build ESP32-C6 projects. It's recommended to use the same
toolchain used by NuttX CI. Please refer to the Docker
`container <https://github.com/apache/nuttx/tree/master/tools/ci/docker/linux/Dockerfile>`_ and
check for the current compiler version being used. For instance:
.. code-block::
###############################################################################
# Build image for tool required by RISCV builds
###############################################################################
FROM nuttx-toolchain-base AS nuttx-toolchain-riscv
# Download the latest RISCV GCC toolchain prebuilt by xPack
RUN mkdir riscv-none-elf-gcc && \
curl -s -L "https://github.com/xpack-dev-tools/riscv-none-elf-gcc-xpack/releases/download/v13.2.0-2/xpack-riscv-none-elf-gcc-13.2.0-2-linux-x64.tar.gz" \
| tar -C riscv-none-elf-gcc --strip-components 1 -xz
It uses the xPack's prebuilt toolchain based on GCC 13.2.0-2.
Installing
----------
First, create a directory to hold the toolchain:
.. code-block:: console
$ mkdir -p /path/to/your/toolchain/riscv-none-elf-gcc
Download and extract toolchain:
.. code-block:: console
$ curl -s -L "https://github.com/xpack-dev-tools/riscv-none-elf-gcc-xpack/releases/download/v13.2.0-2/xpack-riscv-none-elf-gcc-13.2.0-2-linux-x64.tar.gz" \
| tar -C /path/to/your/toolchain/riscv-none-elf-gcc --strip-components 1 -xz
Add the toolchain to your `PATH`:
.. code-block:: console
$ echo "export PATH=/path/to/your/toolchain/riscv-none-elf-gcc/bin:$PATH" >> ~/.bashrc
You can edit your shell's rc files if you don't use bash.
Second stage bootloader
=======================
Nuttx can boot the ESP32-H2 directly using the so-called "Simple Boot".
An externally-built 2nd stage bootloader is not required in this case as all
functions required to boot the device are built within Nuttx. Simple boot does not
require any specific configuration (it is selectable by default if no other
2nd stage bootloader is used). For compatibility among other SoCs and future options
of 2nd stage bootloaders, the commands ``make bootloader`` and the ``ESPTOOL_BINDIR``
option (for the ``make flash``) are kept (and ignored if Simple Boot is used).
Building and flashing
=====================
First, make sure that ``esptool.py`` is installed. This tool is used to convert
the ELF to a compatible ESP32-C6 image and to flash the image into the board.
It can be installed with: ``pip install esptool``.
Configure the NuttX project: ``./tools/configure.sh esp32c6-devkitc:nsh``
Run ``make`` to build the project. Note that the conversion mentioned above is
included in the build process.
The ``esptool.py`` is used to flash all the binaries. However, this is also
included in the build process and we can build and flash with::
make flash ESPTOOL_PORT=<port> ESPTOOL_BINDIR=./
Where ``<port>`` is typically ``/dev/ttyUSB0`` or similar and ``./`` is
the path to the folder containing the externally-built 2nd stage bootloader for
the ESP32-C6 as explained above.
Debugging with OpenOCD
======================
Download and build OpenOCD from Espressif, that can be found in
https://github.com/espressif/openocd-esp32
You do not need an external JTAG to debug, the ESP32-C6 integrates a
USB-to-JTAG adapter.
OpenOCD can then be used::
openocd -c 'set ESP_RTOS none' -f board/esp32c6-builtin.cfg
If you want to debug with an external JTAG adapter it can
be connected as follows::
TMS -> GPIO4
TDI -> GPIO5
TCK -> GPIO6
TDO -> GPIO7
Furthermore, an efuse needs to be burnt to be able to debug::
espefuse.py -p <port> burn_efuse DIS_USB_JTAG
OpenOCD can then be used::
openocd -c 'set ESP_RTOS none' -f board/esp32c6-ftdi.cfg
Peripheral Support
==================
The following list indicates the state of peripherals' support in NuttX:
============== =======
Peripheral Support
============== =======
ADC No
AES No
Bluetooth No
CAN/TWAI No
DMA No
ECC No
eFuse No
GPIO Yes
HMAC No
I2C No
I2S No
Int. Temp. No
LED No
LED_PWM Yes
MCPWM No
Pulse Counter No
RMT No
RNG No
RSA No
RTC Yes
SD/MMC No
SDIO No
SHA No
SPI No
SPIFLASH Yes
Timers Yes
UART Yes
Watchdog Yes
Wifi No
XTS No
============== =======
Supported Boards
================
.. toctree::
:glob:
:maxdepth: 1
boards/*/*