419 lines
16 KiB
Plaintext
419 lines
16 KiB
Plaintext
README
|
||
^^^^^^
|
||
|
||
README for NuttX port to the Stellaris EKK-LM3S9B96 Evaluation Kit
|
||
|
||
Contents
|
||
^^^^^^^^
|
||
|
||
Stellaris EKK-LM3S9B96 Evaluation Kit
|
||
Development Environment
|
||
GNU Toolchain Options
|
||
IDEs
|
||
NuttX EABI "buildroot" Toolchain
|
||
NuttX OABI "buildroot" Toolchain
|
||
NXFLAT Toolchain
|
||
Stellaris EKK-LM3S9B96 Evaluation Kit Configuration Options
|
||
Configurations
|
||
|
||
Stellaris EKK-LM3S9B96 Evaluation Kit
|
||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
The EKK-LM3S9B96 evaluation kit provides the following features:
|
||
|
||
o LM3S9B96 high-performance Stellaris microcontroller and large memory
|
||
– 32-bit ARM® Cortex™-M3 core
|
||
– 256 KB single-cycle Flash memory, 96 KB single-cycle SRAM, 23.7 KB single-cycle ROM
|
||
o Ethernet 10/100 port with two LED indicators
|
||
o USB 2.0 Full-Speed OTG port
|
||
o SAFERTOS™ operating system in microcontroller ROM
|
||
o Virtual serial communications port capability
|
||
o Oversized board pads for GPIO access
|
||
o User pushbutton and LED
|
||
o Detachable ICDI board can be used for debugging other Luminary Micro boards
|
||
o Easy to customize
|
||
|
||
Features of the LM3S9B96 Microcontroller
|
||
|
||
o ARM® Cortex™-M3 architecture
|
||
– 80-MHz operation
|
||
– ARM Cortex SysTick Timer
|
||
– Integrated Nested Vectored Interrupt Controller (NVIC)
|
||
o External Peripheral Interface (EPI)
|
||
o 256 KB single-cycle flash
|
||
o 96 KB single-cycle SRAM
|
||
o Four general-purpose 32-bit timers
|
||
o Integrated Ethernet MAC and PHY
|
||
o Three fully programmable 16C550-type UARTs
|
||
o Two 10-bit channels (inputs) when used as single-ended inputs
|
||
o Three independent integrated analog comparators
|
||
o Two CAN modules
|
||
o Two I2C modules
|
||
o Two SSI modules
|
||
o Two Watchdog Timers (32-bit)
|
||
o Three PWM generator blocks
|
||
– One 16-bit counter
|
||
– Two comparators
|
||
– Produces eight independent PWM signals
|
||
– One dead-band generator
|
||
o Two QEI modules with position integrator for tracking encoder position
|
||
o Up to 65 GPIOs, depending on user configuration
|
||
o On-chip low drop-out (LDO) voltage regulator
|
||
|
||
GPIO Usage
|
||
|
||
PIN SIGNAL EVB Function
|
||
--- ----------- ---------------------------------------
|
||
26 PA0/U0RX Virtual COM port receive
|
||
27 PA1/U0TX Virtual COM port transmit
|
||
66 PB0/USB0ID USBID signal from the USB-On-the-Go
|
||
67 PB1/USB0VBUS USB VBUS input signal from USB-OTG
|
||
92 PB4/GPIO User pushbutton SW2.
|
||
80 PC0/TCK/SWCLK JTAG or SWD clock input
|
||
79 PC1/TMS/SWDIO JTAG TMS input or SWD bidirectional signal SWDIO
|
||
78 PC2/TDI JTAG TDI signal input
|
||
77 PC3/TDO/SWO JTAG TDO output or SWD trace signal SWO output.
|
||
10 PD0/GPIO User LED
|
||
60 PF2/LED1 Ethernet LED1 (yellow)
|
||
59 PF3/LED0 Ethernet LED0 (green)
|
||
83 PH3/USB0EPEN USB-OTG power switch
|
||
76 PH4/USB0PFLT Overcurrent input status from USB-OTG power switch
|
||
|
||
Development Environment
|
||
^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
Either Linux or Cygwin on Windows can be used for the development environment.
|
||
The source has been built only using the GNU toolchain (see below). Other
|
||
toolchains will likely cause problems. Testing was performed using the Cygwin
|
||
environment.
|
||
|
||
GNU Toolchain Options
|
||
^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
The NuttX make system has been modified to support the following different
|
||
toolchain options.
|
||
|
||
1. The CodeSourcery GNU toolchain,
|
||
2. The devkitARM GNU toolchain,
|
||
3. The NuttX buildroot Toolchain (see below).
|
||
|
||
All testing has been conducted using the NuttX buildroot toolchain. However,
|
||
the make system is setup to default to use the devkitARM toolchain. To use
|
||
the CodeSourcery or devkitARM, you simply need to add one of the following
|
||
configuration options to your .config (or defconfig) file:
|
||
|
||
CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYW=y : CodeSourcery under Windows
|
||
CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYL=y : CodeSourcery under Linux
|
||
CONFIG_ARMV7M_TOOLCHAIN_DEVKITARM=y : devkitARM under Windows
|
||
CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default)
|
||
|
||
If you are not using CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT, then you may also have to modify
|
||
the PATH in the setenv.h file if your make cannot find the tools.
|
||
|
||
NOTE: the CodeSourcery (for Windows) and devkitARM are Windows native toolchains.
|
||
The CodeSourcey (for Linux) and NuttX buildroot toolchains are Cygwin and/or Linux
|
||
native toolchains. There are several limitations to using a Windows based
|
||
toolchain in a Cygwin environment. The three biggest are:
|
||
|
||
1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
|
||
performed automatically in the Cygwin makefiles using the 'cygpath' utility
|
||
but you might easily find some new path problems. If so, check out 'cygpath -w'
|
||
|
||
2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links
|
||
are used in Nuttx (e.g., include/arch). The make system works around these
|
||
problems for the Windows tools by copying directories instead of linking them.
|
||
But this can also cause some confusion for you: For example, you may edit
|
||
a file in a "linked" directory and find that your changes had no effect.
|
||
That is because you are building the copy of the file in the "fake" symbolic
|
||
directory. If you use a Windows toolchain, you should get in the habit of
|
||
making like this:
|
||
|
||
make clean_context all
|
||
|
||
An alias in your .bashrc file might make that less painful.
|
||
|
||
3. Dependencies are not made when using Windows versions of the GCC. This is
|
||
because the dependencies are generated using Windows pathes which do not
|
||
work with the Cygwin make.
|
||
|
||
MKDEP = $(TOPDIR)/tools/mknulldeps.sh
|
||
|
||
NOTE 1: The CodeSourcery toolchain (2009q1) does not work with default optimization
|
||
level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with
|
||
-Os.
|
||
|
||
NOTE 2: The devkitARM toolchain includes a version of MSYS make. Make sure that
|
||
the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
|
||
path or will get the wrong version of make.
|
||
|
||
NOTE 3: I recently (i.e., late 2011) tried building with the CodeSourcery Windows
|
||
toolchain. The code worked but required 40 seconds to boot (or even until the
|
||
status LED illuminates)!! Know idea why. With the buildroot tools, boot time is
|
||
a couple of seconds.
|
||
|
||
IDEs
|
||
^^^^
|
||
|
||
NuttX is built using command-line make. It can be used with an IDE, but some
|
||
effort will be required to create the project.
|
||
|
||
Makefile Build
|
||
--------------
|
||
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
|
||
simply use the NuttX makefile to build the system. That is almost for free
|
||
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
|
||
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
|
||
there is a lot of help on the internet).
|
||
|
||
Native Build
|
||
------------
|
||
Here are a few tips before you start that effort:
|
||
|
||
1) Select the toolchain that you will be using in your .config file
|
||
2) Start the NuttX build at least one time from the Cygwin command line
|
||
before trying to create your project. This is necessary to create
|
||
certain auto-generated files and directories that will be needed.
|
||
3) Set up include pathes: You will need include/, arch/arm/src/lm,
|
||
arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
|
||
4) All assembly files need to have the definition option -D __ASSEMBLY__
|
||
on the command line.
|
||
|
||
Startup files will probably cause you some headaches. The NuttX startup file
|
||
is arch/arm/src/tiva/tiva_vectors.S.
|
||
|
||
NuttX EABI "buildroot" Toolchain
|
||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
A GNU GCC-based toolchain is assumed. The files */setenv.sh should
|
||
be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
|
||
different from the default in your PATH variable).
|
||
|
||
If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
|
||
Bitbucket download site (https://bitbucket.org/patacongo/nuttx/downloads/buildroot/).
|
||
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
||
|
||
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
||
|
||
cd tools
|
||
./configure.sh ekk-lm3s9b96/<sub-dir>
|
||
|
||
2. Download the latest buildroot package into <some-dir>
|
||
|
||
3. unpack the buildroot tarball. The resulting directory may
|
||
have versioning information on it like buildroot-x.y.z. If so,
|
||
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
||
|
||
4. cd <some-dir>/buildroot
|
||
|
||
5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config
|
||
|
||
6. make oldconfig
|
||
|
||
7. make
|
||
|
||
8. Edit setenv.h, if necessary, so that the PATH variable includes
|
||
the path to the newly built binaries.
|
||
|
||
See the file configs/README.txt in the buildroot source tree. That has more
|
||
details PLUS some special instructions that you will need to follow if you
|
||
are building a Cortex-M3 toolchain for Cygwin under Windows.
|
||
|
||
NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
|
||
the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for
|
||
more information about this problem. If you plan to use NXFLAT, please do not
|
||
use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain.
|
||
See instructions below.
|
||
|
||
NuttX OABI "buildroot" Toolchain
|
||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
The older, OABI buildroot toolchain is also available. To use the OABI
|
||
toolchain:
|
||
|
||
1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3
|
||
configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI
|
||
configuration such as cortexm3-defconfig-4.3.3
|
||
|
||
2. Modify the Make.defs file to use the OABI conventions:
|
||
|
||
+CROSSDEV = arm-nuttx-elf-
|
||
+ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft
|
||
+NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections
|
||
-CROSSDEV = arm-nuttx-eabi-
|
||
-ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft
|
||
-NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections
|
||
|
||
NXFLAT Toolchain
|
||
^^^^^^^^^^^^^^^^
|
||
|
||
If you are *not* using the NuttX buildroot toolchain and you want to use
|
||
the NXFLAT tools, then you will still have to build a portion of the buildroot
|
||
tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can
|
||
be downloaded from the NuttX Bitbucket download site
|
||
(https://bitbucket.org/patacongo/nuttx/downloads/).
|
||
|
||
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
||
|
||
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
||
|
||
cd tools
|
||
./configure.sh lpcxpresso-lpc1768/<sub-dir>
|
||
|
||
2. Download the latest buildroot package into <some-dir>
|
||
|
||
3. unpack the buildroot tarball. The resulting directory may
|
||
have versioning information on it like buildroot-x.y.z. If so,
|
||
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
||
|
||
4. cd <some-dir>/buildroot
|
||
|
||
5. cp configs/cortexm3-defconfig-nxflat .config
|
||
|
||
6. make oldconfig
|
||
|
||
7. make
|
||
|
||
8. Edit setenv.h, if necessary, so that the PATH variable includes
|
||
the path to the newly builtNXFLAT binaries.
|
||
|
||
Stellaris EKK-LM3S9B96 Evaluation Kit Configuration Options
|
||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
|
||
be set to:
|
||
|
||
CONFIG_ARCH=arm
|
||
|
||
CONFIG_ARCH_family - For use in C code:
|
||
|
||
CONFIG_ARCH_ARM=y
|
||
|
||
CONFIG_ARCH_architecture - For use in C code:
|
||
|
||
CONFIG_ARCH_CORTEXM3=y
|
||
|
||
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
|
||
|
||
CONFIG_ARCH_CHIP=lm
|
||
|
||
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
|
||
chip:
|
||
|
||
CONFIG_ARCH_CHIP_LM3S9B96
|
||
|
||
CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
|
||
hence, the board that supports the particular chip or SoC.
|
||
|
||
CONFIG_ARCH_BOARD=ekk-lm3s9b96 (for the Stellaris EKK-LM3S9b96 Evaluation Kit)
|
||
|
||
CONFIG_ARCH_BOARD_name - For use in C code
|
||
|
||
CONFIG_ARCH_BOARD_EKKLM3S9B96
|
||
|
||
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
|
||
of delay loops
|
||
|
||
CONFIG_ENDIAN_BIG - define if big endian (default is little
|
||
endian)
|
||
|
||
CONFIG_RAM_SIZE - Describes the installed DRAM (SRAM in this case):
|
||
|
||
CONFIG_RAM_SIZE=0x00018000 (96Kb)
|
||
|
||
CONFIG_RAM_START - The start address of installed DRAM
|
||
|
||
CONFIG_RAM_START=0x20000000
|
||
|
||
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
|
||
have LEDs
|
||
|
||
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
|
||
stack. If defined, this symbol is the size of the interrupt
|
||
stack in bytes. If not defined, the user task stacks will be
|
||
used during interrupt handling.
|
||
|
||
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
|
||
|
||
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
|
||
|
||
CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
|
||
cause a 100 second delay during boot-up. This 100 second delay
|
||
serves no purpose other than it allows you to calibratre
|
||
CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure
|
||
the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
|
||
the delay actually is 100 seconds.
|
||
|
||
There are configurations for disabling support for interrupts GPIO ports.
|
||
GPIOJ must be disabled because it does not exist on the LM3S9B96.
|
||
Additional interrupt support can be disabled if desired to reduce memory
|
||
footprint.
|
||
|
||
CONFIG_TIVA_GPIOA_IRQS=y
|
||
CONFIG_TIVA_GPIOB_IRQS=y
|
||
CONFIG_TIVA_GPIOC_IRQS=y
|
||
CONFIG_TIVA_GPIOD_IRQS=y
|
||
CONFIG_TIVA_GPIOE_IRQS=y
|
||
CONFIG_TIVA_GPIOF_IRQS=y
|
||
CONFIG_TIVA_GPIOG_IRQS=y
|
||
CONFIG_TIVA_GPIOH_IRQS=y
|
||
CONFIG_TIVA_GPIOJ_IRQS=n << Always
|
||
|
||
LM3S9B96 specific device driver settings
|
||
|
||
CONFIG_UARTn_SERIAL_CONSOLE - selects the UARTn for the
|
||
console and ttys0 (default is the UART0).
|
||
CONFIG_UARTn_RXBUFSIZE - Characters are buffered as received.
|
||
This specific the size of the receive buffer
|
||
CONFIG_UARTn_TXBUFSIZE - Characters are buffered before
|
||
being sent. This specific the size of the transmit buffer
|
||
CONFIG_UARTn_BAUD - The configure BAUD of the UART. Must be
|
||
CONFIG_UARTn_BITS - The number of bits. Must be either 7 or 8.
|
||
CONFIG_UARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
|
||
CONFIG_UARTn_2STOP - Two stop bits
|
||
|
||
CONFIG_TIVA_SSI0 - Select to enable support for SSI0
|
||
CONFIG_TIVA_SSI1 - Select to enable support for SSI1
|
||
CONFIG_SSI_POLLWAIT - Select to disable interrupt driven SSI support.
|
||
Poll-waiting is recommended if the interrupt rate would be to
|
||
high in the interrupt driven case.
|
||
CONFIG_SSI_TXLIMIT - Write this many words to the Tx FIFO before
|
||
emptying the Rx FIFO. If the SPI frequency is high and this
|
||
value is large, then larger values of this setting may cause
|
||
Rx FIFO overrun errors. Default: half of the Tx FIFO size (4).
|
||
|
||
CONFIG_TIVA_ETHERNET - This must be set (along with CONFIG_NET)
|
||
to build the Stellaris Ethernet driver
|
||
CONFIG_TIVA_ETHLEDS - Enable to use Ethernet LEDs on the board.
|
||
CONFIG_TIVA_BOARDMAC - If the board-specific logic can provide
|
||
a MAC address (via tiva_ethernetmac()), then this should be selected.
|
||
CONFIG_TIVA_ETHHDUPLEX - Set to force half duplex operation
|
||
CONFIG_TIVA_ETHNOAUTOCRC - Set to suppress auto-CRC generation
|
||
CONFIG_TIVA_ETHNOPAD - Set to suppress Tx padding
|
||
CONFIG_TIVA_MULTICAST - Set to enable multicast frames
|
||
CONFIG_TIVA_PROMISCUOUS - Set to enable promiscuous mode
|
||
CONFIG_TIVA_BADCRC - Set to enable bad CRC rejection.
|
||
CONFIG_TIVA_DUMPPACKET - Dump each packet received/sent to the console.
|
||
|
||
Configurations
|
||
^^^^^^^^^^^^^^
|
||
|
||
Each Stellaris EKK-LM3S9b96 Evaluation Kit configuration is maintained in a
|
||
sub-directory and can be selected as follow:
|
||
|
||
cd tools
|
||
./configure.sh ekk-lm3s9b96/<subdir>
|
||
cd -
|
||
. ./setenv.sh
|
||
|
||
Where <subdir> is one of the following:
|
||
|
||
nsh:
|
||
Configures the NuttShell (nsh) located at examples/nsh. The
|
||
Configuration enables both the serial and telnetd NSH interfaces.
|
||
|
||
NOTE: As it is configured now, you MUST have a network connected.
|
||
Otherwise, the NSH prompt will not come up because the Ethernet
|
||
driver is waiting for the network to come up. That is probably
|
||
a bug in the Ethernet driver behavior!
|
||
|