nuttx/arch/arm/include/armv7-r/irq.h
hujun5 8275a846b1 arch: move sigdeliver to common code
Signed-off-by: hujun5 <hujun5@xiaomi.com>
2024-10-11 01:30:51 +08:00

528 lines
16 KiB
C

/****************************************************************************
* arch/arm/include/armv7-r/irq.h
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* This file should never be included directly but, rather, only indirectly
* through nuttx/irq.h
*/
#ifndef __ARCH_ARM_INCLUDE_ARMV7_R_IRQ_H
#define __ARCH_ARM_INCLUDE_ARMV7_R_IRQ_H
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/irq.h>
#ifndef __ASSEMBLY__
# include <stdint.h>
#endif
#include <arch/armv7-r/cp15.h>
/****************************************************************************
* Pre-processor Prototypes
****************************************************************************/
/* IRQ Stack Frame Format:
*
* Context is always saved/restored in the same way:
*
* (1) stmia rx, {r0-r14}
* (2) then the PC and CPSR
*
* This results in the following set of indices that can be used to access
* individual registers in the xcp.regs array:
*/
/* If the MCU supports a floating point unit, then it will be necessary
* to save the state of the FPU status register and data registers on
* each context switch. These registers are not saved during interrupt
* level processing, however. So, as a consequence, floating point
* operations may NOT be performed in interrupt handlers.
*
* The FPU provides an extension register file containing 32 single-
* precision registers. These can be viewed as:
*
* - Sixteen 64-bit double word registers, D0-D15
* - Thirty-two 32-bit single-word registers, S0-S31
* S<2n> maps to the least significant half of D<n>
* S<2n+1> maps to the most significant half of D<n>.
*/
#ifdef CONFIG_ARCH_FPU
# define REG_D0 (0) /* D0 */
# define REG_S0 (0) /* S0 */
# define REG_S1 (1) /* S1 */
# define REG_D1 (2) /* D1 */
# define REG_S2 (2) /* S2 */
# define REG_S3 (3) /* S3 */
# define REG_D2 (4) /* D2 */
# define REG_S4 (4) /* S4 */
# define REG_S5 (5) /* S5 */
# define REG_D3 (6) /* D3 */
# define REG_S6 (6) /* S6 */
# define REG_S7 (7) /* S7 */
# define REG_D4 (8) /* D4 */
# define REG_S8 (8) /* S8 */
# define REG_S9 (9) /* S9 */
# define REG_D5 (10) /* D5 */
# define REG_S10 (10) /* S10 */
# define REG_S11 (11) /* S11 */
# define REG_D6 (12) /* D6 */
# define REG_S12 (12) /* S12 */
# define REG_S13 (13) /* S13 */
# define REG_D7 (14) /* D7 */
# define REG_S14 (14) /* S14 */
# define REG_S15 (15) /* S15 */
# define REG_D8 (16) /* D8 */
# define REG_S16 (16) /* S16 */
# define REG_S17 (17) /* S17 */
# define REG_D9 (18) /* D9 */
# define REG_S18 (18) /* S18 */
# define REG_S19 (19) /* S19 */
# define REG_D10 (20) /* D10 */
# define REG_S20 (20) /* S20 */
# define REG_S21 (21) /* S21 */
# define REG_D11 (22) /* D11 */
# define REG_S22 (22) /* S22 */
# define REG_S23 (23) /* S23 */
# define REG_D12 (24) /* D12 */
# define REG_S24 (24) /* S24 */
# define REG_S25 (25) /* S25 */
# define REG_D13 (26) /* D13 */
# define REG_S26 (26) /* S26 */
# define REG_S27 (27) /* S27 */
# define REG_D14 (28) /* D14 */
# define REG_S28 (28) /* S28 */
# define REG_S29 (29) /* S29 */
# define REG_D15 (30) /* D15 */
# define REG_S30 (30) /* S30 */
# define REG_S31 (31) /* S31 */
# ifdef CONFIG_ARM_HAVE_DPFPU32
# define REG_D16 (32) /* D16 */
# define REG_D17 (34) /* D17 */
# define REG_D18 (36) /* D18 */
# define REG_D19 (38) /* D19 */
# define REG_D20 (40) /* D20 */
# define REG_D21 (42) /* D21 */
# define REG_D22 (44) /* D22 */
# define REG_D23 (46) /* D23 */
# define REG_D24 (48) /* D24 */
# define REG_D25 (50) /* D25 */
# define REG_D26 (52) /* D26 */
# define REG_D27 (54) /* D27 */
# define REG_D28 (56) /* D28 */
# define REG_D29 (58) /* D29 */
# define REG_D30 (60) /* D30 */
# define REG_D31 (62) /* D31 */
# define REG_FPSCR (64) /* Floating point status and control */
# define FPU_CONTEXT_REGS (65)
# else
# define REG_FPSCR (32) /* Floating point status and control */
# define FPU_CONTEXT_REGS (33)
# endif
#else
# define FPU_CONTEXT_REGS (0)
#endif
#define REG_R13 (FPU_CONTEXT_REGS+0)
#define REG_R14 (FPU_CONTEXT_REGS+1)
#define REG_R0 (FPU_CONTEXT_REGS+2)
#define REG_R1 (FPU_CONTEXT_REGS+3)
#define REG_R2 (FPU_CONTEXT_REGS+4)
#define REG_R3 (FPU_CONTEXT_REGS+5)
#define REG_R4 (FPU_CONTEXT_REGS+6)
#define REG_R5 (FPU_CONTEXT_REGS+7)
#define REG_R6 (FPU_CONTEXT_REGS+8)
#define REG_R7 (FPU_CONTEXT_REGS+9)
#define REG_R8 (FPU_CONTEXT_REGS+10)
#define REG_R9 (FPU_CONTEXT_REGS+11)
#define REG_R10 (FPU_CONTEXT_REGS+12)
#define REG_R11 (FPU_CONTEXT_REGS+13)
#define REG_R12 (FPU_CONTEXT_REGS+14)
#define REG_R15 (FPU_CONTEXT_REGS+15)
#define REG_CPSR (FPU_CONTEXT_REGS+16)
#define ARM_CONTEXT_REGS (17)
/* The total number of registers saved by software */
#define XCPTCONTEXT_REGS (FPU_CONTEXT_REGS + ARM_CONTEXT_REGS)
#define XCPTCONTEXT_SIZE (4 * XCPTCONTEXT_REGS)
/* Friendly register names */
#define REG_A1 REG_R0
#define REG_A2 REG_R1
#define REG_A3 REG_R2
#define REG_A4 REG_R3
#define REG_V1 REG_R4
#define REG_V2 REG_R5
#define REG_V3 REG_R6
#define REG_V4 REG_R7
#define REG_V5 REG_R8
#define REG_V6 REG_R9
#define REG_V7 REG_R10
#define REG_SB REG_R9
#define REG_SL REG_R10
#ifdef CONFIG_ARM_THUMB
#define REG_FP REG_R7
#else
#define REG_FP REG_R11
#endif /* CONFIG_ARM_THUMB */
#define REG_IP REG_R12
#define REG_SP REG_R13
#define REG_LR REG_R14
#define REG_PC REG_R15
/* The PIC register is usually R10. It can be R9 is stack checking is enabled
* or if the user changes it with -mpic-register on the GCC command line.
*/
#define REG_PIC REG_R10
/* Multiprocessor Affinity Register (MPIDR): CRn=c0, opc1=0, CRm=c0, opc2=5 */
#define MPIDR_CPUID_SHIFT (0) /* Bits 0-1: CPU ID */
#define MPIDR_CPUID_MASK (3 << MPIDR_CPUID_SHIFT)
# define MPIDR_CPUID_CPU0 (0 << MPIDR_CPUID_SHIFT)
# define MPIDR_CPUID_CPU1 (1 << MPIDR_CPUID_SHIFT)
# define MPIDR_CPUID_CPU2 (2 << MPIDR_CPUID_SHIFT)
# define MPIDR_CPUID_CPU3 (3 << MPIDR_CPUID_SHIFT)
/* Bits 2-7: Reserved */
#define MPIDR_CLUSTID_SHIFT (8) /* Bits 8-11: Cluster ID value */
#define MPIDR_CLUSTID_MASK (15 << MPIDR_CLUSTID_SHIFT)
/* Bits 12-29: Reserved */
#define MPIDR_U (1 << 30) /* Bit 30: Multiprocessing Extensions. */
/****************************************************************************
* Public Types
****************************************************************************/
#ifndef __ASSEMBLY__
/* This structure represents the return state from a system call */
#ifdef CONFIG_LIB_SYSCALL
struct xcpt_syscall_s
{
#ifdef CONFIG_BUILD_KERNEL
uint32_t cpsr; /* The CPSR value */
#endif
uint32_t sysreturn; /* The return PC */
};
#endif
/* This struct defines the way the registers are stored. We need to save:
*
* 1 CPSR
* 7 Static registers, v1-v7 (aka r4-r10)
* 1 Frame pointer, fp (aka r11)
* 1 Stack pointer, sp (aka r13)
* 1 Return address, lr (aka r14)
* ---
* 11 (XCPTCONTEXT_USER_REG)
*
* On interrupts, we also need to save:
* 4 Volatile registers, a1-a4 (aka r0-r3)
* 1 Scratch Register, ip (aka r12)
*---
* 5 (XCPTCONTEXT_IRQ_REGS)
*
* For a total of 17 (XCPTCONTEXT_REGS)
*/
struct xcptcontext
{
/* These are saved copies of the context used during
* signal processing.
*/
uint32_t *saved_regs;
#ifdef CONFIG_BUILD_KERNEL
/* This is the saved address to use when returning from a user-space
* signal handler.
*/
uint32_t sigreturn;
#endif
/* Register save area with XCPTCONTEXT_SIZE, only valid when:
* 1.The task isn't running or
* 2.The task is interrupted
* otherwise task is running, and regs contain the stale value.
*/
uint32_t *regs;
/* Extra fault address register saved for common paging logic. In the
* case of the pre-fetch abort, this value is the same as regs[REG_R15];
* For the case of the data abort, this value is the value of the fault
* address register (FAR) at the time of data abort exception.
*/
#ifdef CONFIG_LEGACY_PAGING
uintptr_t far;
#endif
#ifdef CONFIG_LIB_SYSCALL
/* The following array holds the return address and the exc_return value
* needed to return from each nested system call.
*/
uint8_t nsyscalls;
struct xcpt_syscall_s syscall[CONFIG_SYS_NNEST];
#endif
#ifdef CONFIG_ARCH_ADDRENV
#ifdef CONFIG_ARCH_STACK_DYNAMIC
/* This array holds the physical address of the level 2 page table used
* to map the thread's stack memory. This array will be initially of
* zeroed and would be back-up up with pages during page fault exception
* handling to support dynamically sized stacks for each thread.
*/
uintptr_t *ustack[ARCH_STACK_NSECTS];
#endif
#ifdef CONFIG_ARCH_KERNEL_STACK
/* In this configuration, all syscalls execute from an internal kernel
* stack. Why? Because when we instantiate and initialize the address
* environment of the new user process, we will temporarily lose the
* address environment of the old user process, including its stack
* contents. The kernel C logic will crash immediately with no valid
* stack in place.
*/
uint32_t *ustkptr; /* Saved user stack pointer */
uint32_t *kstack; /* Allocate base of the (aligned) kernel stack */
uint32_t *kstkptr; /* Saved kernel stack pointer */
#endif
#endif
};
/****************************************************************************
* Inline functions
****************************************************************************/
/* Name: up_irq_save, up_irq_restore, and friends.
*
* NOTE: This function should never be called from application code and,
* as a general rule unless you really know what you are doing, this
* function should not be called directly from operation system code either:
* Typically, the wrapper functions, enter_critical_section() and
* leave_critical section(), are probably what you really want.
*/
/* Return the current IRQ state */
static inline irqstate_t irqstate(void)
{
unsigned int cpsr;
__asm__ __volatile__
(
"\tmrs %0, cpsr\n"
: "=r" (cpsr)
:
: "memory"
);
return cpsr;
}
/* Disable IRQs and return the previous IRQ state */
noinstrument_function static inline irqstate_t up_irq_save(void)
{
unsigned int cpsr;
__asm__ __volatile__
(
"\tmrs %0, cpsr\n"
"\tcpsid i\n"
#if defined(CONFIG_ARMV7R_DECODEFIQ)
"\tcpsid f\n"
#endif
: "=r" (cpsr)
:
: "memory"
);
return cpsr;
}
/* Enable IRQs and return the previous IRQ state */
static inline irqstate_t up_irq_enable(void)
{
unsigned int cpsr;
__asm__ __volatile__
(
"\tmrs %0, cpsr\n"
"\tcpsie i\n"
#if defined(CONFIG_ARMV7R_DECODEFIQ)
"\tcpsie f\n"
#endif
: "=r" (cpsr)
:
: "memory"
);
return cpsr;
}
/* Disable IRQs and return the previous IRQ state */
static inline irqstate_t up_irq_disable(void)
{
unsigned int cpsr;
__asm__ __volatile__
(
"\tmrs %0, cpsr\n"
"\tcpsid i\n"
: "=r" (cpsr)
:
: "memory"
);
return cpsr;
}
/* Restore saved IRQ & FIQ state */
noinstrument_function static inline void up_irq_restore(irqstate_t flags)
{
__asm__ __volatile__
(
"msr cpsr_c, %0"
:
: "r" (flags)
: "memory"
);
}
/****************************************************************************
* Name: up_cpu_index
*
* Description:
* Return an index in the range of 0 through (CONFIG_SMP_NCPUS-1) that
* corresponds to the currently executing CPU.
*
* Input Parameters:
* None
*
* Returned Value:
* An integer index in the range of 0 through (CONFIG_SMP_NCPUS-1) that
* corresponds to the currently executing CPU.
*
****************************************************************************/
#ifdef CONFIG_SMP
noinstrument_function
static inline_function int up_cpu_index(void)
{
uint32_t mpidr;
/* Read the Multiprocessor Affinity Register (MPIDR) */
mpidr = CP15_GET(MPIDR);
/* And return the CPU ID field */
return (mpidr & MPIDR_CPUID_MASK) >> MPIDR_CPUID_SHIFT;
}
#else
# define up_cpu_index() 0
#endif /* CONFIG_SMP */
static inline_function uint32_t up_getsp(void)
{
register uint32_t sp;
__asm__ __volatile__
(
"mov %0, sp\n"
: "=r" (sp)
);
return sp;
}
/****************************************************************************
* Name:
* up_current_regs/up_set_current_regs
*
* Description:
* We use the following code to manipulate the TPIDRPRW register,
* which exists uniquely for each CPU and is primarily designed to store
* current thread information. Currently, we leverage it to store interrupt
* information, with plans to further optimize its use for storing both
* thread and interrupt information in the future.
*
****************************************************************************/
noinstrument_function
static inline_function uint32_t *up_current_regs(void)
{
return (uint32_t *)CP15_GET(TPIDRPRW);
}
noinstrument_function
static inline_function void up_set_current_regs(uint32_t *regs)
{
CP15_SET(TPIDRPRW, regs);
}
noinstrument_function
static inline_function bool up_interrupt_context(void)
{
return up_current_regs() != NULL;
}
/****************************************************************************
* Public Data
****************************************************************************/
#ifdef __cplusplus
#define EXTERN extern "C"
extern "C"
{
#else
#define EXTERN extern
#endif
/****************************************************************************
* Public Function Prototypes
****************************************************************************/
#undef EXTERN
#ifdef __cplusplus
}
#endif
#endif /* __ASSEMBLY__ */
#endif /* __ARCH_ARM_INCLUDE_ARMV7_R_IRQ_H */