nuttx/libs/libm/libm/__cos.c
Xiang Xiao 8b4ecac6c2 libc: Move math library from libs/libc/math to libs/libm/libm
to prepare the support of other implementation e.g.:
https://github.com/JuliaMath/openlibm
https://gitlab.com/gtd-gmbh/libmcs

Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
2023-02-23 10:40:07 +02:00

124 lines
5.1 KiB
C

/****************************************************************************
* libs/libm/libm/__cos.c
*
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* __cos( x, y )
*
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
*
* Algorithm
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
* 3. cos(x) is approximated by a polynomial of degree 14 on
* [0,pi/4]
* 4 14
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
* where the remez error is
*
* | 2 4 6 8 10 12 14 | -58
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
* | |
*
* 4 6 8 10 12 14
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
* cos(x) ~ 1 - x*x/2 + r
* since cos(x+y) ~ cos(x) - sin(x)*y
* ~ cos(x) - x*y,
* a correction term is necessary in cos(x) and hence
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
* For better accuracy, rearrange to
* cos(x+y) ~ w + (tmp + (r-x*y))
* where w = 1 - x*x/2 and tmp is a tiny correction term
* (1 - x*x/2 == w + tmp exactly in infinite precision).
* The exactness of w + tmp in infinite precision depends on w
* and tmp having the same precision as x. If they have extra
* precision due to compiler bugs, then the extra precision is
* only good provided it is retained in all terms of the final
* expression for cos(). Retention happens in all cases tested
* under FreeBSD, so don't pessimize things by forcibly clipping
* any extra precision in w.
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/compiler.h>
#include <sys/types.h>
#include <math.h>
#ifdef CONFIG_HAVE_DOUBLE
/****************************************************************************
* Private Data
****************************************************************************/
static const double g_c1 = 4.16666666666666019037e-02; /* 0x3fa55555, 0x5555554c */
static const double g_c2 = -1.38888888888741095749e-03; /* 0xbf56C16c, 0x16c15177 */
static const double g_c3 = 2.48015872894767294178e-05; /* 0x3efa01a0, 0x19cb1590 */
static const double g_c4 = -2.75573143513906633035e-07; /* 0xbe927e4e, 0x809c52ad */
static const double g_c5 = 2.08757232129817482790e-09; /* 0x3e21ee9E, 0xbdb4b1c4 */
static const double g_c6 = -1.13596475577881948265e-11; /* 0xbda8fae9, 0xbe8838d4 */
/****************************************************************************
* Public Functions
****************************************************************************/
double __cos(double x, double y)
{
double hz;
double z;
double r;
double w;
z = x * x;
w = z * z;
r =
z * (g_c1 + z * (g_c2 + z * g_c3)) +
w * w * (g_c4 + z * (g_c5 + z * g_c6));
hz = 0.5 * z;
w = 1.0 - hz;
return w + (((1.0 - w) - hz) + (z * r - x * y));
}
#endif