nuttx/arch/arm/src/efm32/efm32_serial.c

1363 lines
38 KiB
C

/****************************************************************************
* arch/arm/src/efm32/efm32_serial.c
*
* Copyright (C) 2024 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include <semaphore.h>
#include <string.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/serial/serial.h>
#ifdef CONFIG_SERIAL_TERMIOS
# include <termios.h>
#endif
#include <arch/serial.h>
#include <arch/board/board.h>
#include "up_arch.h"
#include "up_internal.h"
#include "chip/efm32_usart.h"
#include "efm32_config.h"
#include "efm32_gpio.h"
#include "efm32_lowputc.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Some sanity checks *******************************************************/
/* Is there at least one UART enabled and configured as a RS-232 device? */
#ifndef HAVE_UART_DEVICE
# warning "No UARTs enabled"
#endif
/* If we are not using the serial driver for the console, then we still must
* provide some minimal implementation of up_putc.
*/
#ifdef USE_SERIALDRIVER
/* Which UART with be ttyS0/console and which tty1-4? The console will always
* be ttyS0. If there is no console then will use the lowest numbered UART.
*/
/* First pick the console and ttys0. This could be any of USART0-2 or
* UART0-1.
*/
#if defined(CONFIG_USART0_SERIAL_CONSOLE)
# define CONSOLE_DEV g_usart0port /* USART0 is console */
# define TTYS0_DEV g_usart0port /* USART0 is ttyS0 */
# define USART0_ASSIGNED 1
#elif defined(CONFIG_USART1_SERIAL_CONSOLE)
# define CONSOLE_DEV g_usart1port /* USART1 is console */
# define TTYS0_DEV g_usart1port /* USART1 is ttyS0 */
# define USART1_ASSIGNED 1
#elif defined(CONFIG_USART2_SERIAL_CONSOLE)
# define CONSOLE_DEV g_usart2port /* USART2 is console */
# define TTYS0_DEV g_usart2port /* USART2 is ttyS0 */
# define USART2_ASSIGNED 1
#elif defined(CONFIG_UART0_SERIAL_CONSOLE)
# define CONSOLE_DEV g_uart0port /* UART0 is console */
# define TTYS0_DEV g_uart0port /* UART0 is ttyS0 */
# define UART0_ASSIGNED 1
#elif defined(CONFIG_UART1_SERIAL_CONSOLE)
# define CONSOLE_DEV g_uart1port /* UART1 is console */
# define TTYS0_DEV g_uart1port /* UART1 is ttyS0 */
# define UART1_ASSIGNED 1
#else
# undef CONSOLE_DEV /* No console */
# if defined(CONFIG_EFM32_USART0_ISUART)
# define TTYS0_DEV g_usart0port /* USART0 is ttyS0 */
# define USART0_ASSIGNED 1
# elif defined(CONFIG_EFM32_USART1_ISUART)
# define TTYS0_DEV g_usart1port /* USART1 is ttyS0 */
# define USART1_ASSIGNED 1
# elif defined(CONFIG_EFM32_USART2_ISUART)
# define TTYS0_DEV g_usart2port /* USART2 is ttyS0 */
# define USART2_ASSIGNED 1
# elif defined(CONFIG_EFM32_UART0)
# define TTYS0_DEV g_uart0port /* UART0 is ttyS0 */
# define UART0_ASSIGNED 1
# elif defined(CONFIG_EFM32_UART1)
# define TTYS0_DEV g_uart1port /* UART1 is ttyS0 */
# define UART1_ASSIGNED 1
# endif
#endif
/* Pick ttys1. This could be any of USART0-2 or UART0-1, excluding the
* console UART. There are really only 4 unassigned.
*/
#if defined(CONFIG_EFM32_USART0_ISUART) && !defined(USART0_ASSIGNED)
# define TTYS1_DEV g_usart0port /* USART0 is ttyS1 */
# define USART0_ASSIGNED 1
#elif defined(CONFIG_EFM32_USART1_ISUART) && !defined(USART1_ASSIGNED)
# define TTYS1_DEV g_usart1port /* USART1 is ttyS1 */
# define USART1_ASSIGNED 1
#elif defined(CONFIG_EFM32_USART2_ISUART) && !defined(USART2_ASSIGNED)
# define TTYS1_DEV g_usart2port /* USART2 is ttyS1 */
# define USART2_ASSIGNED 1
#elif defined(CONFIG_EFM32_UART0) && !defined(UART0_ASSIGNED)
# define TTYS1_DEV g_uart0port /* UART0 is ttyS1 */
# define UART0_ASSIGNED 1
#elif defined(CONFIG_EFM32_UART1) && !defined(UART1_ASSIGNED)
# define TTYS1_DEV g_uart1port /* UART1 is ttyS1 */
# define UART1_ASSIGNED 1
#endif
/* Pick ttys2. This could be one of USART1-5 or UART0-1. It can't be USART0
* because that was either assigned as ttyS0 or ttys1. One of these could
* also be the console. There are really only 3 unassigned.
*/
#if defined(CONFIG_EFM32_USART1_ISUART) && !defined(USART1_ASSIGNED)
# define TTYS2_DEV g_usart1port /* USART1 is ttyS2 */
# define USART1_ASSIGNED 1
#elif defined(CONFIG_EFM32_USART2_ISUART) && !defined(USART2_ASSIGNED)
# define TTYS2_DEV g_usart2port /* USART2 is ttyS2 */
# define USART2_ASSIGNED 1
#elif defined(CONFIG_EFM32_UART0) && !defined(UART0_ASSIGNED)
# define TTYS2_DEV g_uart0port /* UART0 is ttyS2 */
# define UART0_ASSIGNED 1
#elif defined(CONFIG_EFM32_UART1) && !defined(UART1_ASSIGNED)
# define TTYS2_DEV g_uart1port /* UART1 is ttyS2 */
# define UART1_ASSIGNED 1
#endif
/* Pick ttys3. This could be one of UART2 or UART0-1. It can't be USART0-1
* because those have already been assigned to ttsyS0, 1, or 2. One of
* these could also be the console. There are really only 2 unassigned.
*/
#if defined(CONFIG_EFM32_USART2_ISUART) && !defined(USART2_ASSIGNED)
# define TTYS3_DEV g_usart2port /* USART2 is ttyS3 */
# define USART2_ASSIGNED 1
#elif defined(CONFIG_EFM32_UART0) && !defined(UART0_ASSIGNED)
# define TTYS3_DEV g_uart0port /* UART0 is ttyS3 */
# define UART0_ASSIGNED 1
#elif defined(CONFIG_EFM32_UART1) && !defined(UART1_ASSIGNED)
# define TTYS3_DEV g_uart1port /* UART1 is ttyS3 */
# define UART1_ASSIGNED 1
#endif
/* Pick ttys4. This could be one of UART0-1. It can't be USART0-2 because
* those have already been assigned to ttsyS0, 1, 2, or 3. One of
* these could also be the console. There is really only 1 unassigned.
*/
#if defined(CONFIG_EFM32_UART0) && !defined(UART0_ASSIGNED)
# define TTYS4_DEV g_uart0port /* UART0 is ttyS4 */
# define UART0_ASSIGNED 1
#elif defined(CONFIG_EFM32_UART1) && !defined(UART1_ASSIGNED)
# define TTYS4_DEV g_uart1port /* UART1 is ttyS4 */
# define UART1_ASSIGNED 1
#endif
/* TX/RX interrupts */
#define EFM32_TXERR_INTS (USART_IEN_TXOF)
#define EFM32_RXERR_INTS (USART_IEN_RXOF | USART_IEN_RXUF | \
USART_IEN_PERR | USART_IEN_FERR)
#ifdef CONFIG_DEBUG
# define EFM32_TX_INTS (USART_IEN_TXBL | EFM32_TXERR_INTS)
# define EFM32_RX_INTS (USART_IEN_RXDATAV | EFM32_RXERR_INTS)
#else
# define EFM32_TX_INTS USART_IEN_TXBL
# define EFM32_RX_INTS USART_IEN_RXDATAV
#endif
/****************************************************************************
* Private Types
****************************************************************************/
struct efm32_config_s
{
uintptr_t uartbase; /* Base address of UART registers */
xcpt_t rxhandler; /* RX interrupt handler */
xcpt_t txhandler; /* TX interrupt handler */
uint32_t baud; /* Configured baud */
uint8_t rxirq; /* RX IRQ associated with this UART (for enable) */
uint8_t txirq; /* TX IRQ associated with this UART (for enable) */
uint8_t parity; /* 0=none, 1=odd, 2=even */
uint8_t bits; /* Number of bits (8 or 9) */
bool stop2; /* True: 2 stop bits */
};
struct efm32_usart_s
{
#ifdef CONFIG_SERIAL_TERMIOS
struct efm32_config_s *config;
#else
const struct efm32_config_s *config;
#endif
uint16_t ien; /* Interrupts enabled */
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
static inline uint32_t efm32_serialin(struct efm32_usart_s *priv, int offset);
static inline void efm32_serialout(struct efm32_usart_s *priv, int offset,
uint32_t value);
static inline void efm32_setuartint(struct efm32_usart_s *priv);
static void efm32_restoreuartint(struct efm32_usart_s *priv, uint32_t ien);
#ifdef HAVE_UART_CONSOLE
static void efm32_disableuartint(struct efm32_usart_s *priv, uint32_t *ien);
#endif
static int efm32_setup(struct uart_dev_s *dev);
static void efm32_shutdown(struct uart_dev_s *dev);
static int efm32_attach(struct uart_dev_s *dev);
static void efm32_detach(struct uart_dev_s *dev);
static int efm32_rxinterrupt(struct uart_dev_s *dev);
#if defined(CONFIG_EFM32_USART0_ISUART)
static int efm32_usart0_rxinterrupt(int irq, void *context);
#endif
#if defined(CONFIG_EFM32_USART1_ISUART)
static int efm32_usart1_rxinterrupt(int irq, void *context);
#endif
#if defined(CONFIG_EFM32_USART2_ISUART)
static int efm32_usart2_rxinterrupt(int irq, void *context);
#endif
#if defined(CONFIG_EFM32_UART0)
static int efm32_uart0_rxinterrupt(int irq, void *context);
#endif
#if defined(CONFIG_EFM32_UART1)
static int efm32_uart1_rxinterrupt(int irq, void *context);
#endif
static int efm32_txinterrupt(struct uart_dev_s *dev);
#if defined(CONFIG_EFM32_USART0_ISUART)
static int efm32_usart0_txinterrupt(int irq, void *context);
#endif
#if defined(CONFIG_EFM32_USART1_ISUART)
static int efm32_usart1_txinterrupt(int irq, void *context);
#endif
#if defined(CONFIG_EFM32_USART2_ISUART)
static int efm32_usart2_txinterrupt(int irq, void *context);
#endif
#if defined(CONFIG_EFM32_UART0)
static int efm32_uart0_txinterrupt(int irq, void *context);
#endif
#if defined(CONFIG_EFM32_UART1)
static int efm32_uart1_txinterrupt(int irq, void *context);
#endif
static int efm32_ioctl(struct file *filep, int cmd, unsigned long arg);
static int efm32_receive(struct uart_dev_s *dev, uint32_t *status);
static void efm32_rxint(struct uart_dev_s *dev, bool enable);
static bool efm32_rxavailable(struct uart_dev_s *dev);
static void efm32_send(struct uart_dev_s *dev, int ch);
static void efm32_txint(struct uart_dev_s *dev, bool enable);
static bool efm32_txready(struct uart_dev_s *dev);
static bool efm32_txempty(struct uart_dev_s *dev);
/****************************************************************************
* Private Variables
****************************************************************************/
static const struct uart_ops_s g_uart_ops =
{
.setup = efm32_setup,
.shutdown = efm32_shutdown,
.attach = efm32_attach,
.detach = efm32_detach,
.ioctl = efm32_ioctl,
.receive = efm32_receive,
.rxint = efm32_rxint,
.rxavailable = efm32_rxavailable,
#ifdef CONFIG_SERIAL_IFLOWCONTROL
.rxflowcontrol = NULL,
#endif
.send = efm32_send,
.txint = efm32_txint,
.txready = efm32_txready,
.txempty = efm32_txempty,
};
/* I/O buffers */
#ifdef CONFIG_EFM32_USART0_ISUART
static char g_usart0rxbuffer[CONFIG_USART0_RXBUFSIZE];
static char g_usart0txbuffer[CONFIG_USART0_TXBUFSIZE];
#endif
#ifdef CONFIG_EFM32_USART1_ISUART
static char g_usart1rxbuffer[CONFIG_USART1_RXBUFSIZE];
static char g_usart1txbuffer[CONFIG_USART1_TXBUFSIZE];
#endif
#ifdef CONFIG_EFM32_USART2_ISUART
static char g_usart2rxbuffer[CONFIG_USART2_RXBUFSIZE];
static char g_usart2txbuffer[CONFIG_USART2_TXBUFSIZE];
#endif
#ifdef CONFIG_EFM32_UART0
static char g_uart0rxbuffer[CONFIG_UART0_RXBUFSIZE];
static char g_uart0txbuffer[CONFIG_UART0_TXBUFSIZE];
#endif
#ifdef CONFIG_EFM32_UART1
static char g_uart1rxbuffer[CONFIG_UART1_RXBUFSIZE];
static char g_uart1txbuffer[CONFIG_UART1_TXBUFSIZE];
#endif
/* This describes the state of the EFM32 USART0 port. */
#ifdef CONFIG_EFM32_USART0_ISUART
static const struct efm32_usart_s g_usart0config =
{
.uartbase = EFM32_USART0_BASE,
.rxhandler = efm32_usart0_rxinterrupt,
.txhandler = efm32_usart0_txinterrupt,
.baud = CONFIG_USART0_BAUD,
.rxirq = EFM32_IRQ_USART0_RX,
.txirq = EFM32_IRQ_USART0_TX,
.parity = CONFIG_USART0_PARITY,
.bits = CONFIG_USART0_BITS,
.stop2 = CONFIG_USART0_2STOP,
};
static struct efm32_usart_s g_usart0priv =
{
.config = &g_usart0config,
};
static struct uart_dev_s g_usart0port =
{
.recv =
{
.size = CONFIG_USART0_RXBUFSIZE,
.buffer = g_usart0rxbuffer,
},
.xmit =
{
.size = CONFIG_USART0_TXBUFSIZE,
.buffer = g_usart0txbuffer,
},
.ops = &g_uart_ops,
.priv = &g_usart0priv,
};
#endif
/* This describes the state of the EFM32 USART1 port. */
#ifdef CONFIG_EFM32_USART1_ISUART
static struct efm32_config_s g_usart1config =
{
.uartbase = EFM32_USART1_BASE,
.rxhandler = efm32_usart1_rxinterrupt,
.rxhandler = efm32_usart1_txinterrupt,
.baud = CONFIG_USART1_BAUD,
.rxirq = EFM32_IRQ_USART1_RX,
.txirq = EFM32_IRQ_USART1_TX,
.parity = CONFIG_USART1_PARITY,
.bits = CONFIG_USART1_BITS,
.stop2 = CONFIG_USART1_2STOP,
};
static struct efm32_usart_s g_usart1priv =
{
.config = &g_usart1config,
};
static struct uart_dev_s g_usart1port =
{
.recv =
{
.size = CONFIG_USART1_RXBUFSIZE,
.buffer = g_usart1rxbuffer,
},
.xmit =
{
.size = CONFIG_USART1_TXBUFSIZE,
.buffer = g_usart1txbuffer,
},
.ops = &g_uart_ops,
.priv = &g_usart1priv,
};
#endif
/* This describes the state of the EFM32 USART2 port. */
#ifdef CONFIG_EFM32_USART2_ISUART
static struct efm32_config_s g_usart2config =
{
.uartbase = EFM32_USART2_BASE,
.rxhandler = efm32_usart2_rxinterrupt,
.txhandler = efm32_usart2_txinterrupt,
.baud = CONFIG_USART2_BAUD,
.rxirq = EFM32_IRQ_USART2_RX,
.txirq = EFM32_IRQ_USART2_TX,
.parity = CONFIG_USART2_PARITY,
.bits = CONFIG_USART2_BITS,
.stop2 = CONFIG_USART2_2STOP,
};
static struct efm32_usart_s g_usart2priv =
{
.config = &g_usart2config,
};
static struct uart_dev_s g_usart2port =
{
.recv =
{
.size = CONFIG_USART2_RXBUFSIZE,
.buffer = g_usart2rxbuffer,
},
.xmit =
{
.size = CONFIG_USART2_TXBUFSIZE,
.buffer = g_usart2txbuffer,
},
.ops = &g_uart_ops,
.priv = &g_usart2priv,
};
#endif
/* This describes the state of the EFM32 UART0 port. */
#ifdef CONFIG_EFM32_UART0
static struct efm32_config_s g_uart0config =
{
.uartbase = EFM32_UART0_BASE,
.rxhandler = efm32_uart0_rxinterrupt,
.txhandler = efm32_uart0_txinterrupt,
.baud = CONFIG_UART0_BAUD,
.rxirq = EFM32_IRQ_UART0_RX,
.txirq = EFM32_IRQ_UART0_TX,
.parity = CONFIG_UART0_PARITY,
.bits = CONFIG_UART0_BITS,
.stop2 = CONFIG_UART0_2STOP,
};
static struct efm32_usart_s g_uart0priv =
{
.config = &g_uart0config,
};
static struct uart_dev_s g_uart0port =
{
.recv =
{
.size = CONFIG_UART0_RXBUFSIZE,
.buffer = g_uart0rxbuffer,
},
.xmit =
{
.size = CONFIG_UART0_TXBUFSIZE,
.buffer = g_uart0txbuffer,
},
.ops = &g_uart_ops,
.priv = &g_uart0priv,
};
#endif
/* This describes the state of the EFM32 UART1 port. */
#ifdef CONFIG_EFM32_UART1
static struct efm32_usart_s g_uart1config =
{
.uartbase = EFM32_UART1_BASE,
.rxhandler = efm32_uart1_rxinterrupt,
.txhandler = efm32_uart1_txinterrupt,
.baud = CONFIG_UART1_BAUD,
.rxirq = EFM32_IRQ_UART1_RX,
.txirq = EFM32_IRQ_UART1_TX,
.parity = CONFIG_UART1_PARITY,
.bits = CONFIG_UART1_BITS,
.stop2 = CONFIG_UART1_2STOP,
};
static struct efm32_usart_s g_uart1priv =
{
.config = &g_uart1config,
};
static struct uart_dev_s g_uart1port =
{
.recv =
{
.size = CONFIG_UART1_RXBUFSIZE,
.buffer = g_uart1rxbuffer,
},
.xmit =
{
.size = CONFIG_UART1_TXBUFSIZE,
.buffer = g_uart1txbuffer,
},
.ops = &g_uart_ops,
.priv = &g_uart1priv,
};
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: efm32_serialin
****************************************************************************/
static inline uint32_t efm32_serialin(struct efm32_usart_s *priv, int offset)
{
return getreg32(priv->config->uartbase + offset);
}
/****************************************************************************
* Name: efm32_serialout
****************************************************************************/
static inline void efm32_serialout(struct efm32_usart_s *priv, int offset,
uint32_t value)
{
putreg32(value, priv->config->uartbase + offset);
}
/****************************************************************************
* Name: efm32_setuartint
****************************************************************************/
static inline void efm32_setuartint(struct efm32_usart_s *priv)
{
efm32_serialout(priv, EFM32_USART_IEN_OFFSET, priv->ien);
}
/****************************************************************************
* Name: efm32_restoreuartint
****************************************************************************/
static void efm32_restoreuartint(struct efm32_usart_s *priv, uint32_t ien)
{
irqstate_t flags;
/* Re-enable/re-disable interrupts corresponding to the state of bits in ien */
flags = enter_critical_section();
priv->ien = ien;
efm32_setuartint(priv);
leave_critical_section(flags);
}
/****************************************************************************
* Name: efm32_disableuartint
****************************************************************************/
#if defined(HAVE_UART_CONSOLE) || defined(CONFIG_SERIAL_TERMIOS)
static void efm32_disableuartint(struct efm32_usart_s *priv, uint32_t *ien)
{
irqstate_t flags;
flags = enter_critical_section();
if (ien)
{
*ien = priv->ien;
}
efm32_restoreuartint(priv, 0);
leave_critical_section(flags);
}
#endif
/****************************************************************************
* Name: efm32_setup
*
* Description:
* Configure the UART baud, bits, parity, etc. This method is called the
* first time that the serial port is opened.
*
****************************************************************************/
static int efm32_setup(struct uart_dev_s *dev)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
uint32_t regval;
#ifndef CONFIG_SUPPRESS_UART_CONFIG
const struct efm32_config_s *config = priv->config;
/* Configure the UART as an RS-232 UART */
efm32_uartconfigure(config->uartbase, config->baud, config->parity,
config->bits, config->stop2);
#endif
/* Make sure that all interrupts are disabled */
efm32_restoreuartint(priv, 0);
/* Set the TXIL bit in the USART CTRL register. This will cause TXBL
* interrupts when the TX buffer is half full.
*/
regval = efm32_serialin(priv, EFM32_USART_CTRL_OFFSET);
regval |= USART_CTRL_TXBIL_HALFFULL;
efm32_serialout(priv, EFM32_USART_CTRL_OFFSET, regval);
return OK;
}
/****************************************************************************
* Name: efm32_shutdown
*
* Description:
* Disable the UART. This method is called when the serial
* port is closed
*
****************************************************************************/
static void efm32_shutdown(struct uart_dev_s *dev)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
/* Disable interrupts */
efm32_restoreuartint(priv, 0);
/* Reset the USART/UART by disabling it and restoring all of the registers
* to the initial, reset value. Only the ROUTE data set by efm32_lowsetup
* is preserved.
*/
efm32_uart_reset(priv->config->uartbase);
}
/****************************************************************************
* Name: efm32_attach
*
* Description:
* Configure the UART to operation in interrupt driven mode. This method is
* called when the serial port is opened. Normally, this is just after the
* the setup() method is called, however, the serial console may operate in
* a non-interrupt driven mode during the boot phase.
*
* RX and TX interrupts are not enabled when by the attach method (unless the
* hardware supports multiple levels of interrupt enabling). The RX and TX
* interrupts are not enabled until the txint() and rxint() methods are called.
*
****************************************************************************/
static int efm32_attach(struct uart_dev_s *dev)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
const struct efm32_config_s *config = priv->config;
int ret;
/* Attach and enable the IRQ(s). The interrupts are (probably) still
* disabled in the C2 register.
*/
ret = irq_attach(config->rxirq, config->rxhandler);
if (ret < 0)
{
return ret;
}
ret = irq_attach(config->txirq, config->txhandler);
if (ret < 0)
{
irq_detach(config->rxirq);
return ret;
}
up_enable_irq(config->rxirq);
up_enable_irq(config->txirq);
return ret;
}
/****************************************************************************
* Name: efm32_detach
*
* Description:
* Detach UART interrupts. This method is called when the serial port is
* closed normally just before the shutdown method is called. The exception
* is the serial console which is never shutdown.
*
****************************************************************************/
static void efm32_detach(struct uart_dev_s *dev)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
const struct efm32_config_s *config = priv->config;
/* Disable interrupts */
efm32_restoreuartint(priv, 0);
up_disable_irq(config->rxirq);
up_disable_irq(config->txirq);
/* Detach from the interrupt(s) */
irq_detach(config->rxirq);
irq_detach(config->txirq);
}
/****************************************************************************
* Name: efm32_rxinterrupt
*
* Description:
* This is the common UART RX interrupt handler.
*
****************************************************************************/
static int efm32_rxinterrupt(struct uart_dev_s *dev)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
uint32_t intflags;
DEBUGASSERT(priv);
/* Read the interrupt flags register */
intflags = efm32_serialin(priv, EFM32_USART_IF_OFFSET);
/* Clear pending interrupts by writing to the interrupt flag clear
* register.
*/
efm32_serialout(priv, EFM32_USART_IFC_OFFSET, intflags & EFM32_RX_INTS);
/* Check if the receive data is available is full (RXDATAV). */
if ((intflags & USART_IEN_RXDATAV) != 0)
{
/* Process incoming bytes */
uart_recvchars(dev);
}
#ifdef CONFIG_DEBUG
/* Check for receive errors */
if ((intflags & EFM32_RXERR_INTS) != 0)
{
/* RXOF - RX Overflow Interrupt Enable
* RXUF - RX Underflow Interrupt Enable
* TXUF - TX Underflow Interrupt Enable
* PERR - Parity Error Interrupt Enable
* FERR - Framing Error Interrupt Enable
*/
lldbg("RX ERROR: %08x\n", intflags);
}
#endif
return OK;
}
#if defined(CONFIG_EFM32_USART0_ISUART)
static int efm32_usart0_rxinterrupt(int irq, void *context)
{
return efm32_rxinterrupt(&g_usart0port);
}
#endif
#if defined(CONFIG_EFM32_USART1_ISUART)
static int efm32_usart1_rxinterrupt(int irq, void *context)
{
return efm32_rxinterrupt(&g_usart1port);
}
#endif
#if defined(CONFIG_EFM32_USART2_ISUART)
static int efm32_usart2_rxinterrupt(int irq, void *context)
{
return efm32_rxinterrupt(&g_usart2port);
}
#endif
#if defined(CONFIG_EFM32_UART0)
static int efm32_uart0_rxinterrupt(int irq, void *context)
{
return efm32_rxinterrupt(&g_uart0port);
}
#endif
#if defined(CONFIG_EFM32_UART1)
static int efm32_uart1_rxinterrupt(int irq, void *context)
{
return efm32_rxinterrupt(&g_uart1port);
}
#endif
/****************************************************************************
* Name: efm32_txinterrupt
*
* Description:
* This is the common UART TX interrupt handler.
*
****************************************************************************/
static int efm32_txinterrupt(struct uart_dev_s *dev)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
uint32_t intflags;
DEBUGASSERT(priv);
/* Read the interrupt flags register */
intflags = efm32_serialin(priv, EFM32_USART_IF_OFFSET);
/* Clear pending interrupts by writing to the interrupt flag clear
* register. We won't clear RX errors until they have been reported.
*/
efm32_serialout(priv, EFM32_USART_IFC_OFFSET, intflags & EFM32_TX_INTS);
/* Check if the transmit data buffer became half full */
if ((intflags & USART_IEN_TXBL) != 0)
{
/* Process outgoing bytes */
uart_xmitchars(dev);
}
#ifdef CONFIG_DEBUG
/* Check for transmit errors */
if ((intflags & EFM32_TXERR_INTS) != 0)
{
/* TXOF - TX Overflow Interrupt Enable */
lldbg("RX ERROR: %08x\n", intflags);
}
#endif
return OK;
}
#if defined(CONFIG_EFM32_USART0_ISUART)
static int efm32_usart0_txinterrupt(int irq, void *context)
{
return efm32_txinterrupt(&g_usart0port);
}
#endif
#if defined(CONFIG_EFM32_USART1_ISUART)
static int efm32_usart1_txinterrupt(int irq, void *context)
{
return efm32_txinterrupt(&g_usart1port);
}
#endif
#if defined(CONFIG_EFM32_USART2_ISUART)
static int efm32_usart2_txinterrupt(int irq, void *context)
{
return efm32_txinterrupt(&g_usart2port);
}
#endif
#if defined(CONFIG_EFM32_UART0)
static int efm32_uart0_txinterrupt(int irq, void *context)
{
return efm32_txinterrupt(&g_uart0port);
}
#endif
#if defined(CONFIG_EFM32_UART1)
static int efm32_uart1_txinterrupt(int irq, void *context)
{
return efm32_txinterrupt(&g_uart1port);
}
#endif
/****************************************************************************
* Name: efm32_ioctl
*
* Description:
* All ioctl calls will be routed through this method
*
****************************************************************************/
static int efm32_ioctl(struct file *filep, int cmd, unsigned long arg)
{
struct inode *inode;
struct uart_dev_s *dev;
#ifdef CONFIG_SERIAL_TERMIOS
struct efm32_usart_s *priv;
#endif
int ret = OK;
DEBUGASSERT(filep);
DEBUGASSERT(filep->f_inode);
inode = filep->f_inode;
dev = inode->i_private;
DEBUGASSERT(dev);
DEBUGASSERT(dev->priv);
#ifdef CONFIG_SERIAL_TERMIOS
priv = (struct efm32_usart_s *)dev->priv;
#endif
switch (cmd)
{
#ifdef CONFIG_SERIAL_TERMIOS
case TCGETS:
{
struct termios *termiosp = (struct termios *)arg;
if (!termiosp)
{
ret = -EINVAL;
break;
}
cfsetispeed(termiosp, priv->config->baud);
/* Note that since we only support 8/9 bit modes and
* there is no way to report 9-bit mode, we always claim 8.
*/
termiosp->c_cflag = CS8;
/* TODO: PARENB, PARODD, CSTOPB, CCTS_IFLOW, CCTS_OFLOW */
}
break;
case TCSETS:
{
struct termios *termiosp = (struct termios *)arg;
if (!termiosp)
{
ret = -EINVAL;
break;
}
/* Perform some sanity checks before accepting any changes */
if (((termiosp->c_cflag & CSIZE) != CS8)
#ifdef CONFIG_SERIAL_IFLOWCONTROL
|| ((termiosp->c_cflag & CCTS_OFLOW) && (priv->cts_gpio == 0))
#endif
#ifdef CONFIG_SERIAL_IFLOWCONTROL
|| ((termiosp->c_cflag & CRTS_IFLOW) && (priv->rts_gpio == 0))
#endif
)
{
ret = -EINVAL;
break;
}
/* TODO : PARENB, PARODD, CSTOPB, CCTS_OFLOW, CCTS_IFLOW */
#if 0
if (termiosp->c_cflag & PARENB)
{
priv->parity = (termiosp->c_cflag & PARODD) ? 1 : 2;
}
else
{
priv->parity = 0;
}
priv->stopbits2 = (termiosp->c_cflag & CSTOPB) != 0;
#ifdef CONFIG_SERIAL_OFLOWCONTROL
priv->oflow = (termiosp->c_cflag & CCTS_OFLOW) != 0;
#endif
#ifdef CONFIG_SERIAL_IFLOWCONTROL
priv->iflow = (termiosp->c_cflag & CRTS_IFLOW) != 0;
#endif
#endif
/* Note that only cfgetispeed is used because we have knowledge
* that only one speed is supported.
*/
{
uint32_t ien;
struct efm32_config_s *config = priv->config;
config->baud = cfgetispeed(termiosp);
/* Just speed is yet implemented */
efm32_disableuartint(priv, &ien);
efm32_uartconfigure(config->uartbase, config->baud, config->parity,
config->bits, config->stop2);
efm32_restoreuartint(priv, ien);
}
}
break;
#endif
default:
ret = -ENOTTY;
break;
}
return ret;
}
/****************************************************************************
* Name: efm32_receive
*
* Description:
* Called (usually) from the interrupt level to receive one
* character from the UART. Error bits associated with the
* receipt are provided in the return 'status'.
*
****************************************************************************/
static int efm32_receive(struct uart_dev_s *dev, uint32_t *status)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
uint32_t rxdatax;
/* Get error status information:
*
* FERR Data Framing Error
* PERR Data Parity Error
*/
rxdatax = efm32_serialin(priv, EFM32_USART_RXDATAX_OFFSET);
/* Return status information */
if (status)
{
*status = rxdatax;
}
/* Then return the actual received byte. */
return (int)(rxdatax & _USART_RXDATAX_RXDATA_MASK);
}
/****************************************************************************
* Name: efm32_rxint
*
* Description:
* Call to enable or disable RX interrupts
*
****************************************************************************/
static void efm32_rxint(struct uart_dev_s *dev, bool enable)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
irqstate_t flags;
flags = enter_critical_section();
if (enable)
{
/* Receive an interrupt when their is anything in the Rx data register (or an Rx
* timeout occurs).
*/
#ifndef CONFIG_SUPPRESS_SERIAL_INTS
priv->ien |= EFM32_RX_INTS;
efm32_setuartint(priv);
#endif
}
else
{
priv->ien &= ~EFM32_RX_INTS;
efm32_setuartint(priv);
}
leave_critical_section(flags);
}
/****************************************************************************
* Name: efm32_rxavailable
*
* Description:
* Return true if the receive register is not empty
*
****************************************************************************/
static bool efm32_rxavailable(struct uart_dev_s *dev)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
/* Return true if the receive data is available (RXDATAV). */
return (efm32_serialin(priv, EFM32_USART_STATUS_OFFSET) & USART_STATUS_RXDATAV) != 0;
}
/****************************************************************************
* Name: efm32_send
*
* Description:
* This method will send one byte on the UART.
*
****************************************************************************/
static void efm32_send(struct uart_dev_s *dev, int ch)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
efm32_serialout(priv, EFM32_USART_TXDATA_OFFSET, (uint32_t)ch);
}
/****************************************************************************
* Name: efm32_txint
*
* Description:
* Call to enable or disable TX interrupts
*
****************************************************************************/
static void efm32_txint(struct uart_dev_s *dev, bool enable)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
irqstate_t flags;
flags = enter_critical_section();
if (enable)
{
/* Enable the TX interrupt */
#ifndef CONFIG_SUPPRESS_SERIAL_INTS
priv->ien |= EFM32_TX_INTS;
efm32_setuartint(priv);
/* Fake a TX interrupt here by just calling uart_xmitchars() with
* interrupts disabled (note this may recurse).
*/
uart_xmitchars(dev);
#endif
}
else
{
/* Disable the TX interrupt */
priv->ien &= ~EFM32_TX_INTS;
efm32_setuartint(priv);
}
leave_critical_section(flags);
}
/****************************************************************************
* Name: efm32_txready
*
* Description:
* Return true if the transmit data register is not full
*
****************************************************************************/
static bool efm32_txready(struct uart_dev_s *dev)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
/* The TX Buffer Level (TXBL) status bit indicates the level of the
* transmit buffer. If TXBIL is set, TXBL is set whenever the transmit
* buffer is half-full or empty.
*/
return (efm32_serialin(priv, EFM32_USART_STATUS_OFFSET) & USART_STATUS_TXBL) != 0;
}
/****************************************************************************
* Name: efm32_txempty
*
* Description:
* Return true if the transmit data register is empty
*
****************************************************************************/
static bool efm32_txempty(struct uart_dev_s *dev)
{
struct efm32_usart_s *priv = (struct efm32_usart_s *)dev->priv;
/* TX Complete (TXC) is set when a transmission has completed and no more
* data is available in the transmit buffer.
*/
return (efm32_serialin(priv, EFM32_USART_STATUS_OFFSET) & USART_STATUS_TXC) != 0;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: up_earlyserialinit
*
* Description:
* Performs the low level UART initialization early in debug so that the
* serial console will be available during bootup. This must be called
* before up_serialinit. NOTE: This function depends on GPIO pin
* configuration performed in efm32_consoleinit() and main clock iniialization
* performed in efm32_clkinitialize().
*
****************************************************************************/
#ifdef USE_EARLYSERIALINIT
void up_earlyserialinit(void)
{
/* Disable interrupts from all UARTS. The console is enabled in
* pic32mx_consoleinit()
*/
efm32_restoreuartint(TTYS0_DEV.priv, 0);
#ifdef TTYS1_DEV
efm32_restoreuartint(TTYS1_DEV.priv, 0);
#endif
#ifdef TTYS2_DEV
efm32_restoreuartint(TTYS2_DEV.priv, 0);
#endif
#ifdef TTYS3_DEV
efm32_restoreuartint(TTYS3_DEV.priv, 0);
#endif
#ifdef TTYS4_DEV
efm32_restoreuartint(TTYS4_DEV.priv, 0);
#endif
/* Configuration whichever one is the console */
#ifdef CONSOLE_DEV
CONSOLE_DEV.isconsole = true;
efm32_setup(&CONSOLE_DEV);
#endif
}
#endif
/****************************************************************************
* Name: up_serialinit
*
* Description:
* Register serial console and serial ports. This assumes that
* up_earlyserialinit was called previously.
*
****************************************************************************/
void up_serialinit(void)
{
/* Register the console */
#ifdef CONSOLE_DEV
(void)uart_register("/dev/console", &CONSOLE_DEV);
#endif
/* Register all UARTs */
(void)uart_register("/dev/ttyS0", &TTYS0_DEV);
#ifdef TTYS1_DEV
(void)uart_register("/dev/ttyS1", &TTYS1_DEV);
#endif
#ifdef TTYS2_DEV
(void)uart_register("/dev/ttyS2", &TTYS2_DEV);
#endif
#ifdef TTYS3_DEV
(void)uart_register("/dev/ttyS3", &TTYS3_DEV);
#endif
#ifdef TTYS4_DEV
(void)uart_register("/dev/ttyS4", &TTYS4_DEV);
#endif
}
/****************************************************************************
* Name: up_putc
*
* Description:
* Provide priority, low-level access to support OS debug writes
*
****************************************************************************/
#ifndef HAVE_LEUART_CONSOLE
int up_putc(int ch)
{
#ifdef HAVE_UART_CONSOLE
struct efm32_usart_s *priv = (struct efm32_usart_s *)CONSOLE_DEV.priv;
uint32_t ien;
efm32_disableuartint(priv, &ien);
/* Check for LF */
if (ch == '\n')
{
/* Add CR */
efm32_lowputc('\r');
}
efm32_lowputc(ch);
efm32_restoreuartint(priv, ien);
#endif
return ch;
}
#endif
#else /* USE_SERIALDRIVER */
/****************************************************************************
* Name: up_putc
*
* Description:
* Provide priority, low-level access to support OS debug writes
*
****************************************************************************/
#ifndef HAVE_LEUART_CONSOLE
int up_putc(int ch)
{
#ifdef HAVE_UART_CONSOLE
/* Check for LF */
if (ch == '\n')
{
/* Add CR */
efm32_lowputc('\r');
}
efm32_lowputc(ch);
#endif
return ch;
}
#endif
#endif /* USE_SERIALDRIVER */