nuttx/arch/arm/src/common/arm_vfork.c
chao.an a770ff2017 arm/vfork: update the SP to stack top
Signed-off-by: chao.an <anchao@xiaomi.com>
2022-03-23 19:08:37 +09:00

238 lines
8.3 KiB
C

/****************************************************************************
* arch/arm/src/common/arm_vfork.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <inttypes.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/sched.h>
#include <nuttx/arch.h>
#include <arch/irq.h>
#include "arm_vfork.h"
#include "arm_internal.h"
#include "sched/sched.h"
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: up_vfork
*
* Description:
* The vfork() function has the same effect as fork(), except that the
* behavior is undefined if the process created by vfork() either modifies
* any data other than a variable of type pid_t used to store the return
* value from vfork(), or returns from the function in which vfork() was
* called, or calls any other function before successfully calling _exit()
* or one of the exec family of functions.
*
* The overall sequence is:
*
* 1) User code calls vfork(). vfork() collects context information and
* transfers control up up_vfork().
* 2) up_vfork() and calls nxtask_setup_vfork().
* 3) nxtask_setup_vfork() allocates and configures the child task's TCB.
* This consists of:
* - Allocation of the child task's TCB.
* - Initialization of file descriptors and streams
* - Configuration of environment variables
* - Allocate and initialize the stack
* - Setup the input parameters for the task.
* - Initialization of the TCB (including call to up_initial_state())
* 4) up_vfork() provides any additional operating context. up_vfork must:
* - Initialize special values in any CPU registers that were not
* already configured by up_initial_state()
* 5) up_vfork() then calls nxtask_start_vfork()
* 6) nxtask_start_vfork() then executes the child thread.
*
* nxtask_abort_vfork() may be called if an error occurs between steps 3 and
* 6.
*
* Input Parameters:
* context - Caller context information saved by vfork()
*
* Returned Value:
* Upon successful completion, vfork() returns 0 to the child process and
* returns the process ID of the child process to the parent process.
* Otherwise, -1 is returned to the parent, no child process is created,
* and errno is set to indicate the error.
*
****************************************************************************/
pid_t up_vfork(const struct vfork_s *context)
{
struct tcb_s *parent = this_task();
struct task_tcb_s *child;
uint32_t newsp;
uint32_t newfp;
uint32_t newtop;
uint32_t stacktop;
uint32_t stackutil;
sinfo("vfork context [%p]:\n", context);
sinfo(" r4:%08" PRIx32 " r5:%08" PRIx32
" r6:%08" PRIx32 " r7:%08" PRIx32 "\n",
context->r4, context->r5, context->r6, context->r7);
sinfo(" r8:%08" PRIx32 " r9:%08" PRIx32 " r10:%08" PRIx32 "\n",
context->r8, context->r9, context->r10);
sinfo(" fp:%08" PRIx32 " sp:%08" PRIx32 " lr:%08" PRIx32 "\n",
context->fp, context->sp, context->lr);
/* Allocate and initialize a TCB for the child task. */
child = nxtask_setup_vfork((start_t)(context->lr & ~1));
if (!child)
{
serr("ERROR: nxtask_setup_vfork failed\n");
return (pid_t)ERROR;
}
sinfo("TCBs: Parent=%p Child=%p\n", parent, child);
/* How much of the parent's stack was utilized? The ARM uses
* a push-down stack so that the current stack pointer should
* be lower than the initial, adjusted stack pointer. The
* stack usage should be the difference between those two.
*/
stacktop = (uint32_t)parent->stack_base_ptr +
parent->adj_stack_size;
DEBUGASSERT(stacktop > context->sp);
stackutil = stacktop - context->sp;
sinfo("Parent: stackutil:%" PRIu32 "\n", stackutil);
/* Make some feeble effort to preserve the stack contents. This is
* feeble because the stack surely contains invalid pointers and other
* content that will not work in the child context. However, if the
* user follows all of the caveats of vfork() usage, even this feeble
* effort is overkill.
*/
newtop = (uint32_t)child->cmn.stack_base_ptr +
child->cmn.adj_stack_size;
newsp = newtop - stackutil;
/* Move the register context to newtop. */
memcpy((void *)(newsp - XCPTCONTEXT_SIZE),
child->cmn.xcp.regs, XCPTCONTEXT_SIZE);
child->cmn.xcp.regs = (void *)(newsp - XCPTCONTEXT_SIZE);
memcpy((void *)newsp, (const void *)context->sp, stackutil);
/* Was there a frame pointer in place before? */
if (context->fp >= context->sp && context->fp < stacktop)
{
uint32_t frameutil = stacktop - context->fp;
newfp = newtop - frameutil;
}
else
{
newfp = context->fp;
}
sinfo("Old stack top:%08" PRIx32 " SP:%08" PRIx32 " FP:%08" PRIx32 "\n",
stacktop, context->sp, context->fp);
sinfo("New stack top:%08" PRIx32 " SP:%08" PRIx32 " FP:%08" PRIx32 "\n",
newtop, newsp, newfp);
/* Update the stack pointer, frame pointer, and volatile registers. When
* the child TCB was initialized, all of the values were set to zero.
* up_initial_state() altered a few values, but the return value in R0
* should be cleared to zero, providing the indication to the newly started
* child thread.
*/
child->cmn.xcp.regs[REG_R4] = context->r4; /* Volatile register r4 */
child->cmn.xcp.regs[REG_R5] = context->r5; /* Volatile register r5 */
child->cmn.xcp.regs[REG_R6] = context->r6; /* Volatile register r6 */
child->cmn.xcp.regs[REG_R7] = context->r7; /* Volatile register r7 */
child->cmn.xcp.regs[REG_R8] = context->r8; /* Volatile register r8 */
child->cmn.xcp.regs[REG_R9] = context->r9; /* Volatile register r9 */
child->cmn.xcp.regs[REG_R10] = context->r10; /* Volatile register r10 */
child->cmn.xcp.regs[REG_FP] = newfp; /* Frame pointer */
child->cmn.xcp.regs[REG_SP] = newsp; /* Stack pointer */
#ifdef CONFIG_LIB_SYSCALL
/* If we got here via a syscall, then we are going to have to setup some
* syscall return information as well.
*/
if (parent->xcp.nsyscalls > 0)
{
int index;
for (index = 0; index < parent->xcp.nsyscalls; index++)
{
child->cmn.xcp.syscall[index].sysreturn =
parent->xcp.syscall[index].sysreturn;
/* REVISIT: This logic is *not* common. */
#if defined(CONFIG_ARCH_ARMV7A)
# ifdef CONFIG_BUILD_KERNEL
child->cmn.xcp.syscall[index].cpsr =
parent->xcp.syscall[index].cpsr;
# endif
#elif defined(CONFIG_ARCH_ARMV7R)
# ifdef CONFIG_BUILD_PROTECTED
child->cmn.xcp.syscall[index].cpsr =
parent->xcp.syscall[index].cpsr;
# endif
#elif defined(CONFIG_ARCH_ARMV6M) || defined(CONFIG_ARCH_ARMV7M) || \
defined(CONFIG_ARCH_ARMV8M)
child->cmn.xcp.syscall[index].excreturn =
parent->xcp.syscall[index].excreturn;
#else
# error Missing logic
#endif
}
child->cmn.xcp.nsyscalls = parent->xcp.nsyscalls;
}
#endif
/* And, finally, start the child task. On a failure, nxtask_start_vfork()
* will discard the TCB by calling nxtask_abort_vfork().
*/
return nxtask_start_vfork(child);
}