nuttx/arch/arm/src/stm32f0l0g0/stm32_pwm.c
Xiang Xiao 972a260391 arch/arm: Remove FAR and CODE from chip folder(3)
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
2022-05-03 16:50:52 +03:00

2275 lines
62 KiB
C

/****************************************************************************
* arch/arm/src/stm32f0l0g0/stm32_pwm.c
*
* Copyright (C) 2019 Fundação CERTI. All rights reserved.
* Author: Daniel Pereira Volpato <dpo@certi.org.br>
* Guillherme da Silva amaral <gvr@certi.org.br>
*
* Based on: arch/arm/src/stm32h7/stm32_pwm.c
* Author: Gregory Nutt <gnutt@nuttx.org>
* Paul Alexander Patience <paul-a.patience@polymtl.ca>
* Mateusz Szafoni <raiden00@railab.me>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <inttypes.h>
#include <stdio.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/arch.h>
#include <nuttx/timers/pwm.h>
#include <arch/board/board.h>
#include "arm_internal.h"
#include "chip.h"
#include "stm32_gpio.h"
#include "stm32_pwm.h"
#include "stm32_rcc.h"
/* This module then only compiles if there is at least one enabled timer
* intended for use with the PWM upper half driver.
*/
#if defined(CONFIG_STM32F0L0G0_TIM1_PWM) || defined(CONFIG_STM32F0L0G0_TIM2_PWM) || \
defined(CONFIG_STM32F0L0G0_TIM3_PWM) || defined(CONFIG_STM32F0L0G0_TIM14_PWM) || \
defined(CONFIG_STM32F0L0G0_TIM15_PWM) || defined(CONFIG_STM32F0L0G0_TIM16_PWM) || \
defined(CONFIG_STM32F0L0G0_TIM17_PWM)
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* PWM/Timer Definitions ****************************************************/
/* The following definitions are used to identify the various time types */
#define TIMTYPE_BASIC 0 /* Basic timers: TIM6,7 */
#define TIMTYPE_GENERAL16 1 /* General 16-bit timers: TIM3 */
#define TIMTYPE_COUNTUP16 2 /* General 16-bit count-up timers: TIM14 */
#define TIMTYPE_GENERAL32 3 /* General 32-bit timers: TIM2 */
#define TIMTYPE_ADVANCED 4 /* Advanced timers: TIM1 */
#define TIMTYPE_COUNTUP16_N 5 /* General 16-bit count-up timers with
* one complementary output: TIM15-17
*/
#define TIMTYPE_TIM1 TIMTYPE_ADVANCED
#define TIMTYPE_TIM2 TIMTYPE_GENERAL32
#define TIMTYPE_TIM3 TIMTYPE_GENERAL16
#define TIMTYPE_TIM6 TIMTYPE_BASIC
#define TIMTYPE_TIM7 TIMTYPE_BASIC
#define TIMTYPE_TIM14 TIMTYPE_COUNTUP16
#define TIMTYPE_TIM15 TIMTYPE_COUNTUP16_N /* Treated as ADVTIM */
#define TIMTYPE_TIM16 TIMTYPE_COUNTUP16_N /* Treated as ADVTIM */
#define TIMTYPE_TIM17 TIMTYPE_COUNTUP16_N /* Treated as ADVTIM */
/* Advanced timer */
#if defined (CONFIG_STM32F0L0G0_TIM1_PWM)
# define HAVE_IP_TIMERS_V2 1
#endif
#if defined(CONFIG_STM32F0L0G0_TIM1_PWM) || \
defined(CONFIG_STM32F0L0G0_TIM8_PWM) || \
defined(CONFIG_STM32F0L0G0_TIM15_PWM) || \
defined(CONFIG_STM32F0L0G0_TIM16_PWM) || \
defined(CONFIG_STM32F0L0G0_TIM17_PWM)
# define HAVE_ADVTIM
#else
# undef HAVE_ADVTIM
#endif
/* CCMR2 */
#if defined(CONFIG_STM32F0L0G0_TIM1_PWM) || \
defined(CONFIG_STM32F0L0G0_TIM3_PWM)
# define HAVE_CCMR2
#else
# undef HAVE_CCMR2
#endif
/* Debug ********************************************************************/
#ifdef CONFIG_DEBUG_PWM_INFO
# define pwm_dumpgpio(p,m)
# warning "pwm_dumpgpio not implemented"
#else
# define pwm_dumpgpio(p,m)
#endif
/****************************************************************************
* Private Types
****************************************************************************/
enum stm32_timmode_e
{
STM32_TIMMODE_COUNTUP = 0,
STM32_TIMMODE_COUNTDOWN = 1,
STM32_TIMMODE_CENTER1 = 2,
STM32_TIMMODE_CENTER2 = 3,
STM32_TIMMODE_CENTER3 = 4,
};
enum stm32_chanmode_e
{
STM32_CHANMODE_PWM1 = 0,
STM32_CHANMODE_PWM2 = 1,
STM32_CHANMODE_COMBINED1 = 2,
STM32_CHANMODE_COMBINED2 = 3,
STM32_CHANMODE_ASYMMETRIC1 = 4,
STM32_CHANMODE_ASYMMETRIC2 = 5,
};
struct stm32_pwmchan_s
{
uint8_t channel; /* Timer output channel: {1,..4} */
enum stm32_chanmode_e mode;
uint32_t pincfg; /* Output pin configuration */
uint32_t npincfg; /* Complementary output pin configuration
* (only TIM1,8 CH1-3 and TIM15,16,17 CH1)
*/
};
/* This structure represents the state of one PWM timer */
struct stm32_pwmtimer_s
{
const struct pwm_ops_s *ops; /* PWM operations */
struct stm32_pwmchan_s channels[PWM_NCHANNELS];
uint8_t timid; /* Timer ID {1,...,17} */
uint8_t timtype; /* See the TIMTYPE_* definitions */
enum stm32_timmode_e mode;
#ifdef CONFIG_PWM_PULSECOUNT
uint8_t irq; /* Timer update IRQ */
uint8_t prev; /* The previous value of the RCR (pre-loaded) */
uint8_t curr; /* The current value of the RCR (pre-loaded) */
uint32_t count; /* Remaining pulse count */
#else
uint32_t frequency; /* Current frequency setting */
#endif
uint32_t base; /* The base address of the timer */
uint32_t pclk; /* The frequency of the peripheral clock
* that drives the timer module. */
#ifdef CONFIG_PWM_PULSECOUNT
void *handle; /* Handle used for upper-half callback */
#endif
};
/****************************************************************************
* Static Function Prototypes
****************************************************************************/
/* Register access */
static uint32_t stm32pwm_getreg(struct stm32_pwmtimer_s *priv, int offset);
static void stm32pwm_putreg(struct stm32_pwmtimer_s *priv, int offset,
uint32_t value);
static void stm32pwm_modifyreg(struct stm32_pwmtimer_s *priv,
uint32_t offset, uint32_t clearbits,
uint32_t setbits);
#ifdef CONFIG_DEBUG_PWM_INFO
static void stm32pwm_dumpregs(struct stm32_pwmtimer_s *priv,
const char *msg);
#else
# define stm32pwm_dumpregs(priv,msg)
#endif
/* Timer management */
static int stm32pwm_timer(struct stm32_pwmtimer_s *priv,
const struct pwm_info_s *info);
static int stm32pwm_output_configure(struct stm32_pwmtimer_s *priv,
uint8_t channel);
static int stm32pwm_update_duty(struct stm32_pwmtimer_s *priv,
uint8_t channel, ub16_t duty);
static void stm32pwm_setapbclock(struct stm32_pwmtimer_s *priv, bool on);
#if defined(CONFIG_PWM_PULSECOUNT) && \
(defined(CONFIG_STM32F0L0G0_TIM1_PWM) || defined(CONFIG_STM32F0L0G0_TIM8_PWM))
static int stm32pwm_interrupt(struct stm32_pwmtimer_s *priv);
# if defined(CONFIG_STM32F0L0G0_TIM1_PWM)
static int stm32pwm_tim1interrupt(int irq, void *context, void *arg);
# endif
# if defined(CONFIG_STM32F0L0G0_TIM8_PWM)
static int stm32pwm_tim8interrupt(int irq, void *context, void *arg);
# endif
static uint8_t stm32pwm_pulsecount(uint32_t count);
#endif /* CONFIG_PWM_PULSECOUNT && CONFIG_STM32F0L0G0_TIM{1,8}_PWM */
/* PWM driver methods */
static int stm32pwm_setup(struct pwm_lowerhalf_s *dev);
static int stm32pwm_shutdown(struct pwm_lowerhalf_s *dev);
#ifdef CONFIG_PWM_PULSECOUNT
static int stm32pwm_start(struct pwm_lowerhalf_s *dev,
const struct pwm_info_s *info,
void *handle);
#else
static int stm32pwm_start(struct pwm_lowerhalf_s *dev,
const struct pwm_info_s *info);
#endif
static int stm32pwm_stop(struct pwm_lowerhalf_s *dev);
static int stm32pwm_ioctl(struct pwm_lowerhalf_s *dev,
int cmd, unsigned long arg);
/****************************************************************************
* Private Data
****************************************************************************/
/* This is the list of lower half PWM driver methods used by the upper half
* driver
*/
static const struct pwm_ops_s g_pwmops =
{
.setup = stm32pwm_setup,
.shutdown = stm32pwm_shutdown,
.start = stm32pwm_start,
.stop = stm32pwm_stop,
.ioctl = stm32pwm_ioctl,
};
#ifdef CONFIG_STM32F0L0G0_TIM1_PWM
static struct stm32_pwmtimer_s g_pwm1dev =
{
.ops = &g_pwmops,
.timid = 1,
.channels =
{
#ifdef CONFIG_STM32F0L0G0_TIM1_CHANNEL1
{
.channel = 1,
.pincfg = PWM_TIM1_CH1CFG,
.mode = CONFIG_STM32F0L0G0_TIM1_CH1MODE,
.npincfg = PWM_TIM1_CH1NCFG,
},
#endif
#ifdef CONFIG_STM32F0L0G0_TIM1_CHANNEL2
{
.channel = 2,
.pincfg = PWM_TIM1_CH2CFG,
.mode = CONFIG_STM32F0L0G0_TIM1_CH2MODE,
.npincfg = PWM_TIM1_CH2NCFG,
},
#endif
#ifdef CONFIG_STM32F0L0G0_TIM1_CHANNEL3
{
.channel = 3,
.pincfg = PWM_TIM1_CH3CFG,
.mode = CONFIG_STM32F0L0G0_TIM1_CH3MODE,
.npincfg = PWM_TIM1_CH3NCFG,
},
#endif
#ifdef CONFIG_STM32F0L0G0_TIM1_CHANNEL4
{
.channel = 4,
.pincfg = PWM_TIM1_CH4CFG,
.mode = CONFIG_STM32F0L0G0_TIM1_CH4MODE,
.npincfg = 0,
},
#endif
},
.timtype = TIMTYPE_TIM1,
.mode = CONFIG_STM32F0L0G0_TIM1_MODE,
#ifdef CONFIG_PWM_PULSECOUNT
.irq = STM32_IRQ_TIM1UP,
#endif
.base = STM32_TIM1_BASE,
.pclk = STM32_APB2_TIM1_CLKIN,
};
#endif
#ifdef CONFIG_STM32F0L0G0_TIM2_PWM
static struct stm32_pwmtimer_s g_pwm2dev =
{
.ops = &g_pwmops,
.timid = 2,
.channels =
{
#ifdef CONFIG_STM32F0L0G0_TIM2_CHANNEL1
{
.channel = 1,
.pincfg = PWM_TIM2_CH1CFG,
.mode = CONFIG_STM32F0L0G0_TIM2_CH1MODE,
.npincfg = 0,
},
#endif
#ifdef CONFIG_STM32F0L0G0_TIM2_CHANNEL2
{
.channel = 2,
.pincfg = PWM_TIM2_CH2CFG,
.mode = CONFIG_STM32F0L0G0_TIM2_CH2MODE,
.npincfg = 0,
},
#endif
#ifdef CONFIG_STM32F0L0G0_TIM2_CHANNEL3
{
.channel = 3,
.pincfg = PWM_TIM2_CH3CFG,
.mode = CONFIG_STM32F0L0G0_TIM2_CH3MODE,
.npincfg = 0,
},
#endif
#ifdef CONFIG_STM32F0L0G0_TIM2_CHANNEL4
{
.channel = 4,
.pincfg = PWM_TIM2_CH4CFG,
.mode = CONFIG_STM32F0L0G0_TIM2_CH4MODE,
.npincfg = 0,
},
#endif
},
.timtype = TIMTYPE_TIM2,
.mode = CONFIG_STM32F0L0G0_TIM2_MODE,
#ifdef CONFIG_PWM_PULSECOUNT
.irq = STM32_IRQ_TIM2,
#endif
.base = STM32_TIM2_BASE,
.pclk = STM32_APB1_TIM2_CLKIN,
};
#endif
#ifdef CONFIG_STM32F0L0G0_TIM3_PWM
static struct stm32_pwmtimer_s g_pwm3dev =
{
.ops = &g_pwmops,
.timid = 3,
.channels =
{
#ifdef CONFIG_STM32F0L0G0_TIM3_CHANNEL1
{
.channel = 1,
.pincfg = PWM_TIM3_CH1CFG,
.mode = CONFIG_STM32F0L0G0_TIM3_CH1MODE,
.npincfg = 0,
},
#endif
#ifdef CONFIG_STM32F0L0G0_TIM3_CHANNEL2
{
.channel = 2,
.pincfg = PWM_TIM3_CH2CFG,
.mode = CONFIG_STM32F0L0G0_TIM3_CH2MODE,
.npincfg = 0,
},
#endif
#ifdef CONFIG_STM32F0L0G0_TIM3_CHANNEL3
{
.channel = 3,
.pincfg = PWM_TIM3_CH3CFG,
.mode = CONFIG_STM32F0L0G0_TIM3_CH3MODE,
.npincfg = 0,
},
#endif
#ifdef CONFIG_STM32F0L0G0_TIM3_CHANNEL4
{
.channel = 4,
.pincfg = PWM_TIM3_CH4CFG,
.mode = CONFIG_STM32F0L0G0_TIM3_CH4MODE,
.npincfg = 0,
},
#endif
},
.timtype = TIMTYPE_TIM3,
.mode = CONFIG_STM32F0L0G0_TIM3_MODE,
#ifdef CONFIG_PWM_PULSECOUNT
.irq = STM32_IRQ_TIM3,
#endif
.base = STM32_TIM3_BASE,
.pclk = STM32_APB1_TIM3_CLKIN,
};
#endif
#ifdef CONFIG_STM32F0L0G0_TIM14_PWM
static struct stm32_pwmtimer_s g_pwm14dev =
{
.ops = &g_pwmops,
.timid = 14,
.channels =
{
#ifdef CONFIG_STM32F0L0G0_TIM14_CHANNEL1
{
.channel = 1,
.pincfg = PWM_TIM14_CH1CFG,
.mode = CONFIG_STM32F0L0G0_TIM14_CH1MODE,
.npincfg = PWM_TIM14_CH1NCFG,
},
#endif
},
.timtype = TIMTYPE_TIM14,
.mode = STM32_TIMMODE_COUNTUP,
#ifdef CONFIG_PWM_PULSECOUNT
.irq = STM32_IRQ_TIM14,
#endif
.base = STM32_TIM14_BASE,
.pclk = STM32_APB2_TIM14_CLKIN,
};
#endif
#ifdef CONFIG_STM32F0L0G0_TIM15_PWM
static struct stm32_pwmtimer_s g_pwm15dev =
{
.ops = &g_pwmops,
.timid = 15,
.channels =
{
#ifdef CONFIG_STM32F0L0G0_TIM15_CHANNEL1
{
.channel = 1,
.pincfg = PWM_TIM15_CH1CFG,
.mode = CONFIG_STM32F0L0G0_TIM15_CH1MODE,
.npincfg = PWM_TIM15_CH1NCFG,
},
#endif
#ifdef CONFIG_STM32F0L0G0_TIM15_CHANNEL2
{
.channel = 2,
.pincfg = PWM_TIM15_CH2CFG,
.mode = CONFIG_STM32F0L0G0_TIM15_CH2MODE,
.npincfg = 0,
},
#endif
},
.timtype = TIMTYPE_TIM15,
.mode = STM32_TIMMODE_COUNTUP,
#ifdef CONFIG_PWM_PULSECOUNT
.irq = STM32_IRQ_TIM15,
#endif
.base = STM32_TIM15_BASE,
.pclk = STM32_APB2_TIM15_CLKIN,
};
#endif
#ifdef CONFIG_STM32F0L0G0_TIM16_PWM
static struct stm32_pwmtimer_s g_pwm16dev =
{
.ops = &g_pwmops,
.timid = 16,
.channels =
{
#ifdef CONFIG_STM32F0L0G0_TIM16_CHANNEL1
{
.channel = 1,
.pincfg = PWM_TIM16_CH1CFG,
.mode = CONFIG_STM32F0L0G0_TIM16_CH1MODE,
.npincfg = PWM_TIM16_CH1NCFG,
},
#endif
},
.timtype = TIMTYPE_TIM16,
.mode = STM32_TIMMODE_COUNTUP,
#ifdef CONFIG_PWM_PULSECOUNT
.irq = STM32_IRQ_TIM16,
#endif
.base = STM32_TIM16_BASE,
.pclk = STM32_APB2_TIM16_CLKIN,
};
#endif
#ifdef CONFIG_STM32F0L0G0_TIM17_PWM
static struct stm32_pwmtimer_s g_pwm17dev =
{
.ops = &g_pwmops,
.timid = 17,
.channels =
{
#ifdef CONFIG_STM32F0L0G0_TIM17_CHANNEL1
{
.channel = 1,
.pincfg = PWM_TIM17_CH1CFG,
.mode = CONFIG_STM32F0L0G0_TIM17_CH1MODE,
.npincfg = PWM_TIM17_CH1NCFG,
},
#endif
},
.timtype = TIMTYPE_TIM17,
.mode = STM32_TIMMODE_COUNTUP,
#ifdef CONFIG_PWM_PULSECOUNT
.irq = STM32_IRQ_TIM17,
#endif
.base = STM32_TIM17_BASE,
.pclk = STM32_APB2_TIM17_CLKIN,
};
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: stm32pwm_reg_is_32bit
*
* Description:
* Verify whether the timer register is 32bit or not.
*
* Input Parameters:
* timtype - The type of the timer. See the TIMTYPE_* definitions
* offset - The offset to the register to read
*
* Returned Value:
* Return true for 32 bits register; false otherwise.
*
****************************************************************************/
static bool stm32pwm_reg_is_32bit(uint8_t timtype, uint32_t offset)
{
if (offset == STM32_GTIM_CCMR1_OFFSET ||
offset == STM32_GTIM_SMCR_OFFSET ||
offset == STM32_GTIM_BDTR_OFFSET)
{
return true;
}
if (timtype == TIMTYPE_GENERAL16)
{
if (offset == STM32_GTIM_CCMR2_OFFSET ||
offset == STM32_GTIM_AF1_OFFSET ||
offset == STM32_GTIM_TISEL_OFFSET)
{
return true;
}
}
else if (timtype == TIMTYPE_GENERAL32)
{
if (offset == STM32_GTIM_CNT_OFFSET ||
offset == STM32_GTIM_ARR_OFFSET ||
offset == STM32_GTIM_CCR1_OFFSET ||
offset == STM32_GTIM_CCR2_OFFSET ||
offset == STM32_GTIM_CCR3_OFFSET ||
offset == STM32_GTIM_CCR4_OFFSET)
{
return true;
}
}
else if (timtype == TIMTYPE_ADVANCED)
{
if (offset == STM32_ATIM_CR2_OFFSET ||
offset == STM32_ATIM_CCMR2_OFFSET ||
offset == STM32_ATIM_CCER_OFFSET ||
offset == STM32_ATIM_DMAR_OFFSET ||
offset == STM32_ATIM_CCMR3_OFFSET ||
offset == STM32_ATIM_CCR5_OFFSET ||
offset == STM32_ATIM_AF1_OFFSET ||
offset == STM32_ATIM_TISEL_OFFSET)
{
return true;
}
}
return false;
}
/****************************************************************************
* Name: stm32pwm_getreg
*
* Description:
* Read the value of an PWM timer register
*
* Input Parameters:
* priv - A reference to the PWM block status
* offset - The offset to the register to read
*
* Returned Value:
* The current contents of the specified register
*
****************************************************************************/
static uint32_t stm32pwm_getreg(struct stm32_pwmtimer_s *priv, int offset)
{
uint32_t retval;
if (stm32pwm_reg_is_32bit(priv->timtype, offset) == true)
{
/* 32-bit register */
retval = getreg32(priv->base + offset);
}
else
{
/* 16-bit register */
retval = getreg16(priv->base + offset);
}
/* Return 32-bit value */
return retval;
}
/****************************************************************************
* Name: stm32pwm_putreg
*
* Description:
* Read the value of an PWM timer register
*
* Input Parameters:
* priv - A reference to the PWM block status
* offset - The offset to the register to read
*
* Returned Value:
* None
*
****************************************************************************/
static void stm32pwm_putreg(struct stm32_pwmtimer_s *priv, int offset,
uint32_t value)
{
if (stm32pwm_reg_is_32bit(priv->timtype, offset) == true)
{
/* 32-bit register */
putreg32(value, priv->base + offset);
}
else
{
/* 16-bit register */
putreg16((uint16_t)value, priv->base + offset);
}
}
/****************************************************************************
* Name: stm32pwm_modifyreg
*
* Description:
* Modify PWM register (32-bit or 16-bit)
*
* Input Parameters:
* priv - A reference to the PWM block status
* offset - The offset to the register to read
* clrbits - The bits to clear
* setbits - The bits to set
*
* Returned Value:
* None
*
****************************************************************************/
static void stm32pwm_modifyreg(struct stm32_pwmtimer_s *priv,
uint32_t offset, uint32_t clearbits,
uint32_t setbits)
{
if (stm32pwm_reg_is_32bit(priv->timtype, offset) == true)
{
/* 32-bit register */
modifyreg32(priv->base + offset, clearbits, setbits);
}
else
{
/* 16-bit register */
modifyreg16(priv->base + offset, clearbits, setbits);
}
}
/****************************************************************************
* Name: stm32pwm_dumpregs
*
* Description:
* Dump all timer registers.
*
* Input Parameters:
* priv - A reference to the PWM block status
* msg - A message to be printed on the screen
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_DEBUG_PWM_INFO
static void stm32pwm_dumpregs(struct stm32_pwmtimer_s *priv,
const char *msg)
{
pwminfo("%s:\n", msg);
pwminfo(" CR1: %04x CR2: %04x SMCR: %04x DIER: %04x\n",
stm32pwm_getreg(priv, STM32_GTIM_CR1_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_CR2_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_SMCR_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_DIER_OFFSET));
pwminfo(" SR: %04x EGR: %04x CCMR1: %04x CCMR2: %04x\n",
stm32pwm_getreg(priv, STM32_GTIM_SR_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_EGR_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_CCMR1_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_CCMR2_OFFSET));
pwminfo(" CCER: %04x CNT: %04x PSC: %04x ARR: %04x\n",
stm32pwm_getreg(priv, STM32_GTIM_CCER_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_CNT_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_PSC_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_ARR_OFFSET));
pwminfo(" CCR1: %04x CCR2: %04x CCR3: %04x CCR4: %04x\n",
stm32pwm_getreg(priv, STM32_GTIM_CCR1_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_CCR2_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_CCR3_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_CCR4_OFFSET));
#if defined(CONFIG_STM32F0L0G0_TIM1_PWM) || defined(CONFIG_STM32F0L0G0_TIM8_PWM)
if (priv->timtype == TIMTYPE_ADVANCED)
{
pwminfo(" RCR: %04x BDTR: %04x DCR: %04x DMAR: %04x\n",
stm32pwm_getreg(priv, STM32_ATIM_RCR_OFFSET),
stm32pwm_getreg(priv, STM32_ATIM_BDTR_OFFSET),
stm32pwm_getreg(priv, STM32_ATIM_DCR_OFFSET),
stm32pwm_getreg(priv, STM32_ATIM_DMAR_OFFSET));
pwminfo(" AF1: %04x TISEL: %04x\n",
stm32pwm_getreg(priv, STM32_ATIM_AF1_OFFSET),
stm32pwm_getreg(priv, STM32_ATIM_TISEL_OFFSET));
}
else
#endif
{
pwminfo(" RCR: %04x BDTR: %04x DCR: %04x DMAR: %04x\n",
stm32pwm_getreg(priv, STM32_GTIM_RCR_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_BDTR_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_DCR_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_DMAR_OFFSET));
pwminfo(" AF1: %04x TISEL: %04x\n",
stm32pwm_getreg(priv, STM32_GTIM_AF1_OFFSET),
stm32pwm_getreg(priv, STM32_GTIM_TISEL_OFFSET));
}
}
#endif
/****************************************************************************
* Name: stm32pwm_output_configure
*
* Description:
* Configure PWM output for given channel
*
* Input Parameters:
* priv - A reference to the PWM block status
* channel - Timer output channel
*
* Returned Value:
* Zero on success;
****************************************************************************/
static int stm32pwm_output_configure(struct stm32_pwmtimer_s *priv,
uint8_t channel)
{
uint32_t cr2;
uint32_t ccer;
/* Get current registers state */
cr2 = stm32pwm_getreg(priv, STM32_GTIM_CR2_OFFSET);
ccer = stm32pwm_getreg(priv, STM32_GTIM_CCER_OFFSET);
/* Reset the output polarity level of all channels (selects high
* polarity)
*/
ccer &= ~(GTIM_CCER_CC1P << ((channel - 1) * 4));
/* Enable the output state of the selected channels */
ccer |= (GTIM_CCER_CC1E << ((channel - 1) * 4));
#ifdef HAVE_ADVTIM
if (priv->timtype == TIMTYPE_ADVANCED ||
priv->timtype == TIMTYPE_COUNTUP16_N)
{
cr2 &= ~(ATIM_CR2_OIS1 << ((channel - 1) * 2));
}
#ifdef HAVE_PWM_COMPLEMENTARY
/* Verify if the current complementary channel is defined */
if (priv->channels[channel - 1].npincfg != 0)
{
/* Configure complementary output IDLE state */
cr2 &= ~(ATIM_CR2_OIS1N << ((channel - 1) * 2));
/* Enable the complementary output state of the selected channels */
ccer |= (ATIM_CCER_CC1NE << ((channel - 1) * 4));
/* Configure complementary output polarity */
ccer &= ~(ATIM_CCER_CC1NP << ((channel - 1) * 4));
}
#endif /* HAVE_PWM_COMPLEMENTARY */
#endif /* HAVE_ADVTIM */
stm32pwm_modifyreg(priv, STM32_GTIM_CR2_OFFSET, 0, cr2);
stm32pwm_modifyreg(priv, STM32_GTIM_CCER_OFFSET, 0, ccer);
return OK;
}
/****************************************************************************
* Name: stm32pwm_timer
*
* Description:
* (Re-)initialize the timer resources and start the pulsed output
*
* Input Parameters:
* priv - A reference to the lower half PWM driver state structure
* info - A reference to the characteristics of the pulsed output
*
* Returned Value:
* Zero on success; a negated errno value on failure
*
****************************************************************************/
static int stm32pwm_timer(struct stm32_pwmtimer_s *priv,
const struct pwm_info_s *info)
{
#ifdef CONFIG_PWM_MULTICHAN
int i;
#endif
/* Calculated values */
uint32_t prescaler;
uint32_t timclk;
uint32_t reload;
uint32_t ccr;
/* Register contents */
uint32_t cr1;
uint32_t ccmr1;
#if defined(HAVE_CCMR2)
uint32_t ccmr2;
uint32_t ocmode2;
#endif
/* New timer register bit settings */
uint32_t ocmode1;
DEBUGASSERT(priv != NULL && info != NULL);
ccmr1 = stm32pwm_getreg(priv, STM32_GTIM_CCMR1_OFFSET);
#if defined(HAVE_CCMR2)
ccmr2 = stm32pwm_getreg(priv, STM32_GTIM_CCMR2_OFFSET);
#endif
#if defined(CONFIG_PWM_MULTICHAN)
pwminfo("TIM%u frequency: %" PRIu32 "\n",
priv->timid, info->frequency);
#elif defined(CONFIG_PWM_PULSECOUNT)
pwminfo("TIM%u channel: %u frequency: %" PRIu32 " duty: %08" PRIx32
" count: %u\n",
priv->timid, priv->channels[0].channel, info->frequency,
info->duty, info->count);
#else
pwminfo("TIM%u channel: %u frequency: %" PRIu32 " duty: %08" PRIx32 "\n",
priv->timid, priv->channels[0].channel, info->frequency,
info->duty);
#endif
DEBUGASSERT(info->frequency > 0);
#ifndef CONFIG_PWM_MULTICHAN
DEBUGASSERT(info->duty >= 0 && info->duty < uitoub16(100));
#endif
/* Disable all interrupts and DMA requests, clear all pending status */
#ifdef CONFIG_PWM_PULSECOUNT
stm32pwm_putreg(priv, STM32_GTIM_DIER_OFFSET, 0);
stm32pwm_putreg(priv, STM32_GTIM_SR_OFFSET, 0);
#endif
/* Calculate optimal values for the timer prescaler and for the timer
* reload register. If 'frequency' is the desired frequency, then
*
* reload = timclk / frequency
* timclk = pclk / presc
*
* Or,
*
* reload = pclk / presc / frequency
*
* There are many solutions to this, but the best solution will be the
* one that has the largest reload value and the smallest prescaler value.
* That is the solution that should give us the most accuracy in the timer
* control. Subject to:
*
* 0 <= presc <= 65536
* 1 <= reload <= 65535
*
* So presc = pclk / 65535 / frequency would be optimal.
*
* Example:
*
* pclk = 42 MHz
* frequency = 100 Hz
*
* prescaler = 42,000,000 / 65,535 / 100
* = 6.4 (or 7 -- taking the ceiling always)
* timclk = 42,000,000 / 7
* = 6,000,000
* reload = 6,000,000 / 100
* = 60,000
*/
prescaler = (priv->pclk / info->frequency + 65534) / 65535;
if (prescaler < 1)
{
prescaler = 1;
}
else if (prescaler > 65536)
{
prescaler = 65536;
}
timclk = priv->pclk / prescaler;
reload = timclk / info->frequency;
/* In center-aligned mode, the timer performs upcounting from zero to ARR
* value and then performs downcounting from ARR to zero and repeat. In
* other words, in one cycle the timer counts 2*ARR. For that reason, the
* reload (ARR) value is divided by 2.
*/
if (priv->mode == STM32_TIMMODE_CENTER1 ||
priv->mode == STM32_TIMMODE_CENTER2 ||
priv->mode == STM32_TIMMODE_CENTER3)
{
reload /= 2;
}
if (reload < 2)
{
reload = 1;
}
else if (reload > 65535)
{
reload = 65535;
}
else
{
reload--;
}
pwminfo("TIM%u PCLK: %" PRIu32 " frequency: %" PRIu32 " "
"TIMCLK: %" PRIu32 " prescaler: %" PRIu32
" reload: %" PRIu32 "\n",
priv->timid, priv->pclk, info->frequency, timclk,
prescaler, reload);
/* Set up the timer CR1 register:
*
* 1,8 CKD[1:0] ARPE CMS[1:0] DIR OPM URS UDIS CEN
* 2-5 CKD[1:0] ARPE CMS DIR OPM URS UDIS CEN
* 6-7 ARPE OPM URS UDIS CEN
* 9-14 CKD[1:0] ARPE URS UDIS CEN
* 15-17 CKD[1:0] ARPE OPM URS UDIS CEN
*/
cr1 = stm32pwm_getreg(priv, STM32_GTIM_CR1_OFFSET);
/* Disable the timer until we get it configured */
cr1 &= ~GTIM_CR1_CEN;
/* Set the counter mode for the advanced timers (1,8) and most general
* purpose timers (all 2-5, but not 9-17), i.e., all but TIMTYPE_COUNTUP16
* and TIMTYPE_BASIC
*/
#if defined(CONFIG_STM32F0L0G0_TIM1_PWM) || defined(CONFIG_STM32F0L0G0_TIM2_PWM) || \
defined(CONFIG_STM32F0L0G0_TIM3_PWM) || defined(CONFIG_STM32F0L0G0_TIM4_PWM) || \
defined(CONFIG_STM32F0L0G0_TIM5_PWM) || defined(CONFIG_STM32F0L0G0_TIM8_PWM)
if (priv->timtype != TIMTYPE_BASIC && priv->timtype != TIMTYPE_COUNTUP16 &&
priv->timtype != TIMTYPE_COUNTUP16_N)
{
/* Select the Counter Mode:
*
* GTIM_CR1_EDGE: The counter counts up or down depending on the
* direction bit (DIR).
* GTIM_CR1_CENTER1, GTIM_CR1_CENTER2, GTIM_CR1_CENTER3: The counter
* counts up then down.
* GTIM_CR1_DIR: 0: count up, 1: count down
*/
cr1 &= ~(GTIM_CR1_DIR | GTIM_CR1_CMS_MASK);
switch (priv->mode)
{
case STM32_TIMMODE_COUNTUP:
cr1 |= GTIM_CR1_EDGE;
break;
case STM32_TIMMODE_COUNTDOWN:
cr1 |= GTIM_CR1_EDGE | GTIM_CR1_DIR;
break;
case STM32_TIMMODE_CENTER1:
cr1 |= GTIM_CR1_CENTER1;
break;
case STM32_TIMMODE_CENTER2:
cr1 |= GTIM_CR1_CENTER2;
break;
case STM32_TIMMODE_CENTER3:
cr1 |= GTIM_CR1_CENTER3;
break;
default:
pwmerr("ERROR: No such timer mode: %u\n",
(unsigned int)priv->mode);
return -EINVAL;
}
}
#endif
/* Set the clock division to zero for all (but the basic timers, but there
* should be no basic timers in this context
*/
cr1 &= ~GTIM_CR1_CKD_MASK;
stm32pwm_putreg(priv, STM32_GTIM_CR1_OFFSET, cr1);
/* Set the reload and prescaler values */
stm32pwm_putreg(priv, STM32_GTIM_ARR_OFFSET, reload);
stm32pwm_putreg(priv, STM32_GTIM_PSC_OFFSET, (prescaler - 1));
/* Set the advanced timer's repetition counter */
#if defined(CONFIG_STM32F0L0G0_TIM1_PWM) || defined(CONFIG_STM32F0L0G0_TIM8_PWM)
if (priv->timtype == TIMTYPE_ADVANCED)
{
/* If a non-zero repetition count has been selected, then set the
* repetition counter to the count-1 (stm32pwm_start() has already
* assured us that the count value is within range).
*/
#ifdef CONFIG_PWM_PULSECOUNT
if (info->count > 0)
{
/* Save the remaining count and the number of counts that will have
* elapsed on the first interrupt.
*/
/* If the first interrupt occurs at the end end of the first
* repetition count, then the count will be the same as the RCR
* value.
*/
priv->prev = stm32pwm_pulsecount(info->count);
stm32pwm_putreg(priv, STM32_ATIM_RCR_OFFSET, priv->prev - 1);
/* Generate an update event to reload the prescaler. This should
* preload the RCR into active repetition counter.
*/
stm32pwm_putreg(priv, STM32_ATIM_EGR_OFFSET, ATIM_EGR_UG);
/* Now set the value of the RCR that will be loaded on the next
* update event.
*/
priv->count = info->count;
priv->curr = stm32pwm_pulsecount(info->count - priv->prev);
stm32pwm_putreg(priv, STM32_ATIM_RCR_OFFSET, priv->curr - 1);
}
/* Otherwise, just clear the repetition counter */
else
#endif
{
/* Set the repetition counter to zero */
stm32pwm_putreg(priv, STM32_ATIM_RCR_OFFSET, 0);
/* Generate an update event to reload the prescaler */
stm32pwm_putreg(priv, STM32_ATIM_EGR_OFFSET, ATIM_EGR_UG);
}
}
else
#endif
{
/* Generate an update event to reload the prescaler (all timers) */
stm32pwm_putreg(priv, STM32_GTIM_EGR_OFFSET, GTIM_EGR_UG);
}
/* Handle channel specific setup */
ocmode1 = 0;
#if defined(HAVE_CCMR2)
ocmode2 = 0;
#endif
#ifdef CONFIG_PWM_MULTICHAN
for (i = 0; i < CONFIG_PWM_NCHANNELS; i++)
#endif
{
ub16_t duty;
uint32_t chanmode;
bool ocmbit = false;
uint8_t channel;
#ifdef CONFIG_PWM_MULTICHAN
int j;
#endif
enum stm32_chanmode_e mode;
#ifdef CONFIG_PWM_MULTICHAN
/* Break the loop if all following channels are not configured */
if (info->channels[i].channel == -1)
{
break;
}
duty = info->channels[i].duty;
channel = info->channels[i].channel;
/* A value of zero means to skip this channel */
if (channel == 0)
{
continue;
}
/* Find the channel */
for (j = 0; j < PWM_NCHANNELS; j++)
{
if (priv->channels[j].channel == channel)
{
mode = priv->channels[j].mode;
break;
}
}
if (j >= PWM_NCHANNELS)
{
pwmerr("ERROR: No such channel: %u\n", channel);
return -EINVAL;
}
#else
duty = info->duty;
channel = priv->channels[0].channel;
mode = priv->channels[0].mode;
#endif
/* Duty cycle:
*
* duty cycle = ccr / reload (fractional value)
*/
ccr = b16toi(duty * reload + b16HALF);
pwminfo("ccr: %" PRIu32 "\n", ccr);
switch (mode)
{
case STM32_CHANMODE_PWM1:
chanmode = GTIM_CCMR_MODE_PWM1;
break;
case STM32_CHANMODE_PWM2:
chanmode = GTIM_CCMR_MODE_PWM2;
break;
case STM32_CHANMODE_COMBINED1:
chanmode = GTIM_CCMR_MODE_COMBINED1;
ocmbit = true;
break;
case STM32_CHANMODE_COMBINED2:
chanmode = GTIM_CCMR_MODE_COMBINED2;
ocmbit = true;
break;
case STM32_CHANMODE_ASYMMETRIC1:
chanmode = GTIM_CCMR_MODE_ASYMMETRIC1;
ocmbit = true;
break;
case STM32_CHANMODE_ASYMMETRIC2:
chanmode = GTIM_CCMR_MODE_ASYMMETRIC2;
ocmbit = true;
break;
default:
pwmerr("ERROR: No such mode: %u\n", (unsigned int)mode);
return -EINVAL;
}
switch (channel)
{
case 1: /* PWM Mode configuration: Channel 1 */
{
/* Set the CCMR1 mode values (leave CCMR2 zero) */
ocmode1 |= (GTIM_CCMR_CCS_CCOUT << GTIM_CCMR1_CC1S_SHIFT) |
(chanmode << GTIM_CCMR1_OC1M_SHIFT) |
GTIM_CCMR1_OC1PE;
if (ocmbit)
{
ocmode1 |= GTIM_CCMR1_OC1M;
}
/* Set the duty cycle by writing to the CCR register for this
* channel.
*/
stm32pwm_putreg(priv, STM32_GTIM_CCR1_OFFSET, ccr);
/* Reset the Output Compare Mode Bits and set the select
* output compare mode.
*/
ccmr1 &= ~(GTIM_CCMR1_CC1S_MASK | GTIM_CCMR1_OC1M_MASK |
GTIM_CCMR1_OC1PE | GTIM_CCMR1_OC1M);
stm32pwm_output_configure(priv, channel);
}
break;
case 2: /* PWM Mode configuration: Channel 2 */
{
/* Set the CCMR1 mode values (leave CCMR2 zero) */
ocmode1 |= (GTIM_CCMR_CCS_CCOUT << GTIM_CCMR1_CC2S_SHIFT) |
(chanmode << GTIM_CCMR1_OC2M_SHIFT) |
GTIM_CCMR1_OC2PE;
if (ocmbit)
{
ocmode1 |= GTIM_CCMR1_OC2M;
}
/* Set the duty cycle by writing to the CCR register for this
* channel.
*/
stm32pwm_putreg(priv, STM32_GTIM_CCR2_OFFSET, ccr);
/* Reset the Output Compare Mode Bits and set the select
* output compare mode.
*/
ccmr1 &= ~(GTIM_CCMR1_CC2S_MASK | GTIM_CCMR1_OC2M_MASK |
GTIM_CCMR1_OC2PE | GTIM_CCMR1_OC2M);
stm32pwm_output_configure(priv, channel);
}
break;
#if defined(HAVE_CCMR2)
case 3: /* PWM Mode configuration: Channel 3 */
{
/* Set the CCMR2 mode values (leave CCMR1 zero) */
ocmode2 |= (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR2_CC3S_SHIFT) |
(chanmode << ATIM_CCMR2_OC3M_SHIFT) |
ATIM_CCMR2_OC3PE;
if (ocmbit)
{
ocmode2 |= ATIM_CCMR2_OC3M;
}
/* Set the duty cycle by writing to the CCR register for this
* channel.
*/
stm32pwm_putreg(priv, STM32_ATIM_CCR3_OFFSET, ccr);
/* Reset the Output Compare Mode Bits and set the select
* output compare mode.
*/
ccmr2 &= ~(ATIM_CCMR2_CC3S_MASK | ATIM_CCMR2_OC3M_MASK |
ATIM_CCMR2_OC3PE | ATIM_CCMR2_OC3M);
stm32pwm_output_configure(priv, channel);
}
break;
case 4: /* PWM Mode configuration: Channel 4 */
{
/* Set the CCMR2 mode values (leave CCMR1 zero) */
ocmode2 |= (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR2_CC4S_SHIFT) |
(chanmode << ATIM_CCMR2_OC4M_SHIFT) |
ATIM_CCMR2_OC4PE;
if (ocmbit)
{
ocmode2 |= ATIM_CCMR2_OC4M;
}
/* Set the duty cycle by writing to the CCR register for this
* channel.
*/
stm32pwm_putreg(priv, STM32_ATIM_CCR4_OFFSET, ccr);
/* Reset the Output Compare Mode Bits and set the select
* output compare mode.
*/
ccmr2 &= ~(ATIM_CCMR2_CC4S_MASK | ATIM_CCMR2_OC4M_MASK |
ATIM_CCMR2_OC4PE | ATIM_CCMR2_OC4M);
stm32pwm_output_configure(priv, channel);
}
break;
#endif /* HAVE_CCMR2 */
default:
pwmerr("ERROR: No such channel: %u\n", channel);
return -EINVAL;
}
}
ccmr1 |= ocmode1;
#if defined(HAVE_CCMR2)
ccmr2 |= ocmode2;
#endif
/* Special configuration for HAVE_ADVTIM */
#ifdef HAVE_ADVTIM
if (priv->timtype == TIMTYPE_ADVANCED ||
priv->timtype == TIMTYPE_COUNTUP16_N)
{
uint32_t bdtr;
/* Get current register state */
bdtr = stm32pwm_getreg(priv, STM32_ATIM_BDTR_OFFSET);
/* Update deadtime */
bdtr &= ~(ATIM_BDTR_OSSI | ATIM_BDTR_OSSR);
bdtr |= ATIM_BDTR_MOE;
stm32pwm_putreg(priv, STM32_ATIM_BDTR_OFFSET, bdtr);
}
#endif
/* Save the modified register values */
putreg32(ccmr1, priv->base + STM32_GTIM_CCMR1_OFFSET);
#if defined(HAVE_CCMR2)
putreg32(ccmr2, priv->base + STM32_ATIM_CCMR2_OFFSET);
#endif
/* Set the ARR Preload Bit */
cr1 = stm32pwm_getreg(priv, STM32_GTIM_CR1_OFFSET);
cr1 |= GTIM_CR1_ARPE;
stm32pwm_putreg(priv, STM32_GTIM_CR1_OFFSET, cr1);
/* Setup update interrupt. If info->count is > 0, then we can be
* assured that stm32pwm_start() has already verified: (1) that this is an
* advanced timer, and that (2) the repetition count is within range.
*/
#ifdef CONFIG_PWM_PULSECOUNT
if (info->count > 0)
{
/* Clear all pending interrupts and enable the update interrupt. */
stm32pwm_putreg(priv, STM32_GTIM_SR_OFFSET, 0);
stm32pwm_putreg(priv, STM32_GTIM_DIER_OFFSET, GTIM_DIER_UIE);
/* Enable the timer */
cr1 |= GTIM_CR1_CEN;
stm32pwm_putreg(priv, STM32_GTIM_CR1_OFFSET, cr1);
/* And enable timer interrupts at the NVIC */
up_enable_irq(priv->irq);
}
else
#endif
{
/* Just enable the timer, leaving all interrupts disabled */
cr1 |= GTIM_CR1_CEN;
stm32pwm_putreg(priv, STM32_GTIM_CR1_OFFSET, cr1);
}
stm32pwm_dumpregs(priv, "After starting");
return OK;
}
#ifndef CONFIG_PWM_PULSECOUNT
/****************************************************************************
* Name: stm32pwm_update_duty
*
* Description:
* Try to change only channel duty.
*
* Input Parameters:
* priv - A reference to the lower half PWM driver state structure
* channel - Channel to be updated
* duty - New duty.
*
* Returned Value:
* Zero on success; a negated errno value on failure
*
****************************************************************************/
static int stm32pwm_update_duty(struct stm32_pwmtimer_s *priv,
uint8_t channel, ub16_t duty)
{
/* Register offset */
int ccr_offset;
/* Calculated values */
uint32_t reload;
uint32_t ccr;
DEBUGASSERT(priv != NULL);
pwminfo("TIM%u channel: %u duty: %08" PRIx32 "\n",
priv->timid, channel, duty);
#ifndef CONFIG_PWM_MULTICHAN
DEBUGASSERT(channel == priv->channels[0].channel);
DEBUGASSERT(duty >= 0 && duty < uitoub16(100));
#endif
/* Get the reload values */
reload = stm32pwm_getreg(priv, STM32_GTIM_ARR_OFFSET);
/* Duty cycle:
*
* duty cycle = ccr / reload (fractional value)
*/
ccr = b16toi(duty * reload + b16HALF);
pwminfo("ccr: %" PRIu32 "\n", ccr);
switch (channel)
{
case 1: /* Register offset for Channel 1 */
ccr_offset = STM32_GTIM_CCR1_OFFSET;
break;
case 2: /* Register offset for Channel 2 */
ccr_offset = STM32_GTIM_CCR2_OFFSET;
break;
case 3: /* Register offset for Channel 3 */
ccr_offset = STM32_GTIM_CCR3_OFFSET;
break;
case 4: /* Register offset for Channel 4 */
ccr_offset = STM32_GTIM_CCR4_OFFSET;
break;
default:
pwmerr("ERROR: No such channel: %u\n", channel);
return -EINVAL;
}
/* Set the duty cycle by writing to the CCR register for this channel */
stm32pwm_putreg(priv, ccr_offset, ccr);
return OK;
}
#endif
/****************************************************************************
* Name: stm32pwm_interrupt
*
* Description:
* Handle timer interrupts.
*
* Input Parameters:
* priv - A reference to the lower half PWM driver state structure
*
* Returned Value:
* Zero on success; a negated errno value on failure
*
* Input Parameters:
* dev - A reference to the lower half PWM driver state structure
* channel - Timer output channel
* mode - PWM mode. See stm32_chanmode_e
*
* Returned Values:
* Zero on success; a negated errno value on failure
****************************************************************************/
#if defined(CONFIG_PWM_PULSECOUNT) && (defined(CONFIG_STM32F0L0G0_TIM1_PWM) || defined(CONFIG_STM32F0L0G0_TIM8_PWM))
static int stm32pwm_interrupt(struct stm32_pwmtimer_s *priv)
{
uint16_t regval;
/* Verify that this is an update interrupt. Nothing else is expected. */
regval = stm32pwm_getreg(priv, STM32_ATIM_SR_OFFSET);
DEBUGASSERT((regval & ATIM_SR_UIF) != 0);
/* Clear the UIF interrupt bit */
stm32pwm_putreg(priv, STM32_ATIM_SR_OFFSET, regval & ~ATIM_SR_UIF);
/* Calculate the new count by subtracting the number of pulses
* since the last interrupt.
*/
if (priv->count <= priv->prev)
{
/* We are finished. Turn off the mast output to stop the output as
* quickly as possible.
*/
regval = stm32pwm_getreg(priv, STM32_ATIM_BDTR_OFFSET);
regval &= ~ATIM_BDTR_MOE;
stm32pwm_putreg(priv, STM32_ATIM_BDTR_OFFSET, regval);
/* Disable first interrupts, stop and reset the timer */
stm32pwm_stop((struct pwm_lowerhalf_s *)priv);
/* Then perform the callback into the upper half driver */
pwm_expired(priv->handle);
priv->handle = NULL;
priv->count = 0;
priv->prev = 0;
priv->curr = 0;
}
else
{
/* Decrement the count of pulses remaining using the number of
* pulses generated since the last interrupt.
*/
priv->count -= priv->prev;
/* Set up the next RCR. Set 'prev' to the value of the RCR that
* was loaded when the update occurred (just before this interrupt)
* and set 'curr' to the current value of the RCR register (which
* will bet loaded on the next update event).
*/
priv->prev = priv->curr;
priv->curr = stm32pwm_pulsecount(priv->count - priv->prev);
stm32pwm_putreg(priv, STM32_ATIM_RCR_OFFSET, priv->curr - 1);
}
/* Now all of the time critical stuff is done so we can do some debug
* output
*/
pwminfo("Update interrupt SR: %04x prev: %u curr: %u count: %u\n",
regval, priv->prev, priv->curr, priv->count);
return OK;
}
#endif
/****************************************************************************
* Name: pwm_tim1/8interrupt
*
* Description:
* Handle timer 1 and 8 interrupts.
*
* Input Parameters:
* Standard NuttX interrupt inputs
*
* Returned Value:
* Zero on success; a negated errno value on failure
*
****************************************************************************/
#if defined(CONFIG_PWM_PULSECOUNT) && defined(CONFIG_STM32F0L0G0_TIM1_PWM)
static int stm32pwm_tim1interrupt(int irq, void *context, void *arg)
{
return stm32pwm_interrupt(&g_pwm1dev);
}
#endif
#if defined(CONFIG_PWM_PULSECOUNT) && defined(CONFIG_STM32F0L0G0_TIM8_PWM)
static int stm32pwm_tim8interrupt(int irq, void *context, void *arg)
{
return stm32pwm_interrupt(&g_pwm8dev);
}
#endif
/****************************************************************************
* Name: stm32pwm_pulsecount
*
* Description:
* Pick an optimal pulse count to program the RCR.
*
* Input Parameters:
* count - The total count remaining
*
* Returned Value:
* The recommended pulse count
*
****************************************************************************/
#if defined(CONFIG_PWM_PULSECOUNT) && (defined(CONFIG_STM32F0L0G0_TIM1_PWM) || defined(CONFIG_STM32F0L0G0_TIM8_PWM))
static uint8_t stm32pwm_pulsecount(uint32_t count)
{
/* The the remaining pulse count is less than or equal to the maximum, the
* just return the count.
*/
if (count <= ATIM_RCR_REP_MAX)
{
return count;
}
/* Otherwise, we have to be careful. We do not want a small number of
* counts at the end because we might have trouble responding fast enough.
* If the remaining count is less than 150% of the maximum, then return
* half of the maximum. In this case the final sequence will be between 64
* and 128.
*/
else if (count < (3 * ATIM_RCR_REP_MAX / 2))
{
return (ATIM_RCR_REP_MAX + 1) >> 1;
}
/* Otherwise, return the maximum. The final count will be 64 or more */
else
{
return ATIM_RCR_REP_MAX;
}
}
#endif
/****************************************************************************
* Name: stm32pwm_setapbclock
*
* Description:
* Enable or disable APB clock for the timer peripheral
*
* Input Parameters:
* dev - A reference to the lower half PWM driver state structure
* on - Enable clock if 'on' is 'true' and disable if 'false'
*
* Returned Value:
* None
*
****************************************************************************/
static void stm32pwm_setapbclock(struct stm32_pwmtimer_s *priv, bool on)
{
uint32_t en_bit;
uint32_t regaddr;
/* Determine which timer to configure */
switch (priv->timid)
{
#ifdef CONFIG_STM32F0L0G0_TIM1_PWM
case 1:
regaddr = STM32_RCC_APB2ENR;
en_bit = RCC_APB2ENR_TIM1EN;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM2_PWM
case 2:
regaddr = STM32_RCC_APB1ENR;
en_bit = RCC_APB1ENR_TIM2EN;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM3_PWM
case 3:
regaddr = STM32_RCC_APB1ENR;
en_bit = RCC_APB1ENR_TIM3EN;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM14_PWM
case 14:
regaddr = STM32_RCC_APB2ENR;
en_bit = RCC_APB2ENR_TIM14EN;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM15_PWM
case 15:
regaddr = STM32_RCC_APB2ENR;
en_bit = RCC_APB2ENR_TIM15EN;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM16_PWM
case 16:
regaddr = STM32_RCC_APB2ENR;
en_bit = RCC_APB2ENR_TIM16EN;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM17_PWM
case 17:
regaddr = STM32_RCC_APB2ENR;
en_bit = RCC_APB2ENR_TIM17EN;
break;
#endif
default:
return;
}
/* Enable/disable APB 1/2 clock for timer */
if (on)
{
modifyreg32(regaddr, 0, en_bit);
}
else
{
modifyreg32(regaddr, en_bit, 0);
}
}
/****************************************************************************
* Name: stm32pwm_setup
*
* Description:
* This method is called when the driver is opened. The lower half driver
* should configure and initialize the device so that it is ready for use.
* It should not, however, output pulses until the start method is called.
*
* Input Parameters:
* dev - A reference to the lower half PWM driver state structure
*
* Returned Value:
* Zero on success; a negated errno value on failure
*
* Assumptions:
* APB1 or 2 clocking for the GPIOs has already been configured by the RCC
* logic at power up.
*
****************************************************************************/
static int stm32pwm_setup(struct pwm_lowerhalf_s *dev)
{
struct stm32_pwmtimer_s *priv = (struct stm32_pwmtimer_s *)dev;
uint32_t pincfg;
int i;
pwminfo("TIM%u\n", priv->timid);
stm32pwm_dumpregs(priv, "Initially");
/* Enable APB1/2 clocking for timer. */
stm32pwm_setapbclock(priv, true);
/* Configure the PWM output pins, but do not start the timer yet */
for (i = 0; i < PWM_NCHANNELS; i++)
{
pincfg = priv->channels[i].pincfg;
if (pincfg != 0)
{
pwminfo("pincfg: %08" PRIx32 "\n", pincfg);
stm32_configgpio(pincfg);
}
/* Enable complementary channel if available */
pincfg = priv->channels[i].npincfg;
if (pincfg != 0)
{
pwminfo("npincfg: %08" PRIx32 "\n", pincfg);
stm32_configgpio(pincfg);
}
pwm_dumpgpio(pincfg, "PWM setup");
}
return OK;
}
/****************************************************************************
* Name: stm32pwm_shutdown
*
* Description:
* This method is called when the driver is closed. The lower half driver
* stop pulsed output, free any resources, disable the timer hardware, and
* put the system into the lowest possible power usage state
*
* Input Parameters:
* dev - A reference to the lower half PWM driver state structure
*
* Returned Value:
* Zero on success; a negated errno value on failure
*
****************************************************************************/
static int stm32pwm_shutdown(struct pwm_lowerhalf_s *dev)
{
struct stm32_pwmtimer_s *priv = (struct stm32_pwmtimer_s *)dev;
uint32_t pincfg;
int i;
pwminfo("TIM%u\n", priv->timid);
/* Make sure that the output has been stopped */
stm32pwm_stop(dev);
/* Disable APB1/2 clocking for timer. */
stm32pwm_setapbclock(priv, false);
/* Then put the GPIO pins back to the default state */
for (i = 0; i < PWM_NCHANNELS; i++)
{
pincfg = priv->channels[i].pincfg;
if (pincfg != 0)
{
pwminfo("pincfg: %08" PRIx32 "\n", pincfg);
pincfg &= (GPIO_PORT_MASK | GPIO_PIN_MASK);
pincfg |= GPIO_INPUT | GPIO_FLOAT;
stm32_configgpio(pincfg);
}
pincfg = priv->channels[i].npincfg;
if (pincfg != 0)
{
pwminfo("npincfg: %08" PRIx32 "\n", pincfg);
pincfg &= (GPIO_PORT_MASK | GPIO_PIN_MASK);
pincfg |= GPIO_INPUT | GPIO_FLOAT;
stm32_configgpio(pincfg);
}
}
return OK;
}
/****************************************************************************
* Name: stm32pwm_start
*
* Description:
* (Re-)initialize the timer resources and start the pulsed output
*
* Input Parameters:
* dev - A reference to the lower half PWM driver state structure
* info - A reference to the characteristics of the pulsed output
*
* Returned Value:
* Zero on success; a negated errno value on failure
*
****************************************************************************/
#ifdef CONFIG_PWM_PULSECOUNT
static int stm32pwm_start(struct pwm_lowerhalf_s *dev,
const struct pwm_info_s *info,
void *handle)
{
struct stm32_pwmtimer_s *priv = (struct stm32_pwmtimer_s *)dev;
/* Check if a pulsecount has been selected */
if (info->count > 0)
{
/* Only the advanced timers (TIM1,8 can support the pulse counting) */
if (priv->timtype != TIMTYPE_ADVANCED)
{
pwmerr("ERROR: TIM%u cannot support pulse count: %u\n",
priv->timid, info->count);
return -EPERM;
}
}
/* Save the handle */
priv->handle = handle;
/* Start the time */
return stm32pwm_timer(priv, info);
}
#else
static int stm32pwm_start(struct pwm_lowerhalf_s *dev,
const struct pwm_info_s *info)
{
int ret = OK;
struct stm32_pwmtimer_s *priv = (struct stm32_pwmtimer_s *)dev;
#ifndef CONFIG_PWM_PULSECOUNT
/* if frequency has not changed we just update duty */
if (info->frequency == priv->frequency)
{
#ifdef CONFIG_PWM_MULTICHAN
int i;
for (i = 0; ret == OK && i < CONFIG_PWM_NCHANNELS; i++)
{
/* Break the loop if all following channels are not configured */
if (info->channels[i].channel == -1)
{
break;
}
/* Set output if channel configured */
if (info->channels[i].channel != 0)
{
ret = stm32pwm_update_duty(priv, info->channels[i].channel,
info->channels[i].duty);
}
}
#else
ret = stm32pwm_update_duty(priv, priv->channels[0].channel,
info->duty);
#endif
}
else
#endif
{
ret = stm32pwm_timer(priv, info);
#ifndef CONFIG_PWM_PULSECOUNT
/* Save current frequency */
if (ret == OK)
{
priv->frequency = info->frequency;
}
#endif
}
return ret;
}
#endif
/****************************************************************************
* Name: stm32pwm_stop
*
* Description:
* Stop the pulsed output and reset the timer resources
*
* Input Parameters:
* dev - A reference to the lower half PWM driver state structure
*
* Returned Value:
* Zero on success; a negated errno value on failure
*
* Assumptions:
* This function is called to stop the pulsed output at anytime. This
* method is also called from the timer interrupt handler when a repetition
* count expires... automatically stopping the timer.
*
****************************************************************************/
static int stm32pwm_stop(struct pwm_lowerhalf_s *dev)
{
struct stm32_pwmtimer_s *priv = (struct stm32_pwmtimer_s *)dev;
uint32_t resetbit;
uint32_t regaddr;
uint32_t regval;
irqstate_t flags;
pwminfo("TIM%u\n", priv->timid);
/* Disable interrupts momentary to stop any ongoing timer processing and
* to prevent any concurrent access to the reset register.
*/
flags = enter_critical_section();
/* Stopped so frequency is zero */
priv->frequency = 0;
/* Disable further interrupts and stop the timer */
stm32pwm_putreg(priv, STM32_GTIM_DIER_OFFSET, 0);
stm32pwm_putreg(priv, STM32_GTIM_SR_OFFSET, 0);
/* Determine which timer to reset */
switch (priv->timid)
{
#ifdef CONFIG_STM32F0L0G0_TIM1_PWM
case 1:
regaddr = STM32_RCC_APB2RSTR;
resetbit = RCC_APB2RSTR_TIM1RST;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM2_PWM
case 2:
regaddr = STM32_RCC_APB1RSTR;
resetbit = RCC_APB1RSTR_TIM2RST;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM3_PWM
case 3:
regaddr = STM32_RCC_APB1RSTR;
resetbit = RCC_APB1RSTR_TIM3RST;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM4_PWM
case 4:
regaddr = STM32_RCC_APB1RSTR;
resetbit = RCC_APB1RSTR_TIM4RST;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM5_PWM
case 5:
regaddr = STM32_RCC_APB1RSTR;
resetbit = RCC_APB1RSTR_TIM5RST;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM8_PWM
case 8:
regaddr = STM32_RCC_APB2RSTR;
resetbit = RCC_APB2RSTR_TIM8RST;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM14_PWM
case 14:
regaddr = STM32_RCC_APB2RSTR;
resetbit = RCC_APB2RSTR_TIM14RST;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM15_PWM
case 15:
regaddr = STM32_RCC_APB2RSTR;
resetbit = RCC_APB2RSTR_TIM15RST;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM16_PWM
case 16:
regaddr = STM32_RCC_APB2RSTR;
resetbit = RCC_APB2RSTR_TIM16RST;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM17_PWM
case 17:
regaddr = STM32_RCC_APB2RSTR;
resetbit = RCC_APB2RSTR_TIM17RST;
break;
#endif
default:
leave_critical_section(flags);
return -EINVAL;
}
/* Reset the timer - stopping the output and putting the timer back
* into a state where stm32pwm_start() can be called.
*/
regval = getreg32(regaddr);
regval |= resetbit;
putreg32(regval, regaddr);
regval &= ~resetbit;
putreg32(regval, regaddr);
leave_critical_section(flags);
pwminfo("regaddr: %08" PRIx32 " resetbit: %08" PRIx32 "\n",
regaddr, resetbit);
stm32pwm_dumpregs(priv, "After stop");
return OK;
}
/****************************************************************************
* Name: stm32pwm_ioctl
*
* Description:
* Lower-half logic may support platform-specific ioctl commands
*
* Input Parameters:
* dev - A reference to the lower half PWM driver state structure
* cmd - The ioctl command
* arg - The argument accompanying the ioctl command
*
* Returned Value:
* Zero on success; a negated errno value on failure
*
****************************************************************************/
static int stm32pwm_ioctl(struct pwm_lowerhalf_s *dev, int cmd,
unsigned long arg)
{
#ifdef CONFIG_DEBUG_PWM_INFO
struct stm32_pwmtimer_s *priv = (struct stm32_pwmtimer_s *)dev;
/* There are no platform-specific ioctl commands */
pwminfo("TIM%u\n", priv->timid);
#endif
return -ENOTTY;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: stm32_pwminitialize
*
* Description:
* Initialize one timer for use with the upper_level PWM driver.
*
* Input Parameters:
* timer - A number identifying the timer use. The number of valid timer
* IDs varies with the STM32 MCU and MCU family but is somewhere in
* the range of {1,..,17}.
*
* Returned Value:
* On success, a pointer to the STM32 lower half PWM driver is returned.
* NULL is returned on any failure.
*
****************************************************************************/
struct pwm_lowerhalf_s *stm32_pwminitialize(int timer)
{
struct stm32_pwmtimer_s *lower;
pwminfo("TIM%u\n", timer);
switch (timer)
{
#ifdef CONFIG_STM32F0L0G0_TIM1_PWM
case 1:
lower = &g_pwm1dev;
/* Attach but disable the TIM1 update interrupt */
#ifdef CONFIG_PWM_PULSECOUNT
irq_attach(lower->irq, stm32pwm_tim1interrupt, NULL);
up_disable_irq(lower->irq);
#endif
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM2_PWM
case 2:
lower = &g_pwm2dev;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM3_PWM
case 3:
lower = &g_pwm3dev;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM4_PWM
case 4:
lower = &g_pwm4dev;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM5_PWM
case 5:
lower = &g_pwm5dev;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM8_PWM
case 8:
lower = &g_pwm8dev;
/* Attach but disable the TIM8 update interrupt */
#ifdef CONFIG_PWM_PULSECOUNT
irq_attach(lower->irq, stm32pwm_tim8interrupt, NULL);
up_disable_irq(lower->irq);
#endif
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM14_PWM
case 14:
lower = &g_pwm14dev;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM15_PWM
case 15:
lower = &g_pwm15dev;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM16_PWM
case 16:
lower = &g_pwm16dev;
break;
#endif
#ifdef CONFIG_STM32F0L0G0_TIM17_PWM
case 17:
lower = &g_pwm17dev;
break;
#endif
default:
pwmerr("ERROR: No such timer configured\n");
return NULL;
}
return (struct pwm_lowerhalf_s *)lower;
}
#endif /* CONFIG_STM32F0L0G0_TIMx_PWM */