nuttx/arch/arm/src/stm32h7/stm32_adc.c

2114 lines
58 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/****************************************************************************
* arch/arm/src/stm32h7/stm32_adc.c
*
* Copyright (C) 2017, 2019 Gregory Nutt. All rights reserved.
* Copyright (C) 2015 Motorola Mobility, LLC. All rights reserved.
* Copyright (C) 2015 Omni Hoverboards Inc. All rights reserved.
* Authors: Gregory Nutt <gnutt@nuttx.org>
* Diego Sanchez <dsanchez@nx-engineering.com>
* Paul Alexander Patience <paul-a.patience@polymtl.ca>
* Mateusz Szafoni <raiden00@railab.me>
* Juha Niskanen <juha.niskanen@haltian.com>
* David Sidrane <david_s5@nscdg.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <errno.h>
#include <assert.h>
#include <debug.h>
#include <string.h>
#include <arch/board/board.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/power/pm.h>
#include <nuttx/analog/adc.h>
#include <nuttx/analog/ioctl.h>
#include "chip.h"
#include "stm32_rcc.h"
#include "stm32_tim.h"
#include "stm32_dma.h"
#include "stm32_adc.h"
/* ADC "upper half" support must be enabled */
#ifdef CONFIG_ADC
/* Some ADC peripheral must be enabled */
#if defined(CONFIG_STM32H7_ADC1) || defined(CONFIG_STM32H7_ADC2) || \
defined(CONFIG_STM32H7_ADC3)
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#ifndef container_of
# define container_of(ptr, type, member) \
((type *)((intptr_t)(ptr) - offsetof(type, member)))
#endif
/* ADC Channels/DMA *********************************************************/
/* The maximum number of channels that can be sampled. While DMA support is
* very nice for reliable multi-channel sampling, the STM32H7 can function
* without, although there is a risk of overrun.
*/
#define ADC_MAX_CHANNELS_DMA 20
#define ADC_MAX_CHANNELS_NODMA 20
#ifdef ADC_HAVE_DMA
# if !defined(CONFIG_STM32H7_DMA1) && !defined(CONFIG_STM32H7_DMA2)
# /* REVISIT: check accordingly to which one is configured in board.h */
# error "STM32H7 ADC DMA support requires CONFIG_STM32H7_DMA1 or CONFIG_STM32H7_DMA2"
# endif
#endif
#ifdef ADC_HAVE_DMA
# define ADC_MAX_SAMPLES ADC_MAX_CHANNELS_DMA
#else
# define ADC_MAX_SAMPLES ADC_MAX_CHANNELS_NODMA
#endif
#define ADC_DMA_CONTROL_WORD (DMA_CCR_MSIZE_16BITS | \
DMA_CCR_PSIZE_16BITS | \
DMA_CCR_MINC | \
DMA_CCR_CIRC)
/* DMA channels and interface values */
#define ADC_SMPR_DEFAULT ADC_SMPR_810p5
#define ADC_SMPR1_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR1_SMP0_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP1_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP2_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP3_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP4_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP5_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP6_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP7_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP8_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR1_SMP9_SHIFT))
#define ADC_SMPR2_DEFAULT ((ADC_SMPR_DEFAULT << ADC_SMPR2_SMP10_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP11_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP12_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP13_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP14_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP15_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP16_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP17_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP18_SHIFT) | \
(ADC_SMPR_DEFAULT << ADC_SMPR2_SMP19_SHIFT))
/* The channels not in this range are internal channels for reading
* Vbat ADC3:17, VSense (temperature) ADC3:18 and Vrefint ADC3:19
*
* N.B. DAC channels on ADC2 are not supported
*/
#define ADC_EXTERNAL_CHAN_MAX 16
/****************************************************************************
* Private Types
****************************************************************************/
/* This structure describes the state of one ADC block */
struct stm32_dev_s
{
FAR const struct adc_callback_s *cb;
uint8_t irq; /* Interrupt generated by this ADC block */
uint8_t nchannels; /* Number of channels */
uint8_t cchannels; /* Number of configured channels */
uint8_t intf; /* ADC interface number */
uint8_t current; /* Current ADC channel being converted */
#ifdef ADC_HAVE_DMA
uint8_t dmachan; /* DMA channel needed by this ADC */
bool hasdma; /* True: This ADC supports DMA */
#endif
#ifdef ADC_HAVE_DFSDM
bool hasdfsdm; /* True: This ADC routes its output to DFSDM */
#endif
#ifdef ADC_HAVE_TIMER
uint8_t trigger; /* Timer trigger channel: 0=CC1, 1=CC2, 2=CC3,
* 3=CC4, 4=TRGO, 5=TRGO2 */
#endif
xcpt_t isr; /* Interrupt handler for this ADC block */
uint32_t base; /* Base address of registers unique to this ADC
* block */
uint32_t mbase; /* Base address of master ADC (allows for access to
* shared common registers) */
bool initialized; /* Keeps track of the initialization status of the ADC */
#ifdef ADC_HAVE_TIMER
uint32_t tbase; /* Base address of timer used by this ADC block */
uint32_t trcc_enr; /* RCC ENR Register */
uint32_t trcc_en; /* RCC EN Bit in ENR Register */
uint32_t extsel; /* EXTSEL value used by this ADC block */
uint32_t pclck; /* The PCLK frequency that drives this timer */
uint32_t freq; /* The desired frequency of conversions */
#endif
#ifdef CONFIG_PM
struct pm_callback_s pm_callback;
#endif
#ifdef ADC_HAVE_DMA
DMA_HANDLE dma; /* Allocated DMA channel */
/* DMA transfer buffer */
uint16_t dmabuffer[ADC_MAX_SAMPLES];
#endif
/* List of selected ADC channels to sample */
uint8_t chanlist[ADC_MAX_SAMPLES];
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* ADC Register access */
static uint32_t adc_getreg(FAR struct stm32_dev_s *priv, int offset);
static void adc_putreg(FAR struct stm32_dev_s *priv, int offset,
uint32_t value);
static void adc_modifyreg(FAR struct stm32_dev_s *priv, int offset,
uint32_t clrbits, uint32_t setbits);
#ifdef ADC_HAVE_TIMER
static uint16_t tim_getreg(FAR struct stm32_dev_s *priv, int offset);
static void tim_putreg(FAR struct stm32_dev_s *priv, int offset,
uint16_t value);
static void tim_modifyreg(FAR struct stm32_dev_s *priv, int offset,
uint16_t clrbits, uint16_t setbits);
static void tim_dumpregs(FAR struct stm32_dev_s *priv,
FAR const char *msg);
#endif
/* ADC Miscellaneous Helpers */
static void adc_rccreset(FAR struct stm32_dev_s *priv, bool reset);
static void adc_enable(FAR struct stm32_dev_s *priv);
static uint32_t adc_sqrbits(FAR struct stm32_dev_s *priv, int first,
int last, int offset);
static int adc_set_ch(FAR struct adc_dev_s *dev, uint8_t ch);
static bool adc_internal(FAR struct stm32_dev_s * priv,
uint32_t *adc_ccr);
#ifdef ADC_HAVE_TIMER
static void adc_timstart(FAR struct stm32_dev_s *priv, bool enable);
static int adc_timinit(FAR struct stm32_dev_s *priv);
#endif
#ifdef ADC_HAVE_DMA
static void adc_dmaconvcallback(DMA_HANDLE handle, uint8_t isr,
FAR void *arg);
#endif
#ifdef ADC_HAVE_DFSDM
static int adc_setoffset(FAR struct stm32_dev_s *priv, uint8_t ch, uint8_t i,
uint16_t offset);
#endif
static void adc_startconv(FAR struct stm32_dev_s *priv, bool enable);
#ifdef CONFIG_PM
static int adc_pm_prepare(struct pm_callback_s *cb, int domain,
enum pm_state_e state);
#endif
/* ADC Interrupt Handler */
static int adc_interrupt(FAR struct adc_dev_s *dev, uint32_t regval);
#if defined(CONFIG_STM32H7_ADC1) || defined(CONFIG_STM32H7_ADC2)
static int adc12_interrupt(int irq, FAR void *context, FAR void *arg);
#endif
#if defined(CONFIG_STM32H7_ADC3)
static int adc3_interrupt(int irq, FAR void *context, FAR void *arg);
#endif
/* ADC Driver Methods */
static int adc_bind(FAR struct adc_dev_s *dev,
FAR const struct adc_callback_s *callback);
static void adc_reset(FAR struct adc_dev_s *dev);
static int adc_setup(FAR struct adc_dev_s *dev);
static void adc_shutdown(FAR struct adc_dev_s *dev);
static void adc_rxint(FAR struct adc_dev_s *dev, bool enable);
static int adc_ioctl(FAR struct adc_dev_s *dev, int cmd, unsigned long arg);
/****************************************************************************
* Private Data
****************************************************************************/
/* ADC interface operations */
static const struct adc_ops_s g_adcops =
{
.ao_bind = adc_bind,
.ao_reset = adc_reset,
.ao_setup = adc_setup,
.ao_shutdown = adc_shutdown,
.ao_rxint = adc_rxint,
.ao_ioctl = adc_ioctl,
};
/* ADC1 state */
#ifdef CONFIG_STM32H7_ADC1
static struct stm32_dev_s g_adcpriv1 =
{
.irq = STM32_IRQ_ADC12,
.isr = adc12_interrupt,
.intf = 1,
.base = STM32_ADC1_BASE,
.mbase = STM32_ADC1_BASE,
.initialized = false,
#ifdef ADC1_HAVE_TIMER
.trigger = CONFIG_STM32H7_ADC1_TIMTRIG,
.tbase = ADC1_TIMER_BASE,
.trcc_enr = ADC1_TIMER_RCC_ENR,
.trcc_en = ADC1_TIMER_RCC_EN,
.extsel = ADC1_EXTSEL_VALUE,
.pclck = ADC1_TIMER_PCLK_FREQUENCY,
.freq = CONFIG_STM32H7_ADC1_SAMPLE_FREQUENCY,
#endif
#ifdef ADC1_HAVE_DMA
.dmachan = ADC1_DMA_CHAN,
.hasdma = true,
#endif
#ifdef ADC1_HAVE_DFSDM
.hasdfsdm = true,
#endif
#ifdef CONFIG_PM
.pm_callback =
{
.prepare = adc_pm_prepare,
}
#endif
};
static struct adc_dev_s g_adcdev1 =
{
.ad_ops = &g_adcops,
.ad_priv = &g_adcpriv1,
};
#endif
/* ADC2 state */
#ifdef CONFIG_STM32H7_ADC2
static struct stm32_dev_s g_adcpriv2 =
{
.irq = STM32_IRQ_ADC12,
.isr = adc12_interrupt,
.intf = 2,
.base = STM32_ADC2_BASE,
.mbase = STM32_ADC1_BASE,
.initialized = false,
#ifdef ADC2_HAVE_TIMER
.trigger = CONFIG_STM32H7_ADC2_TIMTRIG,
.tbase = ADC2_TIMER_BASE,
.trcc_enr = ADC2_TIMER_RCC_ENR,
.trcc_en = ADC2_TIMER_RCC_EN,
.extsel = ADC2_EXTSEL_VALUE,
.pclck = ADC2_TIMER_PCLK_FREQUENCY,
.freq = CONFIG_STM32H7_ADC2_SAMPLE_FREQUENCY,
#endif
#ifdef ADC2_HAVE_DMA
.dmachan = ADC2_DMA_CHAN,
.hasdma = true,
#endif
#ifdef ADC2_HAVE_DFSDM
.hasdfsdm = true,
#endif
#ifdef CONFIG_PM
.pm_callback =
{
.prepare = adc_pm_prepare,
}
#endif
};
static struct adc_dev_s g_adcdev2 =
{
.ad_ops = &g_adcops,
.ad_priv = &g_adcpriv2,
};
#endif
/* ADC3 state */
#ifdef CONFIG_STM32H7_ADC3
static struct stm32_dev_s g_adcpriv3 =
{
.irq = STM32_IRQ_ADC3,
.isr = adc3_interrupt,
.intf = 3,
.base = STM32_ADC3_BASE,
.mbase = STM32_ADC3_BASE,
.initialized = false,
#ifdef ADC3_HAVE_TIMER
.trigger = CONFIG_STM32H7_ADC3_TIMTRIG,
.tbase = ADC3_TIMER_BASE,
.trcc_enr = ADC3_TIMER_RCC_ENR,
.trcc_en = ADC3_TIMER_RCC_EN,
.extsel = ADC3_EXTSEL_VALUE,
.pclck = ADC3_TIMER_PCLK_FREQUENCY,
.freq = CONFIG_STM32H7_ADC3_SAMPLE_FREQUENCY,
#endif
#ifdef ADC3_HAVE_DMA
.dmachan = ADC3_DMA_CHAN,
.hasdma = true,
#endif
#ifdef ADC3_HAVE_DFSDM
.hasdfsdm = true,
#endif
#ifdef CONFIG_PM
.pm_callback =
{
.prepare = adc_pm_prepare,
}
#endif
};
static struct adc_dev_s g_adcdev3 =
{
.ad_ops = &g_adcops,
.ad_priv = &g_adcpriv3,
};
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: adc_getreg
*
* Description:
* Read the value of an ADC register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
* The current contents of the specified register
*
****************************************************************************/
static uint32_t adc_getreg(FAR struct stm32_dev_s *priv, int offset)
{
return getreg32(priv->base + offset);
}
/****************************************************************************
* Name: adc_putreg
*
* Description:
* Write a value to an ADC register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to write to
* value - The value to write to the register
*
* Returned Value:
* None
*
****************************************************************************/
static void adc_putreg(FAR struct stm32_dev_s *priv, int offset,
uint32_t value)
{
putreg32(value, priv->base + offset);
}
/****************************************************************************
* Name: adc_modifyreg
*
* Description:
* Modify the value of an ADC register (not atomic).
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to modify
* clrbits - The bits to clear
* setbits - The bits to set
*
* Returned Value:
* None
*
****************************************************************************/
static void adc_modifyreg(FAR struct stm32_dev_s *priv, int offset,
uint32_t clrbits, uint32_t setbits)
{
adc_putreg(priv, offset, (adc_getreg(priv, offset) & ~clrbits) | setbits);
}
/****************************************************************************
* Name: adc_getregm
*
* Description:
* Read the value of an ADC register from the associated ADC master.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
* The current contents of the specified register in the ADC master.
*
****************************************************************************/
static uint32_t adc_getregm(FAR struct stm32_dev_s *priv, int offset)
{
return getreg32(priv->mbase + offset);
}
/****************************************************************************
* Name: adc_putregm
*
* Description:
* Write a value to an ADC register in the associated ADC master.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to write to
* value - The value to write to the register
*
* Returned Value:
* None
*
****************************************************************************/
static void adc_putregm(FAR struct stm32_dev_s *priv, int offset,
uint32_t value)
{
putreg32(value, priv->mbase + offset);
}
/****************************************************************************
* Name: adc_modifyregm
*
* Description:
* Modify the value of an ADC register in the associated ADC master
* (not atomic).
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to modify
* clrbits - The bits to clear
* setbits - The bits to set
*
* Returned Value:
* None
*
****************************************************************************/
static void adc_modifyregm(FAR struct stm32_dev_s *priv, int offset,
uint32_t clrbits, uint32_t setbits)
{
adc_putregm(priv, offset, (adc_getregm(priv, offset) & ~clrbits) | setbits);
}
/****************************************************************************
* Name: tim_getreg
*
* Description:
* Read the value of an ADC timer register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
* The current contents of the specified register
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static uint16_t tim_getreg(FAR struct stm32_dev_s *priv, int offset)
{
return getreg16(priv->tbase + offset);
}
#endif
/****************************************************************************
* Name: tim_putreg
*
* Description:
* Write a value to an ADC timer register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to write to
* value - The value to write to the register
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void tim_putreg(FAR struct stm32_dev_s *priv, int offset,
uint16_t value)
{
putreg16(value, priv->tbase + offset);
}
#endif
/****************************************************************************
* Name: tim_modifyreg
*
* Description:
* Modify the value of an ADC timer register (not atomic).
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to modify
* clrbits - The bits to clear
* setbits - The bits to set
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void tim_modifyreg(FAR struct stm32_dev_s *priv, int offset,
uint16_t clrbits, uint16_t setbits)
{
tim_putreg(priv, offset, (tim_getreg(priv, offset) & ~clrbits) | setbits);
}
#endif
/****************************************************************************
* Name: tim_dumpregs
*
* Description:
* Dump all timer registers.
*
* Input Parameters:
* priv - A reference to the ADC block status
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void tim_dumpregs(FAR struct stm32_dev_s *priv, FAR const char *msg)
{
ainfo("%s:\n", msg);
ainfo(" CR1: %04x CR2: %04x SMCR: %04x DIER: %04x\n",
tim_getreg(priv, STM32_GTIM_CR1_OFFSET),
tim_getreg(priv, STM32_GTIM_CR2_OFFSET),
tim_getreg(priv, STM32_GTIM_SMCR_OFFSET),
tim_getreg(priv, STM32_GTIM_DIER_OFFSET));
ainfo(" SR: %04x EGR: 0000 CCMR1: %04x CCMR2: %04x\n",
tim_getreg(priv, STM32_GTIM_SR_OFFSET),
tim_getreg(priv, STM32_GTIM_CCMR1_OFFSET),
tim_getreg(priv, STM32_GTIM_CCMR2_OFFSET));
ainfo(" CCER: %04x CNT: %04x PSC: %04x ARR: %04x\n",
tim_getreg(priv, STM32_GTIM_CCER_OFFSET),
tim_getreg(priv, STM32_GTIM_CNT_OFFSET),
tim_getreg(priv, STM32_GTIM_PSC_OFFSET),
tim_getreg(priv, STM32_GTIM_ARR_OFFSET));
ainfo(" CCR1: %04x CCR2: %04x CCR3: %04x CCR4: %04x\n",
tim_getreg(priv, STM32_GTIM_CCR1_OFFSET),
tim_getreg(priv, STM32_GTIM_CCR2_OFFSET),
tim_getreg(priv, STM32_GTIM_CCR3_OFFSET),
tim_getreg(priv, STM32_GTIM_CCR4_OFFSET));
if (priv->tbase == STM32_TIM1_BASE || priv->tbase == STM32_TIM8_BASE)
{
ainfo(" RCR: %04x BDTR: %04x DCR: %04x DMAR: %04x\n",
tim_getreg(priv, STM32_ATIM_RCR_OFFSET),
tim_getreg(priv, STM32_ATIM_BDTR_OFFSET),
tim_getreg(priv, STM32_ATIM_DCR_OFFSET),
tim_getreg(priv, STM32_ATIM_DMAR_OFFSET));
}
else
{
ainfo(" DCR: %04x DMAR: %04x\n",
tim_getreg(priv, STM32_GTIM_DCR_OFFSET),
tim_getreg(priv, STM32_GTIM_DMAR_OFFSET));
}
}
#endif
/****************************************************************************
* Name: adc_timstart
*
* Description:
* Start (or stop) the timer counter
*
* Input Parameters:
* priv - A reference to the ADC block status
* enable - True: Start conversion
*
* Returned Value:
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void adc_timstart(FAR struct stm32_dev_s *priv, bool enable)
{
ainfo("enable: %d\n", enable ? 1 : 0);
if (enable)
{
/* Start the counter */
tim_modifyreg(priv, STM32_GTIM_CR1_OFFSET, 0, GTIM_CR1_CEN);
}
else
{
/* Disable the counter */
tim_modifyreg(priv, STM32_GTIM_CR1_OFFSET, GTIM_CR1_CEN, 0);
}
}
#endif
/****************************************************************************
* Name: adc_timinit
*
* Description:
* Initialize the timer that drivers the ADC sampling for this channel
* using the pre-calculated timer divider definitions.
*
* Input Parameters:
* priv - A reference to the ADC block status
*
* Returned Value:
* Zero on success; a negated errno value on failure.
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static int adc_timinit(FAR struct stm32_dev_s *priv)
{
uint32_t prescaler;
uint32_t reload;
uint32_t timclk;
uint16_t clrbits = 0;
uint16_t setbits = 0;
uint16_t cr2;
uint16_t ccmr1;
uint16_t ccmr2;
uint16_t ocmode1;
uint16_t ocmode2;
uint16_t ccenable;
uint16_t ccer;
uint16_t egr;
/* If the timer base address is zero, then this ADC was not configured to
* use a timer.
*/
if (priv->tbase == 0)
{
return ERROR;
}
/* EXTSEL selection: These bits select the external event used to trigger
* the start of conversion of a regular group. NOTE:
*
* - The position with of the EXTSEL field varies from one STM32 MCU
* to another.
* - The width of the EXTSEL field varies from one STM32 MCU to another.
* - The value in priv->extsel is already shifted into the correct bit
* position.
*/
ainfo("Initializing timers extsel = 0x%08x\n", priv->extsel);
adc_modifyreg(priv, STM32_ADC_CFGR_OFFSET,
ADC_CFGR_EXTEN_MASK | ADC_CFGR_EXTSEL_MASK,
ADC_CFGR_EXTEN_RISING | priv->extsel);
/* Configure the timer channel to drive the ADC */
/* Enable Timer clocking */
modifyreg32(priv->trcc_enr, 0, priv->trcc_en);
/* Calculate optimal values for the timer prescaler and for the timer
* reload register. If freq is the desired frequency, then
*
* reload = timclk / freq
* reload = (pclck / prescaler) / freq
*
* There are many solutions to do this, but the best solution will be the
* one that has the largest reload value and the smallest prescaler value.
* That is the solution that should give us the most accuracy in the timer
* control. Subject to:
*
* 0 <= prescaler <= 65536
* 1 <= reload <= 65535
*
* So ( prescaler = pclck / 65535 / freq ) would be optimal.
*/
prescaler = (priv->pclck / priv->freq + 65534) / 65535;
/* We need to decrement the prescaler value by one, but only, the value
* does not underflow.
*/
if (prescaler < 1)
{
awarn("WARNING: Prescaler underflowed.\n");
prescaler = 1;
}
/* Check for overflow */
else if (prescaler > 65536)
{
awarn("WARNING: Prescaler overflowed.\n");
prescaler = 65536;
}
timclk = priv->pclck / prescaler;
reload = timclk / priv->freq;
if (reload < 1)
{
awarn("WARNING: Reload value underflowed.\n");
reload = 1;
}
else if (reload > 65535)
{
awarn("WARNING: Reload value overflowed.\n");
reload = 65535;
}
/* Disable the timer until we get it configured */
adc_timstart(priv, false);
/* Set up the timer CR1 register.
*
* Select the Counter Mode == count up:
*
* ATIM_CR1_EDGE: The counter counts up or down depending on the
* direction bit(DIR).
* ATIM_CR1_DIR: 0: count up, 1: count down
*
* Set the clock division to zero for all
*/
clrbits = GTIM_CR1_DIR | GTIM_CR1_CMS_MASK | GTIM_CR1_CKD_MASK;
setbits = GTIM_CR1_EDGE;
tim_modifyreg(priv, STM32_GTIM_CR1_OFFSET, clrbits, setbits);
/* Set the reload and prescaler values */
tim_putreg(priv, STM32_GTIM_PSC_OFFSET, prescaler - 1);
tim_putreg(priv, STM32_GTIM_ARR_OFFSET, reload);
/* Clear the advanced timers repetition counter in TIM1 */
if (priv->tbase == STM32_TIM1_BASE || priv->tbase == STM32_TIM8_BASE)
{
tim_putreg(priv, STM32_ATIM_RCR_OFFSET, 0);
tim_putreg(priv, STM32_ATIM_BDTR_OFFSET, ATIM_BDTR_MOE); /* Check me */
}
/* TIMx event generation: Bit 0 UG: Update generation */
tim_putreg(priv, STM32_GTIM_EGR_OFFSET, GTIM_EGR_UG);
/* Handle channel specific setup */
ocmode1 = 0;
ocmode2 = 0;
switch (priv->trigger)
{
case 0: /* TimerX CC1 event */
{
ccenable = ATIM_CCER_CC1E;
ocmode1 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR1_CC1S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR1_OC1M_SHIFT) |
ATIM_CCMR1_OC1PE;
/* Set the event CC1 */
egr = ATIM_EGR_CC1G;
/* Set the duty cycle by writing to the CCR register for this
* channel
*/
tim_putreg(priv, STM32_GTIM_CCR1_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 1: /* TimerX CC2 event */
{
ccenable = ATIM_CCER_CC2E;
ocmode1 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR1_CC2S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR1_OC2M_SHIFT) |
ATIM_CCMR1_OC2PE;
/* Set the event CC2 */
egr = ATIM_EGR_CC2G;
/* Set the duty cycle by writing to the CCR register for this
* channel
*/
tim_putreg(priv, STM32_GTIM_CCR2_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 2: /* TimerX CC3 event */
{
ccenable = ATIM_CCER_CC3E;
ocmode2 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR2_CC3S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR2_OC3M_SHIFT) |
ATIM_CCMR2_OC3PE;
/* Set the event CC3 */
egr = ATIM_EGR_CC3G;
/* Set the duty cycle by writing to the CCR register for this
* channel
*/
tim_putreg(priv, STM32_GTIM_CCR3_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 3: /* TimerX CC4 event */
{
ccenable = ATIM_CCER_CC4E;
ocmode2 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR2_CC4S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR2_OC4M_SHIFT) |
ATIM_CCMR2_OC4PE;
/* Set the event CC4 */
egr = ATIM_EGR_CC4G;
/* Set the duty cycle by writing to the CCR register for this
* channel
*/
tim_putreg(priv, STM32_GTIM_CCR4_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 4: /* TimerX TRGO event */
{
/* TODO: TRGO support not yet implemented */
/* Set the event TRGO */
ccenable = 0;
egr = GTIM_EGR_TG;
/* Set the duty cycle by writing to the CCR register for this
* channel
*/
tim_putreg(priv, STM32_GTIM_CCR4_OFFSET, (uint16_t)(reload >> 1));
}
break;
default:
aerr("ERROR: No such trigger: %d\n", priv->trigger);
return -EINVAL;
}
/* Disable the Channel by resetting the CCxE Bit in the CCER register */
ccer = tim_getreg(priv, STM32_GTIM_CCER_OFFSET);
ccer &= ~ccenable;
tim_putreg(priv, STM32_GTIM_CCER_OFFSET, ccer);
/* Fetch the CR2, CCMR1, and CCMR2 register (already have ccer) */
cr2 = tim_getreg(priv, STM32_GTIM_CR2_OFFSET);
ccmr1 = tim_getreg(priv, STM32_GTIM_CCMR1_OFFSET);
ccmr2 = tim_getreg(priv, STM32_GTIM_CCMR2_OFFSET);
/* Reset the Output Compare Mode Bits and set the select output compare
* mode
*/
ccmr1 &= ~(ATIM_CCMR1_CC1S_MASK | ATIM_CCMR1_OC1M_MASK | ATIM_CCMR1_OC1PE |
ATIM_CCMR1_CC2S_MASK | ATIM_CCMR1_OC2M_MASK | ATIM_CCMR1_OC2PE);
ccmr2 &= ~(ATIM_CCMR2_CC3S_MASK | ATIM_CCMR2_OC3M_MASK | ATIM_CCMR2_OC3PE |
ATIM_CCMR2_CC4S_MASK | ATIM_CCMR2_OC4M_MASK | ATIM_CCMR2_OC4PE);
ccmr1 |= ocmode1;
ccmr2 |= ocmode2;
/* Reset the output polarity level of all channels (selects high
* polarity)
*/
ccer &= ~(ATIM_CCER_CC1P | ATIM_CCER_CC2P |
ATIM_CCER_CC3P | ATIM_CCER_CC4P);
/* Enable the output state of the selected channel (only) */
ccer &= ~(ATIM_CCER_CC1E | ATIM_CCER_CC2E |
ATIM_CCER_CC3E | ATIM_CCER_CC4E);
ccer |= ccenable;
if (priv->tbase == STM32_TIM1_BASE || priv->tbase == STM32_TIM8_BASE)
{
/* Reset output N polarity level, output N state, output compare state,
* output compare N idle state.
*/
ccer &= ~(ATIM_CCER_CC1NE | ATIM_CCER_CC1NP |
ATIM_CCER_CC2NE | ATIM_CCER_CC2NP |
ATIM_CCER_CC3NE | ATIM_CCER_CC3NP |
ATIM_CCER_CC4NP);
/* Reset the output compare and output compare N IDLE State */
cr2 &= ~(ATIM_CR2_OIS1 | ATIM_CR2_OIS1N |
ATIM_CR2_OIS2 | ATIM_CR2_OIS2N |
ATIM_CR2_OIS3 | ATIM_CR2_OIS3N |
ATIM_CR2_OIS4);
}
else
{
ccer &= ~(GTIM_CCER_CC1NP | GTIM_CCER_CC2NP | GTIM_CCER_CC3NP);
}
/* Save the modified register values */
tim_putreg(priv, STM32_GTIM_CR2_OFFSET, cr2);
tim_putreg(priv, STM32_GTIM_CCMR1_OFFSET, ccmr1);
tim_putreg(priv, STM32_GTIM_CCMR2_OFFSET, ccmr2);
tim_putreg(priv, STM32_GTIM_CCER_OFFSET, ccer);
tim_putreg(priv, STM32_GTIM_EGR_OFFSET, egr);
/* Set the ARR Preload Bit */
tim_modifyreg(priv, STM32_GTIM_CR1_OFFSET, 0, GTIM_CR1_ARPE);
/* Enable the timer counter */
adc_timstart(priv, true);
tim_dumpregs(priv, "After starting timers");
return OK;
}
#endif
/****************************************************************************
* Name: adc_pm_prepare
*
* Description:
* Called by power management framework when it wants to enter low power
* states. Check if ADC is in progress and if so prevent from entering
* STOP.
*
****************************************************************************/
#ifdef CONFIG_PM
static int adc_pm_prepare(struct pm_callback_s *cb, int domain,
enum pm_state_e state)
{
FAR struct stm32_dev_s *priv =
container_of(cb, struct stm32_dev_s, pm_callback);
uint32_t regval;
regval = adc_getreg(priv, STM32_ADC_CR_OFFSET);
if ((state >= PM_IDLE) && (regval & ADC_CR_ADSTART))
{
return -EBUSY;
}
return OK;
}
#endif
/****************************************************************************
* Name: adc_wdog_enable
*
* Description:
* Enable the analog watchdog.
*
****************************************************************************/
static void adc_wdog_enable(struct stm32_dev_s *priv)
{
uint32_t regval;
/* Initialize the Analog watchdog enable */
regval = adc_getreg(priv, STM32_ADC_CFGR_OFFSET);
regval |= ADC_CFGR_AWD1EN | ADC_CFGR_CONT | ADC_CFGR_OVRMOD;
adc_putreg(priv, STM32_ADC_CFGR_OFFSET, regval);
/* Switch to analog watchdog interrupt */
regval = adc_getreg(priv, STM32_ADC_IER_OFFSET);
regval |= ADC_INT_AWD1;
regval &= ~ADC_INT_EOC;
adc_putreg(priv, STM32_ADC_IER_OFFSET, regval);
}
/****************************************************************************
* Name: adc_startconv
*
* Description:
* Start (or stop) the ADC conversion process
*
* Input Parameters:
* priv - A reference to the ADC block status
* enable - True: Start conversion
*
* Returned Value:
*
****************************************************************************/
static void adc_startconv(FAR struct stm32_dev_s *priv, bool enable)
{
uint32_t regval;
ainfo("enable: %d\n", enable ? 1 : 0);
regval = adc_getreg(priv, STM32_ADC_CR_OFFSET);
if (enable)
{
/* Start conversion of regular channels */
regval |= ADC_CR_ADSTART;
}
else
{
/* Disable the conversion of regular channels */
regval |= ADC_CR_ADSTP;
}
adc_putreg(priv, STM32_ADC_CR_OFFSET, regval);
}
/****************************************************************************
* Name: adc_rccreset
*
* Description:
* Deinitializes the ADCx peripheral registers to their default
* reset values. It could set all the ADCs configured.
*
* Input Parameters:
* priv - A reference to the ADC block status
* reset - Condition, set or reset
*
* Returned Value:
*
****************************************************************************/
static void adc_rccreset(FAR struct stm32_dev_s *priv, bool reset)
{
irqstate_t flags;
uint32_t regval;
uint32_t reg = STM32_RCC_AHB4RSTR;
uint32_t bit = RCC_AHB4RSTR_ADC3RST;
/* Pick the appropriate bit in the AHBx reset register. */
if (priv->intf != 3)
{
reg = STM32_RCC_AHB1RSTR;
bit = RCC_AHB1RSTR_ADC12RST;
}
/* First must disable interrupts because the AHB2RSTR register is used by
* several different drivers.
*/
flags = enter_critical_section();
/* Set or clear the selected bit in the AHB2 reset register */
regval = getreg32(reg);
if (reset)
{
regval |= bit;
}
else
{
regval &= ~bit;
}
putreg32(regval, reg);
leave_critical_section(flags);
}
/****************************************************************************
* Name: adc_enable
*
* Description:
* Enables the specified ADC peripheral.
*
* Input Parameters:
* priv - A reference to the ADC block status
*
* Returned Value:
*
****************************************************************************/
static void adc_enable(FAR struct stm32_dev_s *priv)
{
uint32_t regval;
regval = adc_getreg(priv, STM32_ADC_CR_OFFSET);
/* Exit deep power down mode and enable voltage regulator */
regval &= ~ADC_CR_DEEPPWD;
regval |= ADC_CR_ADVREGEN;
adc_putreg(priv, STM32_ADC_CR_OFFSET, regval);
/* Wait for voltage regulator to power up */
up_udelay(20);
/* Enable ADC calibration. ADCALDIF == 0 so this is only for
* single-ended conversions, not for differential ones.
*/
regval |= ADC_CR_ADCAL;
adc_putreg(priv, STM32_ADC_CR_OFFSET, regval);
/* Wait for calibration to complete */
while (adc_getreg(priv, STM32_ADC_CR_OFFSET) & ADC_CR_ADCAL);
/* Enable ADC
* Note: ADEN bit cannot be set during ADCAL=1 and 4 ADC clock cycle
* after the ADCAL bit is cleared by hardware. If we are using SYSCLK
* as ADC clock source, this is the same as time taken to execute 4
* ARM instructions.
*/
regval = adc_getreg(priv, STM32_ADC_CR_OFFSET);
regval |= ADC_CR_ADEN;
adc_putreg(priv, STM32_ADC_CR_OFFSET, regval);
/* Wait for hardware to be ready for conversions */
while (!(adc_getreg(priv, STM32_ADC_ISR_OFFSET) & ADC_INT_ADRDY));
}
/****************************************************************************
* Name: adc_bind
*
* Description:
* Bind the upper-half driver callbacks to the lower-half implementation.
* This must be called early in order to receive ADC event notifications.
*
****************************************************************************/
static int adc_bind(FAR struct adc_dev_s *dev,
FAR const struct adc_callback_s *callback)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
DEBUGASSERT(priv != NULL);
priv->cb = callback;
return OK;
}
/****************************************************************************
* Name: adc_reset
*
* Description:
* Reset the ADC device. Called early to initialize the hardware. This
* is called, before adc_setup() and on error conditions.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_reset(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
ainfo("intf: ADC%d\n", priv->intf);
/* Enable ADC reset state */
adc_rccreset(priv, true);
/* Release ADC from reset state */
adc_rccreset(priv, false);
}
/****************************************************************************
* Name: adc_setup
*
* Description:
* Configure the ADC. This method is called the first time that the ADC
* device is opened. This will occur when the port is first opened.
* This setup includes configuring and attaching ADC interrupts.
* Interrupts are all disabled upon return.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_setup(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
int ret;
int i;
irqstate_t flags;
uint32_t clrbits;
uint32_t setbits;
/* Attach the ADC interrupt */
ret = irq_attach(priv->irq, priv->isr, NULL);
if (ret < 0)
{
ainfo("irq_attach failed: %d\n", ret);
return ret;
}
flags = enter_critical_section();
/* Make sure that the ADC device is in the powered up, reset state.
* Since reset is shared between ADC1 and ADC2, don't reset one if the
* other has already been reset. (We only need to worry about this if both
* ADC1 and ADC2 are enabled.)
*/
#if defined(CONFIG_STM32H7_ADC1) && defined(CONFIG_STM32H7_ADC2)
if ((dev == &g_adcdev1 &&
!((FAR struct stm32_dev_s *)g_adcdev2.ad_priv)->initialized) ||
(dev == &g_adcdev2 &&
!((FAR struct stm32_dev_s *)g_adcdev1.ad_priv)->initialized))
#endif
{
adc_reset(dev);
}
/* Initialize the same sample time for each ADC.
* During sample cycles channel selection bits must remain unchanged.
*/
adc_putreg(priv, STM32_ADC_SMPR1_OFFSET, ADC_SMPR1_DEFAULT);
adc_putreg(priv, STM32_ADC_SMPR2_OFFSET, ADC_SMPR2_DEFAULT);
/* Set the resolution of the conversion. */
clrbits = ADC_CFGR_RES_MASK | ADC_CFGR_DMNGT_MASK;
setbits = ADC_CFGR_RES_16BIT;
#ifdef ADC_HAVE_DMA
if (priv->hasdma)
{
/* Enable One shot DMA */
setbits |= ADC_CFGR_DMNGT_DMA_ONESHOT;
}
#endif
#ifdef ADC_HAVE_DFSDM
if (priv->hasdfsdm)
{
/* Enable routing to DFSDM */
setbits |= ADC_CFGR_DMNGT_DFSDM;
}
#endif
/* Disable continuous mode */
clrbits |= ADC_CFGR_CONT;
/* Disable external trigger for regular channels */
clrbits |= ADC_CFGR_EXTEN_MASK;
setbits |= ADC_CFGR_EXTEN_NONE;
/* Set CFGR configuration */
adc_modifyreg(priv, STM32_ADC_CFGR_OFFSET, clrbits, setbits);
/* Set CFGR2 configuration to align right no oversample */
clrbits = ADC_CFGR2_ROVSE | ADC_CFGR2_JOVSE | ADC_CFGR2_OVSS_MASK \
| ADC_CFGR2_OVSR_MASK | ADC_CFGR2_LSHIFT_MASK;
setbits = 0;
adc_modifyreg(priv, STM32_ADC_CFGR2_OFFSET, clrbits, setbits);
/* Configuration of the channel conversions */
adc_set_ch(dev, 0);
/* ADC CCR configuration */
clrbits = ADC_CCR_PRESC_MASK | ADC_CCR_VREFEN |
ADC_CCR_VSENSEEN | ADC_CCR_VBATEN;
setbits = ADC_CCR_PRESC_NOT_DIV | ADC_CCR_CKMODE_ASYCH;
adc_internal(priv, &setbits);
adc_modifyregm(priv, STM32_ADC_CCR_OFFSET, clrbits, setbits);
#ifdef ADC_HAVE_DMA
/* Enable DMA */
if (priv->hasdma)
{
/* Stop and free DMA if it was started before */
if (priv->dma != NULL)
{
stm32_dmastop(priv->dma);
stm32_dmafree(priv->dma);
}
priv->dma = stm32_dmachannel(priv->dmachan);
stm32_dmasetup(priv->dma,
priv->base + STM32_ADC_DR_OFFSET,
(uint32_t)priv->dmabuffer,
priv->nchannels,
ADC_DMA_CONTROL_WORD);
stm32_dmastart(priv->dma, adc_dmaconvcallback, dev, false);
}
#endif
/* Set up the PCSEL bits. */
setbits = 0;
clrbits = ADC_PCSEL_PCSEL_ALL;
for (i = 0; i < priv->cchannels; i++)
{
setbits |= 1 << priv->chanlist[i];
}
setbits &= ADC_PCSEL_PCSEL_ALL;
adc_modifyreg(priv, STM32_ADC_PCSEL_OFFSET, clrbits, setbits);
/* Set ADEN to wake up the ADC from Power Down. */
adc_enable(priv);
#ifdef ADC_HAVE_TIMER
if (priv->tbase != 0)
{
ret = adc_timinit(priv);
if (ret < 0)
{
aerr("ERROR: adc_timinit failed: %d\n", ret);
}
adc_startconv(priv, ret < 0 ? false : true);
}
#endif
leave_critical_section(flags);
ainfo("ISR: 0x%08x CR: 0x%08x CFGR: 0x%08x CFGR2: 0x%08x\n",
adc_getreg(priv, STM32_ADC_ISR_OFFSET),
adc_getreg(priv, STM32_ADC_CR_OFFSET),
adc_getreg(priv, STM32_ADC_CFGR_OFFSET),
adc_getreg(priv, STM32_ADC_CFGR2_OFFSET));
ainfo("SQR1: 0x%08x SQR2: 0x%08x SQR3: 0x%08x SQR4: 0x%08x\n",
adc_getreg(priv, STM32_ADC_SQR1_OFFSET),
adc_getreg(priv, STM32_ADC_SQR2_OFFSET),
adc_getreg(priv, STM32_ADC_SQR3_OFFSET),
adc_getreg(priv, STM32_ADC_SQR4_OFFSET));
ainfo("CCR: 0x%08x\n", adc_getregm(priv, STM32_ADC_CCR_OFFSET));
/* Enable the ADC interrupt */
ainfo("Enable the ADC interrupt: irq=%d\n", priv->irq);
up_enable_irq(priv->irq);
priv->initialized = true;
return ret;
}
/****************************************************************************
* Name: adc_shutdown
*
* Description:
* Disable the ADC. This method is called when the ADC device is closed.
* This method reverses the operation the setup method.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_shutdown(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
/* Stop the ADC */
adc_startconv(priv, false);
/* Disable ADC interrupts and detach the ADC interrupt handler */
up_disable_irq(priv->irq);
irq_detach(priv->irq);
/* Disable and reset the ADC module */
adc_reset(dev);
priv->initialized = false;
}
/****************************************************************************
* Name: adc_rxint
*
* Description:
* Call to enable or disable RX interrupts.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_rxint(FAR struct adc_dev_s *dev, bool enable)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
uint32_t regval;
ainfo("intf: %d enable: %d\n", priv->intf, enable ? 1 : 0);
regval = adc_getreg(priv, STM32_ADC_IER_OFFSET);
if (enable)
{
/* Enable end of conversion interrupt */
regval |= ADC_INT_EOC;
}
else
{
/* Disable all interrupts */
regval &= ~ADC_INT_MASK;
}
adc_putreg(priv, STM32_ADC_IER_OFFSET, regval);
}
/****************************************************************************
* Name: adc_sqrbits
****************************************************************************/
static uint32_t adc_sqrbits(FAR struct stm32_dev_s *priv, int first, int last,
int offset)
{
uint32_t bits = 0;
int i;
for (i = first - 1;
i < priv->nchannels && i < last;
i++, offset += ADC_SQ_OFFSET)
{
bits |= (uint32_t)priv->chanlist[i] << offset;
}
return bits;
}
/****************************************************************************
* Name: adc_internal
****************************************************************************/
static bool adc_internal(FAR struct stm32_dev_s * priv, uint32_t *adc_ccr)
{
int i;
bool internal = false;
if (priv->intf == 3)
{
for (i = 0; i < priv->nchannels; i++)
{
if (priv->chanlist[i] > ADC_EXTERNAL_CHAN_MAX)
{
internal = true;
switch (priv->chanlist[i])
{
case 17:
*adc_ccr |= ADC_CCR_VBATEN;
break;
case 18:
*adc_ccr |= ADC_CCR_VSENSEEN;
break;
case 19:
*adc_ccr |= ADC_CCR_VREFEN;
break;
}
}
}
}
return internal;
}
/****************************************************************************
* Name: adc_set_offset
****************************************************************************/
#ifdef ADC_HAVE_DFSDM
static int adc_setoffset(FAR struct stm32_dev_s *priv, uint8_t ch, uint8_t i,
uint16_t offset)
{
uint32_t reg;
uint32_t regval;
if (i >= 4)
{
/* There are only four offset registers. */
return -E2BIG;
}
reg = STM32_ADC_OFR1_OFFSET + i * 4;
regval = ADC_OFR_OFFSETY_EN;
adc_putreg(priv, reg, regval);
regval |= ADC_OFR_OFFSETY_CH(ch) | ADC_OFR_OFFSETY(offset);
adc_putreg(priv, reg, regval);
return OK;
}
#endif
/****************************************************************************
* Name: adc_set_ch
*
* Description:
* Sets the ADC channel.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* ch - ADC channel number + 1. 0 reserved for all configured channels
*
* Returned Value:
* int - errno
*
****************************************************************************/
static int adc_set_ch(FAR struct adc_dev_s *dev, uint8_t ch)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
uint32_t bits;
int i;
if (ch == 0)
{
priv->current = 0;
priv->nchannels = priv->cchannels;
}
else
{
for (i = 0; i < priv->cchannels && priv->chanlist[i] != ch - 1; i++);
if (i >= priv->cchannels)
{
return -ENODEV;
}
priv->current = i;
priv->nchannels = 1;
}
DEBUGASSERT(priv->nchannels <= ADC_MAX_SAMPLES);
bits = adc_sqrbits(priv, ADC_SQR4_FIRST, ADC_SQR4_LAST, ADC_SQR4_SQ_OFFSET);
adc_modifyreg(priv, STM32_ADC_SQR4_OFFSET, ~ADC_SQR4_RESERVED, bits);
bits = adc_sqrbits(priv, ADC_SQR3_FIRST, ADC_SQR3_LAST, ADC_SQR3_SQ_OFFSET);
adc_modifyreg(priv, STM32_ADC_SQR3_OFFSET, ~ADC_SQR3_RESERVED, bits);
bits = adc_sqrbits(priv, ADC_SQR2_FIRST, ADC_SQR2_LAST, ADC_SQR2_SQ_OFFSET);
adc_modifyreg(priv, STM32_ADC_SQR2_OFFSET, ~ADC_SQR2_RESERVED, bits);
bits = ((uint32_t)priv->nchannels - 1) << ADC_SQR1_L_SHIFT |
adc_sqrbits(priv, ADC_SQR1_FIRST, ADC_SQR1_LAST, ADC_SQR1_SQ_OFFSET);
adc_modifyreg(priv, STM32_ADC_SQR1_OFFSET, ~ADC_SQR1_RESERVED, bits);
#ifdef ADC_HAVE_DFSDM
if (priv->hasdfsdm)
{
/* Convert 12-bit ADC result to signed 16-bit. */
if (ch == 0)
{
for (i = 0; i < priv->cchannels; i++)
{
adc_setoffset(priv, priv->chanlist[i], i, 0x800);
}
}
else
{
adc_setoffset(priv, priv->current, 0, 0x800);
}
}
#endif
return OK;
}
/****************************************************************************
* Name: adc_ioctl
*
* Description:
* All ioctl calls will be routed through this method.
*
* Input Parameters:
* dev - pointer to device structure used by the driver
* cmd - command
* arg - arguments passed with command
*
* Returned Value:
*
****************************************************************************/
static int adc_ioctl(FAR struct adc_dev_s *dev, int cmd, unsigned long arg)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
uint32_t regval;
uint32_t tmp;
int ret = OK;
switch (cmd)
{
case ANIOC_TRIGGER:
adc_startconv(priv, true);
break;
case ANIOC_WDOG_UPPER: /* Set watchdog upper threshold */
{
regval = adc_getreg(priv, STM32_ADC_LTR1_OFFSET);
/* Verify new upper threshold greater than lower threshold */
tmp = (regval & ADC_LTR1_LT_MASK) >> ADC_LTR1_LT_SHIFT;
if (arg < tmp)
{
ret = -EINVAL;
break;
}
/* Set the watchdog threshold register */
regval = ((arg << ADC_HTR1_HT_SHIFT) & ADC_HTR1_HT_MASK);
adc_putreg(priv, STM32_ADC_HTR1_OFFSET, regval);
/* Ensure analog watchdog is enabled */
adc_wdog_enable(priv);
}
break;
case ANIOC_WDOG_LOWER: /* Set watchdog lower threshold */
{
regval = adc_getreg(priv, STM32_ADC_HTR1_OFFSET);
/* Verify new lower threshold less than upper threshold */
tmp = (regval & ADC_HTR1_HT_MASK) >> ADC_HTR1_HT_SHIFT;
if (arg > tmp)
{
ret = -EINVAL;
break;
}
/* Set the watchdog threshold register */
regval = ((arg << ADC_LTR1_LT_SHIFT) & ADC_LTR1_LT_MASK);
adc_putreg(priv, STM32_ADC_LTR1_OFFSET, regval);
/* Ensure analog watchdog is enabled */
adc_wdog_enable(priv);
}
break;
default:
aerr("ERROR: Unknown cmd: %d\n", cmd);
ret = -ENOTTY;
break;
}
return ret;
}
/****************************************************************************
* Name: adc_interrupt
*
* Description:
* Common ADC interrupt handler.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_interrupt(FAR struct adc_dev_s *dev, uint32_t adcisr)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
int32_t value;
/* Identifies the interruption AWD or OVR */
if ((adcisr & ADC_INT_AWD1) != 0)
{
value = adc_getreg(priv, STM32_ADC_DR_OFFSET);
value &= ADC_DR_MASK;
awarn("WARNING: Analog Watchdog, Value (0x%03x) out of range!\n", value);
/* Stop ADC conversions to avoid continuous interrupts */
adc_startconv(priv, false);
}
if ((adcisr & ADC_INT_OVR) != 0)
{
awarn("WARNING: Overrun has occurred!\n");
}
/* EOC: End of conversion */
if ((adcisr & ADC_INT_EOC) != 0)
{
/* Read the converted value and clear EOC bit
* (It is cleared by reading the ADC_DR)
*/
value = adc_getreg(priv, STM32_ADC_DR_OFFSET);
value &= ADC_DR_MASK;
/* Verify that the upper-half driver has bound its callback functions */
if (priv->cb != NULL)
{
/* Give the ADC data to the ADC driver. The ADC receive() method
* accepts 3 parameters:
*
* 1) The first is the ADC device instance for this ADC block.
* 2) The second is the channel number for the data, and
* 3) The third is the converted data for the channel.
*/
DEBUGASSERT(priv->cb->au_receive != NULL);
priv->cb->au_receive(dev, priv->chanlist[priv->current], value);
}
/* Set the channel number of the next channel that will complete conversion */
priv->current++;
if (priv->current >= priv->nchannels)
{
/* Restart the conversion sequence from the beginning */
priv->current = 0;
}
}
return OK;
}
/****************************************************************************
* Name: adc12_interrupt
*
* Description:
* ADC1/2 interrupt handler
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
#if defined(CONFIG_STM32H7_ADC1) || defined(CONFIG_STM32H7_ADC2)
static int adc12_interrupt(int irq, FAR void *context, FAR void *arg)
{
uint32_t regval;
uint32_t pending;
#ifdef CONFIG_STM32H7_ADC1
regval = getreg32(STM32_ADC1_ISR);
pending = regval & ADC_INT_MASK;
if (pending != 0)
{
adc_interrupt(&g_adcdev1, regval);
/* Clear interrupts */
putreg32(regval, STM32_ADC1_ISR);
}
#endif
#ifdef CONFIG_STM32H7_ADC2
regval = getreg32(STM32_ADC2_ISR);
pending = regval & ADC_INT_MASK;
if (pending != 0)
{
adc_interrupt(&g_adcdev2, regval);
/* Clear interrupts */
putreg32(regval, STM32_ADC2_ISR);
}
#endif
return OK;
}
#endif
/****************************************************************************
* Name: adc3_interrupt
*
* Description:
* ADC3 interrupt handler
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
#ifdef CONFIG_STM32H7_ADC3
static int adc3_interrupt(int irq, FAR void *context, FAR void *arg)
{
uint32_t regval;
uint32_t pending;
regval = getreg32(STM32_ADC3_ISR);
pending = regval & ADC_INT_MASK;
if (pending != 0)
{
adc_interrupt(&g_adcdev3, regval);
/* Clear interrupts */
putreg32(regval, STM32_ADC3_ISR);
}
return OK;
}
#endif
/****************************************************************************
* Name: adc_dmaconvcallback
*
* Description:
* Callback for DMA. Called from the DMA transfer complete interrupt after
* all channels have been converted and transferred with DMA.
*
* Input Parameters:
*
* handle - handle to DMA
* isr -
* arg - adc device
*
* Returned Value:
*
****************************************************************************/
#ifdef ADC_HAVE_DMA
static void adc_dmaconvcallback(DMA_HANDLE handle, uint8_t isr, FAR void *arg)
{
FAR struct adc_dev_s *dev = (FAR struct adc_dev_s *)arg;
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
int i;
/* Verify that the upper-half driver has bound its callback functions */
if (priv->cb != NULL)
{
DEBUGASSERT(priv->cb->au_receive != NULL);
for (i = 0; i < priv->nchannels; i++)
{
priv->cb->au_receive(dev, priv->chanlist[priv->current],
priv->dmabuffer[priv->current]);
priv->current++;
if (priv->current >= priv->nchannels)
{
/* Restart the conversion sequence from the beginning */
priv->current = 0;
}
}
}
/* Restart DMA for the next conversion series */
adc_modifyreg(priv, STM32_ADC_CFGR_OFFSET, ADC_CFGR_DMAEN, 0);
adc_modifyreg(priv, STM32_ADC_CFGR_OFFSET, 0, ADC_CFGR_DMAEN);
}
#endif
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: stm32h7_adc_initialize
*
* Description:
* Initialize the ADC.
*
* The logic is, save nchannels : # of channels (conversions) in ADC_SQR1_L
* Then, take the chanlist array and store it in the SQR Regs,
* chanlist[0] -> ADC_SQR3_SQ1
* chanlist[1] -> ADC_SQR3_SQ2
* ...
* chanlist[15]-> ADC_SQR1_SQ16
*
* up to
* chanlist[nchannels]
*
* Input Parameters:
* intf - Could be {1,2,3} for ADC1, ADC2, or ADC3
* chanlist - The list of channels
* cchannels - Number of channels
*
* Returned Value:
* Valid ADC device structure reference on success; a NULL on failure
*
****************************************************************************/
struct adc_dev_s *stm32h7_adc_initialize(int intf, FAR const uint8_t *chanlist,
int cchannels)
{
FAR struct adc_dev_s *dev;
FAR struct stm32_dev_s *priv;
ainfo("intf: %d cchannels: %d\n", intf, cchannels);
switch (intf)
{
#ifdef CONFIG_STM32H7_ADC1
case 1:
ainfo("ADC1 selected\n");
dev = &g_adcdev1;
break;
#endif
#ifdef CONFIG_STM32H7_ADC2
case 2:
ainfo("ADC2 selected\n");
dev = &g_adcdev2;
break;
#endif
#ifdef CONFIG_STM32H7_ADC3
case 3:
ainfo("ADC3 selected\n");
dev = &g_adcdev3;
break;
#endif
default:
aerr("ERROR: No ADC interface defined\n");
return NULL;
}
/* Configure the selected ADC */
priv = (FAR struct stm32_dev_s *)dev->ad_priv;
priv->cb = NULL;
DEBUGASSERT(cchannels <= ADC_MAX_SAMPLES);
if (cchannels > ADC_MAX_SAMPLES)
{
cchannels = ADC_MAX_SAMPLES;
}
priv->cchannels = cchannels;
memcpy(priv->chanlist, chanlist, cchannels);
#ifdef CONFIG_PM
if (pm_register(&priv->pm_callback) != OK)
{
aerr("Power management registration failed\n");
return NULL;
}
#endif
return dev;
}
#endif /* CONFIG_STM32H7_ADC1 || CONFIG_STM32H7_ADC2 || CONFIG_STM32H7_ADC3 */
#endif /* CONFIG_ADC */