7dabc6ff2f
Before wdog module refactoring, we change the sq to double linked list. Signed-off-by: ligd <liguiding1@xiaomi.com>
409 lines
12 KiB
C
409 lines
12 KiB
C
/****************************************************************************
|
|
* sched/wdog/wd_start.c
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed with
|
|
* this work for additional information regarding copyright ownership. The
|
|
* ASF licenses this file to you under the Apache License, Version 2.0 (the
|
|
* "License"); you may not use this file except in compliance with the
|
|
* License. You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <sys/param.h>
|
|
#include <unistd.h>
|
|
#include <sched.h>
|
|
#include <assert.h>
|
|
#include <debug.h>
|
|
#include <errno.h>
|
|
|
|
#include <nuttx/irq.h>
|
|
#include <nuttx/arch.h>
|
|
#include <nuttx/wdog.h>
|
|
|
|
#include "sched/sched.h"
|
|
#include "wdog/wdog.h"
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
|
|
#ifndef CONFIG_SCHED_CRITMONITOR_MAXTIME_WDOG
|
|
# define CONFIG_SCHED_CRITMONITOR_MAXTIME_WDOG 0
|
|
#endif
|
|
|
|
#if CONFIG_SCHED_CRITMONITOR_MAXTIME_WDOG > 0
|
|
# define CALL_FUNC(func, arg) \
|
|
do \
|
|
{ \
|
|
clock_t start; \
|
|
clock_t elapsed; \
|
|
start = perf_gettime(); \
|
|
func(arg); \
|
|
elapsed = perf_gettime() - start; \
|
|
if (elapsed > CONFIG_SCHED_CRITMONITOR_MAXTIME_WDOG) \
|
|
{ \
|
|
CRITMONITOR_PANIC("WDOG %p, %s IRQ, execute too long %ju\n", \
|
|
func, up_interrupt_context() ? \
|
|
"IN" : "NOT", (uintmax_t)elapsed); \
|
|
} \
|
|
} \
|
|
while (0)
|
|
#else
|
|
# define CALL_FUNC(func, arg) func(arg)
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: wd_expiration
|
|
*
|
|
* Description:
|
|
* Check if the timer for the watchdog at the head of list is ready to
|
|
* run. If so, remove the watchdog from the list and execute it.
|
|
*
|
|
* Input Parameters:
|
|
* None
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline void wd_expiration(void)
|
|
{
|
|
FAR struct wdog_s *wdog;
|
|
FAR struct wdog_s *next;
|
|
wdentry_t func;
|
|
|
|
/* Process the watchdog at the head of the list as well as any
|
|
* other watchdogs that became ready to run at this time
|
|
*/
|
|
|
|
list_for_every_entry_safe(&g_wdactivelist, wdog,
|
|
next, struct wdog_s, node)
|
|
{
|
|
if (wdog->lag > 0)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* Remove the watchdog from the head of the list */
|
|
|
|
list_delete(&wdog->node);
|
|
|
|
/* If there is another watchdog behind this one, update its
|
|
* its lag (this shouldn't be necessary).
|
|
*/
|
|
|
|
if (!list_is_empty(&g_wdactivelist))
|
|
{
|
|
next->lag += wdog->lag;
|
|
}
|
|
|
|
/* Indicate that the watchdog is no longer active. */
|
|
|
|
func = wdog->func;
|
|
wdog->func = NULL;
|
|
|
|
/* Execute the watchdog function */
|
|
|
|
up_setpicbase(wdog->picbase);
|
|
CALL_FUNC(func, wdog->arg);
|
|
}
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: wd_start
|
|
*
|
|
* Description:
|
|
* This function adds a watchdog timer to the active timer queue. The
|
|
* specified watchdog function at 'wdentry' will be called from the
|
|
* interrupt level after the specified number of ticks has elapsed.
|
|
* Watchdog timers may be started from the interrupt level.
|
|
*
|
|
* Watchdog timers execute in the address environment that was in effect
|
|
* when wd_start() is called.
|
|
*
|
|
* Watchdog timers execute only once.
|
|
*
|
|
* To replace either the timeout delay or the function to be executed,
|
|
* call wd_start again with the same wdog; only the most recent wdStart()
|
|
* on a given watchdog ID has any effect.
|
|
*
|
|
* Input Parameters:
|
|
* wdog - Watchdog ID
|
|
* delay - Delay count in clock ticks
|
|
* wdentry - Function to call on timeout
|
|
* arg - Parameter to pass to wdentry
|
|
*
|
|
* NOTE: The parameter must be of type wdparm_t.
|
|
*
|
|
* Returned Value:
|
|
* Zero (OK) is returned on success; a negated errno value is return to
|
|
* indicate the nature of any failure.
|
|
*
|
|
* Assumptions:
|
|
* The watchdog routine runs in the context of the timer interrupt handler
|
|
* and is subject to all ISR restrictions.
|
|
*
|
|
****************************************************************************/
|
|
|
|
int wd_start(FAR struct wdog_s *wdog, sclock_t delay,
|
|
wdentry_t wdentry, wdparm_t arg)
|
|
{
|
|
FAR struct wdog_s *curr;
|
|
irqstate_t flags;
|
|
sclock_t now;
|
|
|
|
/* Verify the wdog and setup parameters */
|
|
|
|
if (wdog == NULL || wdentry == NULL || delay < 0)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check if the watchdog has been started. If so, stop it.
|
|
* NOTE: There is a race condition here... the caller may receive
|
|
* the watchdog between the time that wd_start is called and
|
|
* the critical section is established.
|
|
*/
|
|
|
|
flags = enter_critical_section();
|
|
if (WDOG_ISACTIVE(wdog))
|
|
{
|
|
wd_cancel(wdog);
|
|
}
|
|
|
|
/* Save the data in the watchdog structure */
|
|
|
|
wdog->func = wdentry; /* Function to execute when delay expires */
|
|
up_getpicbase(&wdog->picbase);
|
|
wdog->arg = arg;
|
|
|
|
/* Calculate delay+1, forcing the delay into a range that we can handle.
|
|
*
|
|
* NOTE that one is added to the delay. This is correct and must not be
|
|
* changed: The contract for the use wdog_start is that the wdog will
|
|
* delay FOR AT LEAST as long as requested, but may delay longer due to
|
|
* variety of factors. The wdog logic has no knowledge of the the phase
|
|
* of the system timer when it is started: The next timer interrupt may
|
|
* occur immediately or may be delayed for almost a full cycle. In order
|
|
* to meet the contract requirement, the requested time is also always
|
|
* incremented by one so that the delay is always at least as long as
|
|
* requested.
|
|
*
|
|
* There is extensive documentation about this time issue elsewhere.
|
|
*/
|
|
|
|
if (delay <= 0)
|
|
{
|
|
delay = 1;
|
|
}
|
|
else if (++delay <= 0)
|
|
{
|
|
delay--;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_TICKLESS
|
|
/* Cancel the interval timer that drives the timing events. This will
|
|
* cause wd_timer to be called which update the delay value for the first
|
|
* time at the head of the timer list (there is a possibility that it
|
|
* could even remove it).
|
|
*/
|
|
|
|
nxsched_cancel_timer();
|
|
#endif
|
|
|
|
/* Do the easy case first -- when the watchdog timer queue is empty. */
|
|
|
|
if (list_is_empty(&g_wdactivelist))
|
|
{
|
|
#ifdef CONFIG_SCHED_TICKLESS
|
|
/* Update clock tickbase */
|
|
|
|
g_wdtickbase = clock_systime_ticks();
|
|
#endif
|
|
|
|
/* Add the watchdog to the head == tail of the queue. */
|
|
|
|
list_add_tail(&g_wdactivelist, &wdog->node);
|
|
}
|
|
|
|
/* There are other active watchdogs in the timer queue */
|
|
|
|
else
|
|
{
|
|
now = 0;
|
|
|
|
/* Advance past shorter delays */
|
|
|
|
list_for_every_entry(&g_wdactivelist, curr, struct wdog_s, node)
|
|
{
|
|
now += curr->lag;
|
|
if (now > delay)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check if the new wdog must be inserted before the curr. */
|
|
|
|
if (delay < now)
|
|
{
|
|
/* The relative delay time is smaller or equal to the current delay
|
|
* time, so decrement the current delay time by the new relative
|
|
* delay time.
|
|
*/
|
|
|
|
delay -= (now - curr->lag);
|
|
curr->lag -= delay;
|
|
|
|
/* Insert the new watchdog in the list */
|
|
|
|
list_add_before(&curr->node, &wdog->node);
|
|
}
|
|
|
|
/* The new watchdog delay time is greater than the curr delay time,
|
|
* so the new wdog must be inserted after the curr. This only occurs
|
|
* if the wdog is to be added to the end of the list.
|
|
*/
|
|
|
|
else
|
|
{
|
|
delay -= now;
|
|
|
|
list_add_tail(&g_wdactivelist, &wdog->node);
|
|
}
|
|
}
|
|
|
|
/* Put the lag into the watchdog structure and mark it as active. */
|
|
|
|
wdog->lag = delay;
|
|
|
|
#ifdef CONFIG_SCHED_TICKLESS
|
|
/* Resume the interval timer that will generate the next interval event.
|
|
* If the timer at the head of the list changed, then this will pick that
|
|
* new delay.
|
|
*/
|
|
|
|
nxsched_resume_timer();
|
|
#endif
|
|
|
|
leave_critical_section(flags);
|
|
return OK;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: wd_timer
|
|
*
|
|
* Description:
|
|
* This function is called from the timer interrupt handler to determine
|
|
* if it is time to execute a watchdog function. If so, the watchdog
|
|
* function will be executed in the context of the timer interrupt
|
|
* handler.
|
|
*
|
|
* Input Parameters:
|
|
* ticks - If CONFIG_SCHED_TICKLESS is defined then the number of ticks
|
|
* in the interval that just expired is provided. Otherwise,
|
|
* this function is called on each timer interrupt and a value of one
|
|
* is implicit.
|
|
* noswitches - True: Can't do context switches now.
|
|
*
|
|
* Returned Value:
|
|
* If CONFIG_SCHED_TICKLESS is defined then the number of ticks for the
|
|
* next delay is provided (zero if no delay). Otherwise, this function
|
|
* has no returned value.
|
|
*
|
|
* Assumptions:
|
|
* Called from interrupt handler logic with interrupts disabled.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#ifdef CONFIG_SCHED_TICKLESS
|
|
unsigned int wd_timer(int ticks, bool noswitches)
|
|
{
|
|
FAR struct wdog_s *wdog;
|
|
unsigned int ret;
|
|
int decr;
|
|
|
|
/* Update clock tickbase */
|
|
|
|
g_wdtickbase += ticks;
|
|
|
|
/* Check if there are any active watchdogs to process */
|
|
|
|
list_for_every_entry(&g_wdactivelist, wdog, struct wdog_s, node)
|
|
{
|
|
if (ticks <= 0)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* Decrement the lag for this watchdog. */
|
|
|
|
decr = MIN(wdog->lag, ticks);
|
|
|
|
/* There are. Decrement the lag counter */
|
|
|
|
wdog->lag -= decr;
|
|
ticks -= decr;
|
|
}
|
|
|
|
/* Check if the watchdog at the head of the list is ready to run */
|
|
|
|
if (!noswitches)
|
|
{
|
|
wd_expiration();
|
|
}
|
|
|
|
/* Return the delay for the next watchdog to expire */
|
|
|
|
ret = list_is_empty(&g_wdactivelist) ? 0 :
|
|
list_first_entry(&g_wdactivelist, struct wdog_s, node)->lag;
|
|
|
|
/* Return the delay for the next watchdog to expire */
|
|
|
|
return ret;
|
|
}
|
|
|
|
#else
|
|
void wd_timer(void)
|
|
{
|
|
/* Check if there are any active watchdogs to process */
|
|
|
|
if (!list_is_empty(&g_wdactivelist))
|
|
{
|
|
/* There are. Decrement the lag counter */
|
|
|
|
--(list_first_entry(&g_wdactivelist, struct wdog_s, node)->lag);
|
|
|
|
/* Check if the watchdog at the head of the list is ready to run */
|
|
|
|
wd_expiration();
|
|
}
|
|
}
|
|
#endif /* CONFIG_SCHED_TICKLESS */
|