d6f7821b15
Mac OS X was renamed to macOS at some point. Update references to OSX, OS X, Mac OS X, Mac OSX, and other permutations, to macOS, in README files and in comments of other files.
514 lines
16 KiB
Plaintext
514 lines
16 KiB
Plaintext
README
|
|
^^^^^
|
|
|
|
This is the README file for the port of NuttX to the Amber Web Server from
|
|
SoC Robotics (http://www.soc-robotics.com/index.htm). The
|
|
Amber Web Server is based on an Atmel ATMega128. As of this writing,
|
|
documentation for the Amber Web Server board is available here:
|
|
|
|
http://www.soc-robotics.com/product/Amber_Specs/Amber_Processor.html
|
|
|
|
and
|
|
|
|
http://www.soc-robotics.com/pdfs/Amber%201-5a%20Hardware%20Reference%20Guide.pdf
|
|
|
|
Contents
|
|
^^^^^^^^
|
|
|
|
o Amber Web Server Features
|
|
o Pin Connections
|
|
o Atmel AVRISP mkII Connection
|
|
o Toolchains
|
|
o Windows Native Toolchains
|
|
o NuttX buildroot Toolchain
|
|
o avr-libc
|
|
o Amber Web Server Configuration Options
|
|
o Configurations
|
|
|
|
Amber Web Server Features
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
o 17.56MHz ATmega128 Atmel 8bit AVR RISC Processor
|
|
o 128Kbyte Flash
|
|
o 64Kbyte RAM
|
|
o 10BaseT Ethernet Port
|
|
o High Speed Serial Port
|
|
o 8Ch 10bit Analog Input port
|
|
o 16 Digital IO ports
|
|
o Expansion bus for daughter cards
|
|
o LED status indicators
|
|
o ISP Programming port
|
|
o 7-14VDC input
|
|
o Power via Ethernet port
|
|
|
|
Pin Connections (PCB Rev 1.5a)
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
-------------------- -----------------------------
|
|
ATMega128 Pinout Amber board connection
|
|
-------------------- -----------------------------
|
|
(left)
|
|
1 PEN Pulled-up
|
|
2 PE0 (RXD0/PDI) MAX202ECWED T1IN or J7-1, ISP-PDI (via 74HC5053), J5-26
|
|
3 PE1 (TXD0/PDO) MAX202ECWED A1OUT or J7-9, ISP-PDO (via 74HC5053), J5-25
|
|
4 PE2 (XCK0/AIN0) MAX202ECWED T2IN, J5-24
|
|
5 PE3 (OC3A/AIN1) MAX202ECWED A2OUT, J5-23
|
|
6 PE4 (OC3B/INT4) J5-22
|
|
7 PE5 (OC3C/INT5) J5-21, RTL8019AS INT 0, TP5 PE5
|
|
8 PE6 (T3/INT6) J5-20
|
|
9 PE7 (ICP3/INT7) J5-19
|
|
10 PB0 (SS) Pull up of SS SPI master
|
|
11 PB1 (SCK) J7-7, ISP_SCK (via 74HC4053) and AT45D011 SCK, J5-17
|
|
12 PB2 (MOSI) AT45D011 SI. J5-16
|
|
13 PB3 (MISO) AT45D011 SO, J5-15
|
|
14 PB4 (OC0) AT45D011 CS\, J5-14
|
|
15 PB5 (OC1A) J5-13
|
|
16 PB6 (OC1B) J5-12
|
|
(bottom)
|
|
17 PB7 (OC2/OC1C) J5-11
|
|
18 PG3/TOSC2 32.768KHz XTAL
|
|
19 PG4/TOSC1 32.768KHz XTAL
|
|
20 RESET RESET
|
|
21 VCC
|
|
22 GND GND
|
|
23 XTAL2 14.7456MHz XTAL
|
|
24 XTAL1 14.7456MHz XTAL
|
|
25 PD0 (SCL/INT0) J5-10
|
|
26 PD1 (SDA/INT1) J5-9
|
|
27 PD2 (RXD1/INT2) J5-8, MAX488CSA RO (RS-485)
|
|
28 PD3 (TXD1/INT3) J5-7, MAX488CSA DI (RS-485)
|
|
29 PD4 (ICP1) J5-6
|
|
30 PD5 (XCK1) J5-5
|
|
31 PD6 (T1) J5-4
|
|
32 PD7 (T2) J5-3
|
|
(left)
|
|
48 PA3 (AD3) J5-?, 74HC5730, 62246DLP-7, RTL8019AS
|
|
47 PA4 (AD4) J5-?, 74HC5730, 62246DLP-7, RTL8019AS
|
|
46 PA5 (AD5) J5-?, 74HC5730, 62246DLP-7, RTL8019AS
|
|
45 PA6 (AD6) J5-?, 74HC5730, 62246DLP-7, RTL8019AS
|
|
44 PA7 (AD7) J5-?, 74HC5730, 62246DLP-7, RTL8019AS
|
|
43 PG2 (ALE) J5-1, 74HC5730, 62246DLP-7, RTL8019AS
|
|
42 PC7 (A15) TP4 A15, J5-27, 74HC5730
|
|
41 PC6 (A14) J5-28, 74HC5730, 62246DLP-7, RTL8019AS
|
|
40 PC5 (A13) J5-29, 74HC5730, 62246DLP-7, RTL8019AS
|
|
39 PC4 (A12) J5-30, 74HC5730, 62246DLP-7, RTL8019AS
|
|
38 PC3 (A11) J5-31, 74HC5730, 62246DLP-7, RTL8019AS
|
|
37 PC2 (A10) J5-32, 74HC5730, 62246DLP-7, RTL8019AS
|
|
36 PC1 (A9) J5-33, 74HC5730, 62246DLP-7, RTL8019AS
|
|
35 PC0 (A8) J5-34, 74HC5730, 62246DLP-7, RTL8019AS
|
|
34 PG1 (RD) TP2 RD\, J5-52, 62246DLP-7, RTL8019AS
|
|
33 PG0 (WR) TP3 WR\, J5-51, 62246DLP-7, RTL8019AS
|
|
(top)
|
|
64 AVCC
|
|
63 GND GND
|
|
62 AREF (analog supply)
|
|
61 PF0 (ADC0) J6-5, PDV-P9 Light Sensor
|
|
60 PF1 (ADC1) J6-7, Thermister
|
|
59 PF2 (ADC2) J6-9, MXA2500GL Dual Axis Accesserometer, AOUTX
|
|
58 PF3 (ADC3) J6-11, MXA2500GL Dual Axis Accesserometer, AOUTY
|
|
57 PF4 (ADC4/TCK) J6-13, MXA2500GL Dual Axis Accesserometer, TOUT
|
|
56 PF5 (ADC5/TMS) J6-15
|
|
55 PF6 (ADC6/TDO) J6-17
|
|
54 PF7 (ADC7/TDI) J6-19
|
|
53 GND GND
|
|
52 VCC
|
|
51 PA0 (AD0) J5-?, 74HC5730, 62246DLP-7, RTL8019AS
|
|
50 PA1 (AD1) J5-?, 74HC5730, 62246DLP-7, RTL8019AS
|
|
49 PA2 (AD2) J5-?, 74HC5730, 62246DLP-7, RTL8019AS
|
|
|
|
Switches and Jumpers
|
|
^^^^^^^^^^^^^^^^^^^^
|
|
ISP/UART0
|
|
JP1 - DTE/DCE selection
|
|
JP2 -
|
|
JP5 -
|
|
J11 - STK500 Enable
|
|
|
|
ADC
|
|
JP8 -
|
|
JP9 -
|
|
|
|
Networking
|
|
JP10 -
|
|
|
|
RS-485
|
|
J8 -
|
|
J9 -
|
|
J10 -
|
|
|
|
Atmel AVRISP mkII Connection
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
ISP6PIN Header
|
|
--------------
|
|
|
|
1 2
|
|
MISO o o VCC
|
|
SCK o o MOSI
|
|
RESET\ o o GND
|
|
|
|
(ISP10PIN Connector)
|
|
------------------- -------------------------
|
|
|
|
1 2
|
|
MOSI o o Vcc - ISP-PDI: PE0/PDI/RX0 via 74HC5053
|
|
LED o o GND - ISP-PROG: J11/GND, to 74HC5053 and LED
|
|
RESET\ o o GND - to 74HC505
|
|
SCK o o GND - ISP_SCK: SCK, PB0/SS\
|
|
MISO o o GND - ISP-PDO: PE1/PD0/TX0 via 74HC5053
|
|
|
|
Board Orientation
|
|
|
|
|
|
|
| +-----+
|
|
| + O O |
|
|
| + O O |
|
|
| + O O
|
|
| + O O |
|
|
| + O x | PIN 1
|
|
| +-----+
|
|
|
|
|
|
|
AVRISP mkII Connection to 10-pin Header
|
|
-------------------------------------------
|
|
10PIN Header 6PIN Header
|
|
--------------------- ---------------------
|
|
Pin 1 MOSI Pin 4 MOSI
|
|
Pin 2 Vcc Pin 2 Vcc
|
|
Pin 3 LED Controlled via J11
|
|
Pin 4 GND Pin 6 GND
|
|
Pin 5 RESET\ Pin 5 RESET\
|
|
Pin 6 GND N/C
|
|
Pin 7 SCK Pin 3 SCK
|
|
Pin 8 GND N/C
|
|
Pin 9 MISO Pin 1 MISO
|
|
Pin 10 GND N/C
|
|
|
|
Toolchains
|
|
^^^^^^^^^^
|
|
|
|
The toolchain may be selected using the kconfig-mconf tool (via 'make menuconfig'),
|
|
by editing the existing configuration file (defconfig), or by overriding
|
|
the toolchain on the make commandline with CONFIG_AVR_TOOLCHAIN=<toolchain>.
|
|
|
|
The valid values for <toolchain> are BUILDROOT, CROSSPACK, LINUXGCC and WINAVR.
|
|
|
|
Buildroot:
|
|
|
|
There is a DIY buildroot version for the AVR boards here:
|
|
http://bitbucket.org/nuttx/buildroot/downloads/. See the
|
|
following section for details on building this toolchain.
|
|
|
|
You may also have to modify the PATH environment variable if your make cannot
|
|
find the tools.
|
|
|
|
After configuring NuttX, make sure that CONFIG_AVR_BUILDROOT_TOOLCHAIN=y is set in your
|
|
.config file.
|
|
|
|
WinAVR:
|
|
|
|
For Cygwin development environment on Windows machines, you can use
|
|
WinAVR: http://sourceforge.net/projects/winavr/files/
|
|
|
|
You may also have to modify the PATH environment variable if your make cannot
|
|
find the tools.
|
|
|
|
After configuring NuttX, make sure that CONFIG_AVR_WINAVR_TOOLCHAIN=y is set in your
|
|
.config file.
|
|
|
|
WARNING: There is an incompatible version of cygwin.dll in the WinAVR/bin
|
|
directory! Make sure that the path to the correct cygwin.dll file precedes
|
|
the path to the WinAVR binaries!
|
|
|
|
Linux:
|
|
|
|
For Linux, there are widely available avr-gcc packages. On Ubuntu, use:
|
|
sudo apt-get install gcc-avr gdb-avr avr-libc
|
|
|
|
After configuring NuttX, make sure that CONFIG_AVR_LINUXGCC_TOOLCHAIN=y is set in your
|
|
.config file.
|
|
|
|
macOS:
|
|
|
|
For macOS, the CrossPack for AVR toolchain is available from:
|
|
|
|
http://www.obdev.at/products/crosspack/index.html
|
|
|
|
This toolchain is functionally equivalent to the Linux GCC toolchain.
|
|
|
|
Windows Native Toolchains
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
The WinAVR toolchain is a Windows native toolchain. There are several
|
|
limitations to using a Windows native toolchain in a Cygwin environment.
|
|
The three biggest are:
|
|
|
|
1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
|
|
performed automatically in the Cygwin makefiles using the 'cygpath'
|
|
utility but you might easily find some new path problems. If so, check
|
|
out 'cygpath -w'
|
|
|
|
2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic
|
|
links are used in Nuttx (e.g., include/arch). The make system works
|
|
around these problems for the Windows tools by copying directories
|
|
instead of linking them. But this can also cause some confusion for
|
|
you: For example, you may edit a file in a "linked" directory and find
|
|
that your changes had no effect. That is because you are building the
|
|
copy of the file in the "fake" symbolic directory. If you use a
|
|
Windows toolchain, you should get in the habit of making like this:
|
|
|
|
make clean_context all
|
|
|
|
An alias in your .bashrc file might make that less painful.
|
|
|
|
An additional issue with the WinAVR toolchain, in particular, is that it
|
|
contains an incompatible version of the Cygwin DLL in its bin/ directory.
|
|
You must take care that the correct Cygwin DLL is used.
|
|
|
|
NuttX buildroot Toolchain
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
If NuttX buildroot toolchain source tarball cne can be downloaded from the
|
|
NuttX Bitbucket download site (https://bitbucket.org/nuttx/nuttx/downloads/).
|
|
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
|
|
|
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
|
|
|
tools/configure.sh amber:<sub-dir>
|
|
|
|
NOTE: you also must copy avr-libc header files into the NuttX include
|
|
directory with command perhaps like:
|
|
|
|
cp -a /cygdrive/c/WinAVR/include/avr include/.
|
|
|
|
2. Download the latest buildroot package into <some-dir>
|
|
|
|
3. unpack the buildroot tarball. The resulting directory may
|
|
have versioning information on it like buildroot-x.y.z. If so,
|
|
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
|
|
|
4. cd <some-dir>/buildroot
|
|
|
|
5. cp boards/avr-defconfig-4.5.2 .config
|
|
|
|
6. make oldconfig
|
|
|
|
7. make
|
|
|
|
8. Make sure that the PATH variable includes the path to the newly built
|
|
binaries.
|
|
|
|
See the file boards/README.txt in the buildroot source tree. That has more
|
|
detailed PLUS some special instructions that you will need to follow if you
|
|
are building a toolchain for Cygwin under Windows.
|
|
|
|
avr-libc
|
|
^^^^^^^^
|
|
|
|
Header Files
|
|
|
|
In any case, header files from avr-libc are required: http://www.nongnu.org/avr-libc/.
|
|
A snapshot of avr-lib is included in the WinAVR installation. For Linux
|
|
development platforms, avr-libc package is readily available (and would
|
|
be installed in the apt-get command shown above). But if you are using
|
|
the NuttX buildroot configuration on Cygwin, then you will have to build
|
|
get avr-libc from binaries.
|
|
|
|
Header File Installation
|
|
|
|
The NuttX build will required that the AVR header files be available via
|
|
the NuttX include directory. This can be accomplished by either copying
|
|
the avr-libc header files into the NuttX include directory:
|
|
|
|
cp -a <avr-libc-path>/include/avr <nuttx-path>/include/.
|
|
|
|
Or simply using a symbolic link:
|
|
|
|
ln -s <avr-libc-path>/include/avr <nuttx-path>/include/.
|
|
|
|
Build Notes:
|
|
|
|
It may not necessary to have a built version of avr-lib; only header files
|
|
are required. Bu if you choose to use the optimized libraru functions of
|
|
the flowing point library, then you may have to build avr-lib from sources.
|
|
Below are instructions for building avr-lib from fresh sources:
|
|
|
|
1. Download the avr-libc package from:
|
|
|
|
http://savannah.nongnu.org/projects/avr-libc/
|
|
|
|
I am using avr-lib-1.7.1.tar.bz2
|
|
|
|
2. Upack the tarball and cd into the
|
|
|
|
tar jxf avr-lib-1.7.1.tar.bz2
|
|
cd avr-lib-1.7.1
|
|
|
|
3. Configure avr-lib. Assuming that WinAVR is installed at the following
|
|
location:
|
|
|
|
export PATH=/cygdrive/c/WinAVR/bin:$PATH
|
|
./configure --build=`./config.guess` --host=avr
|
|
|
|
This takes a *long* time.
|
|
|
|
4. Make avr-lib.
|
|
|
|
make
|
|
|
|
This also takes a long time because it generates variants for nearly
|
|
all AVR chips.
|
|
|
|
5. Install avr-lib.
|
|
|
|
make install
|
|
|
|
Amber Web Server Configuration Options
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
|
|
be set to:
|
|
|
|
CONFIG_ARCH=avr
|
|
|
|
CONFIG_ARCH_family - For use in C code:
|
|
|
|
CONFIG_ARCH_AVR=y
|
|
|
|
CONFIG_ARCH_architecture - For use in C code:
|
|
|
|
CONFIG_ARCH_CHIP_ATMEGA=y
|
|
|
|
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
|
|
|
|
CONFIG_ARCH_CHIP=atmega
|
|
|
|
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
|
|
chip:
|
|
|
|
CONFIG_ARCH_CHIP_ATMEGA128=y
|
|
|
|
CONFIG_ARCH_BOARD - Identifies the boards/ subdirectory and
|
|
hence, the board that supports the particular chip or SoC.
|
|
|
|
CONFIG_ARCH_BOARD=amber
|
|
|
|
CONFIG_ARCH_BOARD_name - For use in C code
|
|
|
|
CONFIG_ARCH_BOARD_AMBER=y
|
|
|
|
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
|
|
of delay loops
|
|
|
|
CONFIG_ENDIAN_BIG - define if big endian (default is little
|
|
endian)
|
|
|
|
CONFIG_RAM_SIZE - Describes the installed DRAM. One of:
|
|
|
|
CONFIG_RAM_SIZE=(8*1024) - (8Kb)
|
|
|
|
CONFIG_RAM_START - The start address of installed SRAM
|
|
|
|
CONFIG_RAM_START=0x800100
|
|
|
|
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
|
|
have LEDs
|
|
|
|
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
|
|
stack. If defined, this symbol is the size of the interrupt
|
|
stack in bytes. If not defined, the user task stacks will be
|
|
used during interrupt handling.
|
|
|
|
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
|
|
|
|
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
|
|
|
|
Individual subsystems can be enabled:
|
|
|
|
CONFIG_AVR_INT0=n
|
|
CONFIG_AVR_INT1=n
|
|
CONFIG_AVR_INT2=n
|
|
CONFIG_AVR_INT3=n
|
|
CONFIG_AVR_INT4=n
|
|
CONFIG_AVR_INT5=n
|
|
CONFIG_AVR_INT6=n
|
|
CONFIG_AVR_INT7=n
|
|
CONFIG_AVR_WDT=n
|
|
CONFIG_AVR_TIMER0=n
|
|
CONFIG_AVR_TIMER1=n
|
|
CONFIG_AVR_TIMER2=n
|
|
CONFIG_AVR_TIMER3=n
|
|
CONFIG_AVR_SPI=n
|
|
CONFIG_AVR_USART0=y
|
|
CONFIG_AVR_USART1=n
|
|
CONFIG_AVR_ADC=n
|
|
CONFIG_AVR_ANACOMP=n
|
|
CONFIG_AVR_TWI=n
|
|
|
|
If the watchdog is enabled, this specifies the initial timeout. Default
|
|
is maximum supported value.
|
|
|
|
CONFIG_WDTO_15MS
|
|
CONFIG_WDTO_30MS
|
|
CONFIG_WDTO_60MS
|
|
CONFIG_WDTO_120MS
|
|
CONFIG_WDTO_1250MS
|
|
CONFIG_WDTO_500MS
|
|
CONFIG_WDTO_1S
|
|
CONFIG_WDTO_2S
|
|
CONFIG_WDTO_4S
|
|
CONFIG_WDTO_8S
|
|
|
|
ATMEGA specific device driver settings
|
|
|
|
CONFIG_USARTn_SERIAL_CONSOLE - selects the USARTn for the
|
|
console and ttys0 (default is the USART0).
|
|
CONFIG_USARTn_RXBUFSIZE - Characters are buffered as received.
|
|
This specific the size of the receive buffer
|
|
CONFIG_USARTn_TXBUFSIZE - Characters are buffered before
|
|
being sent. This specific the size of the transmit buffer
|
|
CONFIG_USARTn_BAUD - The configure BAUD of the USART. Must be
|
|
CONFIG_USARTn_BITS - The number of bits. Must be either 7 or 8.
|
|
CONFIG_USARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
|
|
CONFIG_USARTn_2STOP - Two stop bits
|
|
|
|
Configurations
|
|
^^^^^^^^^^^^^^
|
|
|
|
Common Configuration Notes
|
|
--------------------------
|
|
|
|
1. Each Amber Web Server configuration is maintained in a sub-directory and
|
|
can be selected as follow:
|
|
|
|
tools/configure.sh amber:<subdir>
|
|
|
|
Where <subdir> is one of the configuration sub-directories described in
|
|
the following paragraph.
|
|
|
|
NOTE: You must also copy avr-libc header files, perhaps like:
|
|
|
|
cp -a /cygdrive/c/WinAVR/include/avr include/.
|
|
|
|
2. These configurations use the mconf-based configuration tool. To
|
|
change a configurations using that tool, you should:
|
|
|
|
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
|
|
see additional README.txt files in the NuttX tools repository.
|
|
|
|
b. Execute 'make menuconfig' in nuttx/ in order to start the
|
|
reconfiguration process.
|
|
|
|
3. By default, all configurations assume the NuttX Buildroot toolchain
|
|
under Cygwin with Windows. This is easily reconfigured:
|
|
|
|
CONFIG_HOST_WINDOWS=y
|
|
CONFIG_WINDOWS_CYGWIN=y
|
|
CONFIG_AVR_BUILDROOT_TOOLCHAIN=y
|
|
|
|
Configuration Sub-Directories
|
|
-----------------------------
|
|
|
|
hello:
|
|
The simple apps/examples/hello "Hello, World!" example.
|