8b4ecac6c2
to prepare the support of other implementation e.g.: https://github.com/JuliaMath/openlibm https://gitlab.com/gtd-gmbh/libmcs Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
467 lines
16 KiB
C
467 lines
16 KiB
C
/****************************************************************************
|
|
* libs/libm/libm/lib_lgamma.c
|
|
*
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/* lgamma_r(x, signgamp)
|
|
*
|
|
* Reentrant version of the logarithm of the Gamma function
|
|
* with user provide pointer for the sign of Gamma(x).
|
|
*
|
|
* Method:
|
|
* 1. Argument Reduction for 0 < x <= 8
|
|
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
|
|
* reduce x to a number in [1.5,2.5] by
|
|
* lgamma(1+s) = log(s) + lgamma(s)
|
|
* for example,
|
|
* lgamma(7.3) = log(6.3) + lgamma(6.3)
|
|
* = log(6.3*5.3) + lgamma(5.3)
|
|
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
|
|
* 2. Polynomial approximation of lgamma around its
|
|
* minimun ymin=1.461632144968362245 to maintain monotonicity.
|
|
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
|
|
* Let z = x-ymin;
|
|
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
|
|
* where
|
|
* poly(z) is a 14 degree polynomial.
|
|
* 2. Rational approximation in the primary interval [2,3]
|
|
* We use the following approximation:
|
|
* s = x-2.0;
|
|
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
|
|
* with accuracy
|
|
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
|
|
* Our algorithms are based on the following observation
|
|
*
|
|
* zeta(2)-1 2 zeta(3)-1 3
|
|
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
|
|
* 2 3
|
|
*
|
|
* where Euler = 0.5771... is the Euler constant, which is very
|
|
* close to 0.5.
|
|
*
|
|
* 3. For x>=8, we have
|
|
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
|
|
* (better formula:
|
|
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
|
|
* Let z = 1/x, then we approximation
|
|
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
|
|
* by
|
|
* 3 5 11
|
|
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
|
|
* where
|
|
* |w - f(z)| < 2**-58.74
|
|
*
|
|
* 4. For negative x, since (G is gamma function)
|
|
* -x*G(-x)*G(x) = pi/sin(pi*x),
|
|
* we have
|
|
* G(x) = pi/(sin(pi*x)*(-x)*G(-x))
|
|
* since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
|
|
* Hence, for x<0, signgam = sign(sin(pi*x)) and
|
|
* lgamma(x) = log(|Gamma(x)|)
|
|
* = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
|
|
* Note: one should avoid compute pi*(-x) directly in the
|
|
* computation of sin(pi*(-x)).
|
|
*
|
|
* 5. Special Cases
|
|
* lgamma(2+s) ~ s*(1-Euler) for tiny s
|
|
* lgamma(1) = lgamma(2) = 0
|
|
* lgamma(x) ~ -log(|x|) for tiny x
|
|
* lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
|
|
* lgamma(inf) = inf
|
|
* lgamma(-inf) = inf (bug for bug compatible with C99!?)
|
|
*/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
#include <nuttx/compiler.h>
|
|
|
|
#include <sys/types.h>
|
|
#include <math.h>
|
|
|
|
#ifdef CONFIG_HAVE_DOUBLE
|
|
|
|
/****************************************************************************
|
|
* Private Data
|
|
****************************************************************************/
|
|
|
|
static int g_signgam = 0;
|
|
|
|
static const double g_pi = 3.14159265358979311600e+00; /* 0x400921FB, 0x54442D18 */
|
|
static const double g_a0 = 7.72156649015328655494e-02; /* 0x3FB3C467, 0xE37DB0C8 */
|
|
static const double g_a1 = 3.22467033424113591611e-01; /* 0x3FD4A34C, 0xC4A60FAD */
|
|
static const double g_a2 = 6.73523010531292681824e-02; /* 0x3FB13E00, 0x1A5562A7 */
|
|
static const double g_a3 = 2.05808084325167332806e-02; /* 0x3F951322, 0xAC92547B */
|
|
static const double g_a4 = 7.38555086081402883957e-03; /* 0x3F7E404F, 0xB68FEFE8 */
|
|
static const double g_a5 = 2.89051383673415629091e-03; /* 0x3F67ADD8, 0xCCB7926B */
|
|
static const double g_a6 = 1.19270763183362067845e-03; /* 0x3F538A94, 0x116F3F5D */
|
|
static const double g_a7 = 5.10069792153511336608e-04; /* 0x3F40B6C6, 0x89B99C00 */
|
|
static const double g_a8 = 2.20862790713908385557e-04; /* 0x3F2CF2EC, 0xED10E54D */
|
|
static const double g_a9 = 1.08011567247583939954e-04; /* 0x3F1C5088, 0x987DFB07 */
|
|
static const double g_a10 = 2.52144565451257326939e-05; /* 0x3EFA7074, 0x428CFA52 */
|
|
static const double g_a11 = 4.48640949618915160150e-05; /* 0x3F07858E, 0x90A45837 */
|
|
static const double g_tc = 1.46163214496836224576e+00; /* 0x3FF762D8, 0x6356BE3F */
|
|
static const double g_tf = -1.21486290535849611461e-01; /* 0xBFBF19B9, 0xBCC38A42 */
|
|
|
|
/* tt = -(tail of tf) */
|
|
|
|
static const double g_tt = -3.63867699703950536541e-18; /* 0xBC50C7CA, 0xA48A971F */
|
|
static const double g_t0 = 4.83836122723810047042e-01; /* 0x3FDEF72B, 0xC8EE38A2 */
|
|
static const double g_t1 = -1.47587722994593911752e-01; /* 0xBFC2E427, 0x8DC6C509 */
|
|
static const double g_t2 = 6.46249402391333854778e-02; /* 0x3FB08B42, 0x94D5419B */
|
|
static const double g_t3 = -3.27885410759859649565e-02; /* 0xBFA0C9A8, 0xDF35B713 */
|
|
static const double g_t4 = 1.79706750811820387126e-02; /* 0x3F9266E7, 0x970AF9EC */
|
|
static const double g_t5 = -1.03142241298341437450e-02; /* 0xBF851F9F, 0xBA91EC6A */
|
|
static const double g_t6 = 6.10053870246291332635e-03; /* 0x3F78FCE0, 0xE370E344 */
|
|
static const double g_t7 = -3.68452016781138256760e-03; /* 0xBF6E2EFF, 0xB3E914D7 */
|
|
static const double g_t8 = 2.25964780900612472250e-03; /* 0x3F6282D3, 0x2E15C915 */
|
|
static const double g_t9 = -1.40346469989232843813e-03; /* 0xBF56FE8E, 0xBF2D1AF1 */
|
|
static const double g_t10 = 8.81081882437654011382e-04; /* 0x3F4CDF0C, 0xEF61A8E9 */
|
|
static const double g_t11 = -5.38595305356740546715e-04; /* 0xBF41A610, 0x9C73E0EC */
|
|
static const double g_t12 = 3.15632070903625950361e-04; /* 0x3F34AF6D, 0x6C0EBBF7 */
|
|
static const double g_t13 = -3.12754168375120860518e-04; /* 0xBF347F24, 0xECC38C38 */
|
|
static const double g_t14 = 3.35529192635519073543e-04; /* 0x3F35FD3E, 0xE8C2D3F4 */
|
|
static const double g_u0 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
|
|
static const double g_u1 = 6.32827064025093366517e-01; /* 0x3FE4401E, 0x8B005DFF */
|
|
static const double g_u2 = 1.45492250137234768737e+00; /* 0x3FF7475C, 0xD119BD6F */
|
|
static const double g_u3 = 9.77717527963372745603e-01; /* 0x3FEF4976, 0x44EA8450 */
|
|
static const double g_u4 = 2.28963728064692451092e-01; /* 0x3FCD4EAE, 0xF6010924 */
|
|
static const double g_u5 = 1.33810918536787660377e-02; /* 0x3F8B678B, 0xBF2BAB09 */
|
|
static const double g_v1 = 2.45597793713041134822e+00; /* 0x4003A5D7, 0xC2BD619C */
|
|
static const double g_v2 = 2.12848976379893395361e+00; /* 0x40010725, 0xA42B18F5 */
|
|
static const double g_v3 = 7.69285150456672783825e-01; /* 0x3FE89DFB, 0xE45050AF */
|
|
static const double g_v4 = 1.04222645593369134254e-01; /* 0x3FBAAE55, 0xD6537C88 */
|
|
static const double g_v5 = 3.21709242282423911810e-03; /* 0x3F6A5ABB, 0x57D0CF61 */
|
|
static const double g_s0 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
|
|
static const double g_s1 = 2.14982415960608852501e-01; /* 0x3FCB848B, 0x36E20878 */
|
|
static const double g_s2 = 3.25778796408930981787e-01; /* 0x3FD4D98F, 0x4F139F59 */
|
|
static const double g_s3 = 1.46350472652464452805e-01; /* 0x3FC2BB9C, 0xBEE5F2F7 */
|
|
static const double g_s4 = 2.66422703033638609560e-02; /* 0x3F9B481C, 0x7E939961 */
|
|
static const double g_s5 = 1.84028451407337715652e-03; /* 0x3F5E26B6, 0x7368F239 */
|
|
static const double g_s6 = 3.19475326584100867617e-05; /* 0x3F00BFEC, 0xDD17E945 */
|
|
static const double g_r1 = 1.39200533467621045958e+00; /* 0x3FF645A7, 0x62C4AB74 */
|
|
static const double g_r2 = 7.21935547567138069525e-01; /* 0x3FE71A18, 0x93D3DCDC */
|
|
static const double g_r3 = 1.71933865632803078993e-01; /* 0x3FC601ED, 0xCCFBDF27 */
|
|
static const double g_r4 = 1.86459191715652901344e-02; /* 0x3F9317EA, 0x742ED475 */
|
|
static const double g_r5 = 7.77942496381893596434e-04; /* 0x3F497DDA, 0xCA41A95B */
|
|
static const double g_r6 = 7.32668430744625636189e-06; /* 0x3EDEBAF7, 0xA5B38140 */
|
|
static const double g_w0 = 4.18938533204672725052e-01; /* 0x3FDACFE3, 0x90C97D69 */
|
|
static const double g_w1 = 8.33333333333329678849e-02; /* 0x3FB55555, 0x5555553B */
|
|
static const double g_w2 = -2.77777777728775536470e-03; /* 0xBF66C16C, 0x16B02E5C */
|
|
static const double g_w3 = 7.93650558643019558500e-04; /* 0x3F4A019F, 0x98CF38B6 */
|
|
static const double g_w4 = -5.95187557450339963135e-04; /* 0xBF4380CB, 0x8C0FE741 */
|
|
static const double g_w5 = 8.36339918996282139126e-04; /* 0x3F4B67BA, 0x4CDAD5D1 */
|
|
static const double g_w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
/* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
|
|
|
|
static double sin_pi(double x)
|
|
{
|
|
int n;
|
|
|
|
/* spurious inexact if odd int */
|
|
|
|
x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */
|
|
|
|
n = (int)(x * 4.0);
|
|
n = (n + 1) / 2;
|
|
x -= n * 0.5f;
|
|
x *= g_pi;
|
|
|
|
switch (n)
|
|
{
|
|
default: /* case 4: */
|
|
case 0:
|
|
return __sin(x, 0.0, 0);
|
|
|
|
case 1:
|
|
return __cos(x, 0.0);
|
|
|
|
case 2:
|
|
return __sin(-x, 0.0, 0);
|
|
|
|
case 3:
|
|
return -__cos(x, 0.0);
|
|
}
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
double lgamma_r(double x, int *signgamp)
|
|
{
|
|
union
|
|
{
|
|
double f;
|
|
uint64_t i;
|
|
} u;
|
|
|
|
u.f = x;
|
|
|
|
double t;
|
|
double y;
|
|
double z;
|
|
double nadj = 0.0;
|
|
double p;
|
|
double p1;
|
|
double p2;
|
|
double p3;
|
|
double q;
|
|
double r;
|
|
double w;
|
|
uint32_t ix;
|
|
int sign;
|
|
int i;
|
|
|
|
/* purge off +-inf, NaN, +-0, tiny and negative arguments */
|
|
|
|
*signgamp = 1;
|
|
sign = u.i >> 63;
|
|
|
|
ix = u.i >> 32 & 0x7fffffff;
|
|
if (ix >= 0x7ff00000)
|
|
{
|
|
return x * x;
|
|
}
|
|
|
|
/* |x|<2**-70, return -log(|x|) */
|
|
|
|
if (ix < (0x3ff - 70) << 20)
|
|
{
|
|
if (sign)
|
|
{
|
|
x = -x;
|
|
*signgamp = -1;
|
|
}
|
|
|
|
return -log(x);
|
|
}
|
|
|
|
if (sign)
|
|
{
|
|
x = -x;
|
|
t = sin_pi(x);
|
|
|
|
if (t == 0.0)
|
|
{
|
|
/* -integer */
|
|
|
|
return 1.0 / (x - x);
|
|
}
|
|
|
|
if (t > 0.0)
|
|
{
|
|
*signgamp = -1;
|
|
}
|
|
else
|
|
{
|
|
t = -t;
|
|
}
|
|
|
|
nadj = log(g_pi / (t * x));
|
|
}
|
|
|
|
/* purge off 1 and 2 */
|
|
|
|
if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t) u.i == 0)
|
|
{
|
|
r = 0;
|
|
}
|
|
else /* for x < 2.0 */
|
|
{
|
|
if (ix < 0x40000000)
|
|
{
|
|
if (ix <= 0x3feccccc)
|
|
{
|
|
/* lgamma(x) = lgamma(x+1)-log(x) */
|
|
|
|
r = -log(x);
|
|
|
|
if (ix >= 0x3fe76944)
|
|
{
|
|
y = 1.0 - x;
|
|
i = 0;
|
|
}
|
|
else
|
|
{
|
|
if (ix >= 0x3fcda661)
|
|
{
|
|
y = x - (g_tc - 1.0);
|
|
i = 1;
|
|
}
|
|
else
|
|
{
|
|
y = x;
|
|
i = 2;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
r = 0.0;
|
|
|
|
if (ix >= 0x3ffbb4c3)
|
|
{
|
|
/* [1.7316,2] */
|
|
|
|
y = 2.0 - x;
|
|
i = 0;
|
|
}
|
|
else
|
|
{
|
|
if (ix >= 0x3ff3b4c4)
|
|
{
|
|
/* [1.23,1.73] */
|
|
|
|
y = x - g_tc;
|
|
i = 1;
|
|
}
|
|
else
|
|
{
|
|
y = x - 1.0;
|
|
i = 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (i)
|
|
{
|
|
case 0:
|
|
z = y * y;
|
|
p1 = g_a0 + z * (g_a2 + z * (g_a4 +
|
|
z * (g_a6 + z * (g_a8 + z * g_a10))));
|
|
p2 = z * (g_a1 + z * (g_a3 + z * (g_a5 +
|
|
z * (g_a7 + z * (g_a9 + z * g_a11)))));
|
|
p = y * p1 + p2;
|
|
r += (p - 0.5 * y);
|
|
break;
|
|
|
|
case 1:
|
|
z = y*y;
|
|
w = z*y;
|
|
p1 = g_t0 + w * (g_t3 + w *(g_t6 + w * (g_t9 + w * g_t12))); /* parallel comp */
|
|
p2 = g_t1 + w * (g_t4 + w *(g_t7 + w * (g_t10 + w * g_t13)));
|
|
p3 = g_t2 + w * (g_t5 + w *(g_t8 + w * (g_t11 + w * g_t14)));
|
|
p = z * p1 - (g_tt - w * (p2 + y * p3));
|
|
r += g_tf + p;
|
|
break;
|
|
|
|
case 2:
|
|
p1 = y * (g_u0 + y * (g_u1 + y * (g_u2 +
|
|
y * (g_u3 + y * (g_u4 + y * g_u5)))));
|
|
p2 = 1.0 + y * (g_v1 + y * (g_v2 +
|
|
y * (g_v3 + y * (g_v4 + y * g_v5))));
|
|
r += -0.5 * y + p1 / p2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (ix < 0x40200000)
|
|
{
|
|
/* x < 8.0 */
|
|
|
|
i = (int)x;
|
|
y = x - (double)i;
|
|
p = y * (g_s0 + y * (g_s1 + y * (g_s2 +
|
|
y * (g_s3 + y * (g_s4 + y * (g_s5 + y * g_s6))))));
|
|
q = 1.0 + y * (g_r1 + y * (g_r2 +
|
|
y * (g_r3 + y * (g_r4 + y * (g_r5 + y * g_r6)))));
|
|
r = 0.5 * y + p / q;
|
|
z = 1.0;
|
|
|
|
/* lgamma(1+s) = log(s) + lgamma(s) */
|
|
|
|
switch (i)
|
|
{
|
|
case 7:
|
|
z *= y + 6.0; /* FALLTHRU */
|
|
case 6:
|
|
z *= y + 5.0; /* FALLTHRU */
|
|
case 5:
|
|
z *= y + 4.0; /* FALLTHRU */
|
|
case 4:
|
|
z *= y + 3.0; /* FALLTHRU */
|
|
case 3:
|
|
z *= y + 2.0; /* FALLTHRU */
|
|
r += log(z);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (ix < 0x43900000)
|
|
{
|
|
/* 8.0 <= x < 2**58 */
|
|
|
|
t = log(x);
|
|
z = 1.0 / x;
|
|
y = z * z;
|
|
w = g_w0 + z * (g_w1 + y * (g_w2 +
|
|
y * (g_w3 + y * (g_w4 + y * (g_w5 + y * g_w6)))));
|
|
r = (x - 0.5) * (t - 1.0) + w;
|
|
}
|
|
else
|
|
{
|
|
/* 2**58 <= x <= inf */
|
|
|
|
r = x * (log(x) - 1.0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sign)
|
|
{
|
|
r = nadj - r;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
double lgamma(double x)
|
|
{
|
|
return lgamma_r(x, &g_signgam);
|
|
}
|
|
#endif
|