87743cdc8e
git-svn-id: svn://svn.code.sf.net/p/nuttx/code/trunk@344 42af7a65-404d-4744-a932-0658087f49c3
1948 lines
61 KiB
C
1948 lines
61 KiB
C
/****************************************************************************
|
|
* uip.c
|
|
* The uIP TCP/IP stack code.
|
|
* author Adam Dunkels <adam@dunkels.com>
|
|
*
|
|
* uIP is an implementation of the TCP/IP protocol stack intended for
|
|
* small 8-bit and 16-bit microcontrollers.
|
|
*
|
|
* uIP provides the necessary protocols for Internet communication,
|
|
* with a very small code footprint and RAM requirements - the uIP
|
|
* code size is on the order of a few kilobytes and RAM usage is on
|
|
* the order of a few hundred bytes.
|
|
*
|
|
* Copyright (c) 2001-2003, Adam Dunkels.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote
|
|
* products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* uIP is a small implementation of the IP, UDP and TCP protocols (as
|
|
* well as some basic ICMP stuff). The implementation couples the IP,
|
|
* UDP, TCP and the application layers very tightly. To keep the size
|
|
* of the compiled code down, this code frequently uses the goto
|
|
* statement. While it would be possible to break the uip_interrupt()
|
|
* function into many smaller functions, this would increase the code
|
|
* size because of the overhead of parameter passing and the fact that
|
|
* the optimier would not be as efficient.
|
|
*
|
|
* The principle is that we have a small buffer, called the d_buf,
|
|
* in which the device driver puts an incoming packet. The TCP/IP
|
|
* stack parses the headers in the packet, and calls the
|
|
* application. If the remote host has sent data to the application,
|
|
* this data is present in the d_buf and the application read the
|
|
* data from there. It is up to the application to put this data into
|
|
* a byte stream if needed. The application will not be fed with data
|
|
* that is out of sequence.
|
|
*
|
|
* If the application whishes to send data to the peer, it should put
|
|
* its data into the d_buf. The d_appdata pointer points to the
|
|
* first available byte. The TCP/IP stack will calculate the
|
|
* checksums, and fill in the necessary header fields and finally send
|
|
* the packet back to the peer.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
#include <sys/types.h>
|
|
#include <debug.h>
|
|
|
|
#include <net/uip/uipopt.h>
|
|
#include <net/uip/uip.h>
|
|
#include <net/uip/uip-arch.h>
|
|
|
|
#ifdef CONFIG_NET_IPv6
|
|
# include "uip-neighbor.h"
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
#include <string.h>
|
|
|
|
#if UIP_LOGGING == 1
|
|
#include <stdio.h>
|
|
extern void uip_log(char *msg);
|
|
# define UIP_LOG(m) uip_log(m)
|
|
#else
|
|
# define UIP_LOG(m)
|
|
#endif /* UIP_LOGGING == 1 */
|
|
|
|
#include "uip-internal.h"
|
|
|
|
/****************************************************************************
|
|
* Definitions
|
|
****************************************************************************/
|
|
|
|
#define TCP_FIN 0x01
|
|
#define TCP_SYN 0x02
|
|
#define TCP_RST 0x04
|
|
#define TCP_PSH 0x08
|
|
#define TCP_ACK 0x10
|
|
#define TCP_URG 0x20
|
|
#define TCP_CTL 0x3f
|
|
|
|
#define TCP_OPT_END 0 /* End of TCP options list */
|
|
#define TCP_OPT_NOOP 1 /* "No-operation" TCP option */
|
|
#define TCP_OPT_MSS 2 /* Maximum segment size TCP option */
|
|
|
|
#define TCP_OPT_MSS_LEN 4 /* Length of TCP MSS option. */
|
|
|
|
#define ICMP_ECHO_REPLY 0
|
|
#define ICMP_ECHO 8
|
|
|
|
#define ICMP6_ECHO_REPLY 129
|
|
#define ICMP6_ECHO 128
|
|
#define ICMP6_NEIGHBOR_SOLICITATION 135
|
|
#define ICMP6_NEIGHBOR_ADVERTISEMENT 136
|
|
|
|
#define ICMP6_FLAG_S (1 << 6)
|
|
|
|
#define ICMP6_OPTION_SOURCE_LINK_ADDRESS 1
|
|
#define ICMP6_OPTION_TARGET_LINK_ADDRESS 2
|
|
|
|
/* Macros. */
|
|
|
|
#define BUF ((struct uip_tcpip_hdr *)&dev->d_buf[UIP_LLH_LEN])
|
|
#define FBUF ((struct uip_tcpip_hdr *)&uip_reassbuf[0])
|
|
#define ICMPBUF ((struct uip_icmpip_hdr *)&dev->d_buf[UIP_LLH_LEN])
|
|
#define UDPBUF ((struct uip_udpip_hdr *)&dev->d_buf[UIP_LLH_LEN])
|
|
|
|
/****************************************************************************
|
|
* Public Variables
|
|
****************************************************************************/
|
|
|
|
/* The IP address of this host. If it is defined to be fixed (by
|
|
* setting UIP_FIXEDADDR to 1 in uipopt.h), the address is set
|
|
* here.
|
|
*/
|
|
|
|
#if UIP_FIXEDADDR > 0
|
|
const uip_ipaddr_t uip_hostaddr =
|
|
{HTONS((UIP_IPADDR0 << 8) | UIP_IPADDR1),
|
|
HTONS((UIP_IPADDR2 << 8) | UIP_IPADDR3)};
|
|
|
|
const uip_ipaddr_t uip_draddr =
|
|
{HTONS((UIP_DRIPADDR0 << 8) | UIP_DRIPADDR1),
|
|
HTONS((UIP_DRIPADDR2 << 8) | UIP_DRIPADDR3)};
|
|
|
|
const uip_ipaddr_t uip_netmask =
|
|
{HTONS((UIP_NETMASK0 << 8) | UIP_NETMASK1),
|
|
HTONS((UIP_NETMASK2 << 8) | UIP_NETMASK3)};
|
|
#else
|
|
uip_ipaddr_t uip_hostaddr;
|
|
uip_ipaddr_t uip_draddr;
|
|
uip_ipaddr_t uip_netmask;
|
|
#endif /* UIP_FIXEDADDR */
|
|
|
|
#if UIP_URGDATA > 0
|
|
void *uip_urgdata; /* The uip_urgdata pointer points to urgent data
|
|
* (out-of-band data), if present. */
|
|
uint16 uip_urglen;
|
|
uint16 uip_surglen;
|
|
#endif /* UIP_URGDATA > 0 */
|
|
|
|
uint8 uip_flags; /* The uip_flags variable is used for communication
|
|
* between the TCP/IP stack and the application
|
|
* program. */
|
|
struct uip_conn *uip_conn; /* uip_conn always points to the current connection. */
|
|
|
|
uint16 uip_listenports[UIP_LISTENPORTS];
|
|
/* The uip_listenports list all currently listening ports. */
|
|
#ifdef CONFIG_NET_UDP
|
|
struct uip_udp_conn *uip_udp_conn;
|
|
#endif /* CONFIG_NET_UDP */
|
|
|
|
/* Temporary variables. */
|
|
|
|
uint8 uip_acc32[4];
|
|
|
|
#if UIP_STATISTICS == 1
|
|
struct uip_stats uip_stat;
|
|
# define UIP_STAT(s) s
|
|
#else
|
|
# define UIP_STAT(s)
|
|
#endif /* UIP_STATISTICS == 1 */
|
|
|
|
const uip_ipaddr_t all_ones_addr =
|
|
#ifdef CONFIG_NET_IPv6
|
|
{0xffff,0xffff,0xffff,0xffff,0xffff,0xffff,0xffff,0xffff};
|
|
#else /* CONFIG_NET_IPv6 */
|
|
{0xffff,0xffff};
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
const uip_ipaddr_t all_zeroes_addr =
|
|
#ifdef CONFIG_NET_IPv6
|
|
{0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000};
|
|
#else /* CONFIG_NET_IPv6 */
|
|
{0x0000,0x0000};
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
/****************************************************************************
|
|
* Private Variables
|
|
****************************************************************************/
|
|
|
|
#if UIP_FIXEDETHADDR
|
|
const struct uip_eth_addr uip_ethaddr =
|
|
{{ UIP_ETHADDR0, UIP_ETHADDR1, UIP_ETHADDR2, UIP_ETHADDR3, UIP_ETHADDR4, UIP_ETHADDR5 }};
|
|
#else
|
|
struct uip_eth_addr uip_ethaddr = {{ 0,0,0,0,0,0 }};
|
|
#endif
|
|
|
|
static uint16 ipid; /* Ths ipid variable is an increasing number that is
|
|
* used for the IP ID field. */
|
|
|
|
/* Temporary variables. */
|
|
|
|
static uint8 c;
|
|
static uint8 opt;
|
|
static uint16 tmp16;
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
#if !UIP_ARCH_CHKSUM
|
|
static uint16 chksum(uint16 sum, const uint8 *data, uint16 len)
|
|
{
|
|
uint16 t;
|
|
const uint8 *dataptr;
|
|
const uint8 *last_byte;
|
|
|
|
dataptr = data;
|
|
last_byte = data + len - 1;
|
|
|
|
while(dataptr < last_byte)
|
|
{
|
|
/* At least two more bytes */
|
|
|
|
t = (dataptr[0] << 8) + dataptr[1];
|
|
sum += t;
|
|
if (sum < t)
|
|
{
|
|
sum++; /* carry */
|
|
}
|
|
dataptr += 2;
|
|
}
|
|
|
|
if (dataptr == last_byte)
|
|
{
|
|
t = (dataptr[0] << 8) + 0;
|
|
sum += t;
|
|
if (sum < t)
|
|
{
|
|
sum++; /* carry */
|
|
}
|
|
}
|
|
|
|
/* Return sum in host byte order. */
|
|
|
|
return sum;
|
|
}
|
|
|
|
static uint16 upper_layer_chksum(struct uip_driver_s *dev, uint8 proto)
|
|
{
|
|
uint16 upper_layer_len;
|
|
uint16 sum;
|
|
|
|
#ifdef CONFIG_NET_IPv6
|
|
upper_layer_len = (((uint16)(BUF->len[0]) << 8) + BUF->len[1]);
|
|
#else /* CONFIG_NET_IPv6 */
|
|
upper_layer_len = (((uint16)(BUF->len[0]) << 8) + BUF->len[1]) - UIP_IPH_LEN;
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
/* First sum pseudoheader. */
|
|
|
|
/* IP protocol and length fields. This addition cannot carry. */
|
|
sum = upper_layer_len + proto;
|
|
|
|
/* Sum IP source and destination addresses. */
|
|
sum = chksum(sum, (uint8 *)&BUF->srcipaddr[0], 2 * sizeof(uip_ipaddr_t));
|
|
|
|
/* Sum TCP header and data. */
|
|
sum = chksum(sum, &dev->d_buf[UIP_IPH_LEN + UIP_LLH_LEN], upper_layer_len);
|
|
|
|
return (sum == 0) ? 0xffff : htons(sum);
|
|
}
|
|
|
|
#ifdef CONFIG_NET_IPv6
|
|
static uint16 uip_icmp6chksum(struct uip_driver_s *dev)
|
|
{
|
|
return upper_layer_chksum(dev, UIP_PROTO_ICMP6);
|
|
}
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
#endif /* UIP_ARCH_CHKSUM */
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
/* This function may be used at boot time to set the initial ip_id.*/
|
|
|
|
void uip_setipid(uint16 id)
|
|
{
|
|
ipid = id;
|
|
}
|
|
|
|
/* Calculate the Internet checksum over a buffer. */
|
|
|
|
#if !UIP_ARCH_ADD32
|
|
void uip_add32(uint8 *op32, uint16 op16)
|
|
{
|
|
uip_acc32[3] = op32[3] + (op16 & 0xff);
|
|
uip_acc32[2] = op32[2] + (op16 >> 8);
|
|
uip_acc32[1] = op32[1];
|
|
uip_acc32[0] = op32[0];
|
|
|
|
if (uip_acc32[2] < (op16 >> 8))
|
|
{
|
|
++uip_acc32[1];
|
|
if (uip_acc32[1] == 0)
|
|
{
|
|
++uip_acc32[0];
|
|
}
|
|
}
|
|
|
|
if (uip_acc32[3] < (op16 & 0xff))
|
|
{
|
|
++uip_acc32[2];
|
|
if (uip_acc32[2] == 0)
|
|
{
|
|
++uip_acc32[1];
|
|
if (uip_acc32[1] == 0)
|
|
{
|
|
++uip_acc32[0];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* UIP_ARCH_ADD32 */
|
|
|
|
#if !UIP_ARCH_CHKSUM
|
|
uint16 uip_chksum(uint16 *data, uint16 len)
|
|
{
|
|
return htons(chksum(0, (uint8 *)data, len));
|
|
}
|
|
|
|
/* Calculate the IP header checksum of the packet header in d_buf. */
|
|
|
|
#ifndef UIP_ARCH_IPCHKSUM
|
|
uint16 uip_ipchksum(struct uip_driver_s *dev)
|
|
{
|
|
uint16 sum;
|
|
|
|
sum = chksum(0, &dev->d_buf[UIP_LLH_LEN], UIP_IPH_LEN);
|
|
dbg("uip_ipchksum: sum 0x%04x\n", sum);
|
|
return (sum == 0) ? 0xffff : htons(sum);
|
|
}
|
|
#endif
|
|
|
|
/* Calculate the TCP checksum of the packet in d_buf and d_appdata. */
|
|
|
|
uint16 uip_tcpchksum(struct uip_driver_s *dev)
|
|
{
|
|
return upper_layer_chksum(dev, UIP_PROTO_TCP);
|
|
}
|
|
|
|
/* Calculate the UDP checksum of the packet in d_buf and d_appdata. */
|
|
|
|
#ifdef CONFIG_NET_UDP_CHECKSUMS
|
|
uint16 uip_udpchksum(struct uip_driver_s *dev)
|
|
{
|
|
return upper_layer_chksum(dev, UIP_PROTO_UDP);
|
|
}
|
|
#endif /* UIP_UDP_CHECKSUMS */
|
|
#endif /* UIP_ARCH_CHKSUM */
|
|
|
|
void uip_init(void)
|
|
{
|
|
for (c = 0; c < UIP_LISTENPORTS; ++c)
|
|
{
|
|
uip_listenports[c] = 0;
|
|
}
|
|
|
|
/* Initialize the TCP/IP connection structures */
|
|
|
|
uip_tcpinit();
|
|
|
|
/* Initialize the UDP connection structures */
|
|
|
|
uip_udpinit();
|
|
|
|
/* IPv4 initialization. */
|
|
#if UIP_FIXEDADDR == 0
|
|
/* uip_hostaddr[0] = uip_hostaddr[1] = 0;*/
|
|
#endif /* UIP_FIXEDADDR */
|
|
}
|
|
|
|
void uip_unlisten(uint16 port)
|
|
{
|
|
for (c = 0; c < UIP_LISTENPORTS; ++c)
|
|
{
|
|
if (uip_listenports[c] == port)
|
|
{
|
|
uip_listenports[c] = 0;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void uip_listen(uint16 port)
|
|
{
|
|
for (c = 0; c < UIP_LISTENPORTS; ++c)
|
|
{
|
|
if (uip_listenports[c] == 0)
|
|
{
|
|
uip_listenports[c] = port;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* IP fragment reassembly: not well-tested. */
|
|
|
|
#if UIP_REASSEMBLY && !defined(CONFIG_NET_IPv6)
|
|
#define UIP_REASS_BUFSIZE (UIP_BUFSIZE - UIP_LLH_LEN)
|
|
static uint8 uip_reassbuf[UIP_REASS_BUFSIZE];
|
|
static uint8 uip_reassbitmap[UIP_REASS_BUFSIZE / (8 * 8)];
|
|
static const uint8 bitmap_bits[8] = {0xff, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01};
|
|
static uint16 uip_reasslen;
|
|
static uint8 uip_reassflags;
|
|
#define UIP_REASS_FLAG_LASTFRAG 0x01
|
|
static uint8 uip_reasstmr;
|
|
|
|
#define IP_MF 0x20
|
|
|
|
static uint8 uip_reass(void)
|
|
{
|
|
uint16 offset, len;
|
|
uint16 i;
|
|
|
|
/* If ip_reasstmr is zero, no packet is present in the buffer, so we
|
|
* write the IP header of the fragment into the reassembly
|
|
* buffer. The timer is updated with the maximum age.
|
|
*/
|
|
|
|
if (uip_reasstmr == 0)
|
|
{
|
|
memcpy(uip_reassbuf, &BUF->vhl, UIP_IPH_LEN);
|
|
uip_reasstmr = UIP_REASS_MAXAGE;
|
|
uip_reassflags = 0;
|
|
|
|
/* Clear the bitmap. */
|
|
memset(uip_reassbitmap, 0, sizeof(uip_reassbitmap));
|
|
}
|
|
|
|
/* Check if the incoming fragment matches the one currently present
|
|
* in the reasembly buffer. If so, we proceed with copying the
|
|
* fragment into the buffer.
|
|
*/
|
|
|
|
if (BUF->srcipaddr[0] == FBUF->srcipaddr[0] && BUF->srcipaddr[1] == FBUF->srcipaddr[1] &&
|
|
BUF->destipaddr[0] == FBUF->destipaddr[0] && BUF->destipaddr[1] == FBUF->destipaddr[1] &&
|
|
BUF->ipid[0] == FBUF->ipid[0] && BUF->ipid[1] == FBUF->ipid[1])
|
|
{
|
|
len = (BUF->len[0] << 8) + BUF->len[1] - (BUF->vhl & 0x0f) * 4;
|
|
offset = (((BUF->ipoffset[0] & 0x3f) << 8) + BUF->ipoffset[1]) * 8;
|
|
|
|
/* If the offset or the offset + fragment length overflows the
|
|
* reassembly buffer, we discard the entire packet.
|
|
*/
|
|
|
|
if (offset > UIP_REASS_BUFSIZE || offset + len > UIP_REASS_BUFSIZE)
|
|
{
|
|
uip_reasstmr = 0;
|
|
goto nullreturn;
|
|
}
|
|
|
|
/* Copy the fragment into the reassembly buffer, at the right offset. */
|
|
|
|
memcpy(&uip_reassbuf[UIP_IPH_LEN + offset], (char *)BUF + (int)((BUF->vhl & 0x0f) * 4), len);
|
|
|
|
/* Update the bitmap. */
|
|
|
|
if (offset / (8 * 8) == (offset + len) / (8 * 8))
|
|
{
|
|
/* If the two endpoints are in the same byte, we only update that byte. */
|
|
|
|
uip_reassbitmap[offset / (8 * 8)] |=
|
|
bitmap_bits[(offset / 8 ) & 7] & ~bitmap_bits[((offset + len) / 8 ) & 7];
|
|
|
|
}
|
|
else
|
|
{
|
|
/* If the two endpoints are in different bytes, we update the bytes
|
|
* in the endpoints and fill the stuff inbetween with 0xff.
|
|
*/
|
|
|
|
uip_reassbitmap[offset / (8 * 8)] |= bitmap_bits[(offset / 8 ) & 7];
|
|
for (i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i)
|
|
{
|
|
uip_reassbitmap[i] = 0xff;
|
|
}
|
|
uip_reassbitmap[(offset + len) / (8 * 8)] |= ~bitmap_bits[((offset + len) / 8 ) & 7];
|
|
}
|
|
|
|
/* If this fragment has the More Fragments flag set to zero, we know that
|
|
* this is the last fragment, so we can calculate the size of the entire
|
|
* packet. We also set the IP_REASS_FLAG_LASTFRAG flag to indicate that
|
|
* we have received the final fragment.
|
|
*/
|
|
|
|
if ((BUF->ipoffset[0] & IP_MF) == 0)
|
|
{
|
|
uip_reassflags |= UIP_REASS_FLAG_LASTFRAG;
|
|
uip_reasslen = offset + len;
|
|
}
|
|
|
|
/* Finally, we check if we have a full packet in the buffer. We do this
|
|
* by checking if we have the last fragment and if all bits in the bitmap
|
|
* are set.
|
|
*/
|
|
|
|
if (uip_reassflags & UIP_REASS_FLAG_LASTFRAG)
|
|
{
|
|
/* Check all bytes up to and including all but the last byte in
|
|
* the bitmap.
|
|
*/
|
|
|
|
for (i = 0; i < uip_reasslen / (8 * 8) - 1; ++i)
|
|
{
|
|
if (uip_reassbitmap[i] != 0xff)
|
|
{
|
|
goto nullreturn;
|
|
}
|
|
}
|
|
|
|
/* Check the last byte in the bitmap. It should contain just the
|
|
* right amount of bits.
|
|
*/
|
|
|
|
if (uip_reassbitmap[uip_reasslen / (8 * 8)] != (uint8)~bitmap_bits[uip_reasslen / 8 & 7])
|
|
{
|
|
goto nullreturn;
|
|
}
|
|
|
|
/* If we have come this far, we have a full packet in the buffer,
|
|
* so we allocate a pbuf and copy the packet into it. We also reset
|
|
* the timer.
|
|
*/
|
|
|
|
uip_reasstmr = 0;
|
|
memcpy(BUF, FBUF, uip_reasslen);
|
|
|
|
/* Pretend to be a "normal" (i.e., not fragmented) IP packet from
|
|
* now on.
|
|
*/
|
|
|
|
BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
|
|
BUF->len[0] = uip_reasslen >> 8;
|
|
BUF->len[1] = uip_reasslen & 0xff;
|
|
BUF->ipchksum = 0;
|
|
BUF->ipchksum = ~(uip_ipchksum(dev));
|
|
|
|
return uip_reasslen;
|
|
}
|
|
}
|
|
|
|
nullreturn:
|
|
return 0;
|
|
}
|
|
#endif /* UIP_REASSEMBLY */
|
|
|
|
static void uip_add_rcv_nxt(uint16 n)
|
|
{
|
|
uip_add32(uip_conn->rcv_nxt, n);
|
|
uip_conn->rcv_nxt[0] = uip_acc32[0];
|
|
uip_conn->rcv_nxt[1] = uip_acc32[1];
|
|
uip_conn->rcv_nxt[2] = uip_acc32[2];
|
|
uip_conn->rcv_nxt[3] = uip_acc32[3];
|
|
}
|
|
|
|
static void uip_udp_callback(struct uip_driver_s *dev)
|
|
{
|
|
/* Some sanity checking */
|
|
|
|
if (uip_udp_conn && uip_udp_conn->event)
|
|
{
|
|
/* Perform the callback */
|
|
|
|
uip_udp_conn->event(dev, uip_udp_conn->private);
|
|
}
|
|
}
|
|
|
|
static void uip_tcp_callback(struct uip_driver_s *dev)
|
|
{
|
|
/* Some sanity checking */
|
|
|
|
if (uip_conn)
|
|
{
|
|
/* Check if there is a data callback */
|
|
|
|
if (uip_conn->data_event)
|
|
{
|
|
/* Perform the callback */
|
|
|
|
uip_conn->data_event(dev, uip_conn->data_private);
|
|
}
|
|
|
|
/* Check if there is a connection-related event and a connection
|
|
* callback.
|
|
*/
|
|
if (((uip_flags & UIP_CONN_EVENTS) != 0) && uip_conn->connection_event)
|
|
{
|
|
/* Perform the callback */
|
|
|
|
uip_conn->connection_event(uip_conn->connection_private);
|
|
}
|
|
}
|
|
}
|
|
|
|
void uip_interrupt(struct uip_driver_s *dev, uint8 flag)
|
|
{
|
|
register struct uip_conn *uip_connr = uip_conn;
|
|
|
|
#ifdef CONFIG_NET_UDP
|
|
if (flag == UIP_UDP_SEND_CONN)
|
|
{
|
|
goto udp_send;
|
|
}
|
|
#endif /* CONFIG_NET_UDP */
|
|
|
|
dev->d_snddata = dev->d_appdata = &dev->d_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN];
|
|
|
|
/* Check if we were invoked because of a poll request for a
|
|
* particular connection.
|
|
*/
|
|
|
|
if (flag == UIP_POLL_REQUEST)
|
|
{
|
|
if ((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED &&
|
|
!uip_outstanding(uip_connr))
|
|
{
|
|
uip_flags = UIP_POLL;
|
|
uip_tcp_callback(dev);
|
|
goto appsend;
|
|
}
|
|
goto drop;
|
|
}
|
|
|
|
/* Check if we were invoked because of the perodic timer firing. */
|
|
|
|
else if (flag == UIP_TIMER)
|
|
{
|
|
#if UIP_REASSEMBLY
|
|
if (uip_reasstmr != 0)
|
|
{
|
|
--uip_reasstmr;
|
|
}
|
|
#endif /* UIP_REASSEMBLY */
|
|
|
|
/* Increase the TCP sequence number */
|
|
|
|
uip_tcpnextsequence();
|
|
|
|
/* Reset the length variables. */
|
|
|
|
dev->d_len = 0;
|
|
dev->d_sndlen = 0;
|
|
|
|
/* Check if the connection is in a state in which we simply wait
|
|
* for the connection to time out. If so, we increase the
|
|
* connection's timer and remove the connection if it times
|
|
* out.
|
|
*/
|
|
|
|
if (uip_connr->tcpstateflags == UIP_TIME_WAIT ||
|
|
uip_connr->tcpstateflags == UIP_FIN_WAIT_2)
|
|
{
|
|
++(uip_connr->timer);
|
|
if (uip_connr->timer == UIP_TIME_WAIT_TIMEOUT)
|
|
{
|
|
uip_connr->tcpstateflags = UIP_CLOSED;
|
|
}
|
|
}
|
|
else if (uip_connr->tcpstateflags != UIP_CLOSED)
|
|
{
|
|
/* If the connection has outstanding data, we increase the
|
|
* connection's timer and see if it has reached the RTO value
|
|
* in which case we retransmit.
|
|
*/
|
|
|
|
if (uip_outstanding(uip_connr))
|
|
{
|
|
if (uip_connr->timer-- == 0)
|
|
{
|
|
if (uip_connr->nrtx == UIP_MAXRTX ||
|
|
((uip_connr->tcpstateflags == UIP_SYN_SENT ||
|
|
uip_connr->tcpstateflags == UIP_SYN_RCVD) &&
|
|
uip_connr->nrtx == UIP_MAXSYNRTX))
|
|
{
|
|
uip_connr->tcpstateflags = UIP_CLOSED;
|
|
|
|
/* We call uip_tcp_callback() with uip_flags set to
|
|
* UIP_TIMEDOUT to inform the application that the
|
|
* connection has timed out.
|
|
*/
|
|
|
|
uip_flags = UIP_TIMEDOUT;
|
|
uip_tcp_callback(dev);
|
|
|
|
/* We also send a reset packet to the remote host. */
|
|
|
|
BUF->flags = TCP_RST | TCP_ACK;
|
|
goto tcp_send_nodata;
|
|
}
|
|
|
|
/* Exponential backoff. */
|
|
|
|
uip_connr->timer = UIP_RTO << (uip_connr->nrtx > 4 ? 4: uip_connr->nrtx);
|
|
++(uip_connr->nrtx);
|
|
|
|
/* Ok, so we need to retransmit. We do this differently
|
|
* depending on which state we are in. In ESTABLISHED, we
|
|
* call upon the application so that it may prepare the
|
|
* data for the retransmit. In SYN_RCVD, we resend the
|
|
* SYNACK that we sent earlier and in LAST_ACK we have to
|
|
* retransmit our FINACK.
|
|
*/
|
|
|
|
UIP_STAT(++uip_stat.tcp.rexmit);
|
|
switch(uip_connr->tcpstateflags & UIP_TS_MASK)
|
|
{
|
|
case UIP_SYN_RCVD:
|
|
/* In the SYN_RCVD state, we should retransmit our
|
|
* SYNACK.
|
|
*/
|
|
|
|
goto tcp_send_synack;
|
|
|
|
case UIP_SYN_SENT:
|
|
/* In the SYN_SENT state, we retransmit out SYN. */
|
|
BUF->flags = 0;
|
|
goto tcp_send_syn;
|
|
|
|
case UIP_ESTABLISHED:
|
|
/* In the ESTABLISHED state, we call upon the application
|
|
* to do the actual retransmit after which we jump into
|
|
* the code for sending out the packet (the apprexmit
|
|
* label).
|
|
*/
|
|
|
|
uip_flags = UIP_REXMIT;
|
|
uip_tcp_callback(dev);
|
|
goto apprexmit;
|
|
|
|
case UIP_FIN_WAIT_1:
|
|
case UIP_CLOSING:
|
|
case UIP_LAST_ACK:
|
|
/* In all these states we should retransmit a FINACK. */
|
|
goto tcp_send_finack;
|
|
|
|
}
|
|
}
|
|
}
|
|
else if ((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED)
|
|
{
|
|
/* If there was no need for a retransmission, we poll the
|
|
* application for new data.
|
|
*/
|
|
|
|
uip_flags = UIP_POLL;
|
|
uip_tcp_callback(dev);
|
|
goto appsend;
|
|
}
|
|
}
|
|
goto drop;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_UDP
|
|
if (flag == UIP_UDP_TIMER)
|
|
{
|
|
if (uip_udp_conn->lport != 0)
|
|
{
|
|
uip_conn = NULL;
|
|
dev->d_snddata = dev->d_appdata = &dev->d_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
|
|
dev->d_len = 0;
|
|
dev->d_sndlen = 0;
|
|
uip_flags = UIP_POLL;
|
|
uip_udp_callback(dev);
|
|
goto udp_send;
|
|
}
|
|
else
|
|
{
|
|
goto drop;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* This is where the input processing starts. */
|
|
UIP_STAT(++uip_stat.ip.recv);
|
|
|
|
/* Start of IP input header processing code. */
|
|
|
|
#ifdef CONFIG_NET_IPv6
|
|
/* Check validity of the IP header. */
|
|
if ((BUF->vtc & 0xf0) != 0x60)
|
|
{
|
|
/* IP version and header length. */
|
|
UIP_STAT(++uip_stat.ip.drop);
|
|
UIP_STAT(++uip_stat.ip.vhlerr);
|
|
UIP_LOG("ipv6: invalid version.");
|
|
goto drop;
|
|
}
|
|
#else /* CONFIG_NET_IPv6 */
|
|
/* Check validity of the IP header. */
|
|
if (BUF->vhl != 0x45)
|
|
{
|
|
/* IP version and header length. */
|
|
UIP_STAT(++uip_stat.ip.drop);
|
|
UIP_STAT(++uip_stat.ip.vhlerr);
|
|
UIP_LOG("ip: invalid version or header length.");
|
|
goto drop;
|
|
}
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
/* Check the size of the packet. If the size reported to us in
|
|
d_len is smaller the size reported in the IP header, we assume
|
|
that the packet has been corrupted in transit. If the size of
|
|
d_len is larger than the size reported in the IP packet header,
|
|
the packet has been padded and we set d_len to the correct
|
|
value.. */
|
|
|
|
if ((BUF->len[0] << 8) + BUF->len[1] <= dev->d_len)
|
|
{
|
|
dev->d_len = (BUF->len[0] << 8) + BUF->len[1];
|
|
#ifdef CONFIG_NET_IPv6
|
|
dev->d_len += 40; /* The length reported in the IPv6 header is the
|
|
length of the payload that follows the
|
|
header. However, uIP uses the d_len variable
|
|
for holding the size of the entire packet,
|
|
including the IP header. For IPv4 this is not a
|
|
problem as the length field in the IPv4 header
|
|
contains the length of the entire packet. But
|
|
for IPv6 we need to add the size of the IPv6
|
|
header (40 bytes). */
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
}
|
|
else
|
|
{
|
|
UIP_LOG("ip: packet shorter than reported in IP header.");
|
|
goto drop;
|
|
}
|
|
|
|
#ifndef CONFIG_NET_IPv6
|
|
/* Check the fragment flag. */
|
|
|
|
if ((BUF->ipoffset[0] & 0x3f) != 0 ||
|
|
BUF->ipoffset[1] != 0)
|
|
{
|
|
#if UIP_REASSEMBLY
|
|
dev->d_len = uip_reass();
|
|
if (dev->d_len == 0)
|
|
{
|
|
goto drop;
|
|
}
|
|
#else /* UIP_REASSEMBLY */
|
|
UIP_STAT(++uip_stat.ip.drop);
|
|
UIP_STAT(++uip_stat.ip.fragerr);
|
|
UIP_LOG("ip: fragment dropped.");
|
|
goto drop;
|
|
#endif /* UIP_REASSEMBLY */
|
|
}
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
if (uip_ipaddr_cmp(uip_hostaddr, all_zeroes_addr))
|
|
{
|
|
/* If we are configured to use ping IP address configuration and
|
|
hasn't been assigned an IP address yet, we accept all ICMP
|
|
packets. */
|
|
#if UIP_PINGADDRCONF && !CONFIG_NET_IPv6
|
|
if (BUF->proto == UIP_PROTO_ICMP)
|
|
{
|
|
UIP_LOG("ip: possible ping config packet received.");
|
|
goto icmp_input;
|
|
}
|
|
else
|
|
{
|
|
UIP_LOG("ip: packet dropped since no address assigned.");
|
|
goto drop;
|
|
}
|
|
#endif /* UIP_PINGADDRCONF */
|
|
|
|
}
|
|
else
|
|
{
|
|
/* If IP broadcast support is configured, we check for a broadcast
|
|
UDP packet, which may be destined to us. */
|
|
#if UIP_BROADCAST
|
|
dbg("UDP IP checksum 0x%04x\n", uip_ipchksum(dev));
|
|
if (BUF->proto == UIP_PROTO_UDP &&
|
|
uip_ipaddr_cmp(BUF->destipaddr, all_ones_addr)
|
|
/*&& uip_ipchksum(dev) == 0xffff*/)
|
|
{
|
|
goto udp_input;
|
|
}
|
|
#endif /* UIP_BROADCAST */
|
|
|
|
/* Check if the packet is destined for our IP address. */
|
|
#ifndef CONFIG_NET_IPv6
|
|
if (!uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr))
|
|
{
|
|
UIP_STAT(++uip_stat.ip.drop);
|
|
goto drop;
|
|
}
|
|
#else /* CONFIG_NET_IPv6 */
|
|
/* For IPv6, packet reception is a little trickier as we need to
|
|
make sure that we listen to certain multicast addresses (all
|
|
hosts multicast address, and the solicited-node multicast
|
|
address) as well. However, we will cheat here and accept all
|
|
multicast packets that are sent to the ff02::/16 addresses. */
|
|
if (!uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr) &&
|
|
BUF->destipaddr[0] != HTONS(0xff02))
|
|
{
|
|
UIP_STAT(++uip_stat.ip.drop);
|
|
goto drop;
|
|
}
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
}
|
|
|
|
#ifndef CONFIG_NET_IPv6
|
|
if (uip_ipchksum(dev) != 0xffff)
|
|
{
|
|
/* Compute and check the IP header checksum. */
|
|
|
|
UIP_STAT(++uip_stat.ip.drop);
|
|
UIP_STAT(++uip_stat.ip.chkerr);
|
|
UIP_LOG("ip: bad checksum.");
|
|
goto drop;
|
|
}
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
if (BUF->proto == UIP_PROTO_TCP)
|
|
{
|
|
/* Check for TCP packet. If so, proceed with TCP input processing. */
|
|
|
|
goto tcp_input;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_UDP
|
|
if (BUF->proto == UIP_PROTO_UDP)
|
|
{
|
|
goto udp_input;
|
|
}
|
|
#endif /* CONFIG_NET_UDP */
|
|
|
|
#ifndef CONFIG_NET_IPv6
|
|
/* ICMPv4 processing code follows. */
|
|
if (BUF->proto != UIP_PROTO_ICMP)
|
|
{
|
|
/* We only allow ICMP packets from here. */
|
|
|
|
UIP_STAT(++uip_stat.ip.drop);
|
|
UIP_STAT(++uip_stat.ip.protoerr);
|
|
UIP_LOG("ip: neither tcp nor icmp.");
|
|
goto drop;
|
|
}
|
|
|
|
#if UIP_PINGADDRCONF
|
|
icmp_input:
|
|
#endif /* UIP_PINGADDRCONF */
|
|
UIP_STAT(++uip_stat.icmp.recv);
|
|
|
|
/* ICMP echo (i.e., ping) processing. This is simple, we only change
|
|
the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP
|
|
checksum before we return the packet. */
|
|
if (ICMPBUF->type != ICMP_ECHO)
|
|
{
|
|
UIP_STAT(++uip_stat.icmp.drop);
|
|
UIP_STAT(++uip_stat.icmp.typeerr);
|
|
UIP_LOG("icmp: not icmp echo.");
|
|
goto drop;
|
|
}
|
|
|
|
/* If we are configured to use ping IP address assignment, we use
|
|
the destination IP address of this ping packet and assign it to
|
|
ourself. */
|
|
#if UIP_PINGADDRCONF
|
|
if ((uip_hostaddr[0] | uip_hostaddr[1]) == 0)
|
|
{
|
|
uip_hostaddr[0] = BUF->destipaddr[0];
|
|
uip_hostaddr[1] = BUF->destipaddr[1];
|
|
}
|
|
#endif /* UIP_PINGADDRCONF */
|
|
|
|
ICMPBUF->type = ICMP_ECHO_REPLY;
|
|
|
|
if (ICMPBUF->icmpchksum >= HTONS(0xffff - (ICMP_ECHO << 8)))
|
|
{
|
|
ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8) + 1;
|
|
}
|
|
else
|
|
{
|
|
ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8);
|
|
}
|
|
|
|
/* Swap IP addresses. */
|
|
|
|
uip_ipaddr_copy(BUF->destipaddr, BUF->srcipaddr);
|
|
uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr);
|
|
|
|
UIP_STAT(++uip_stat.icmp.sent);
|
|
goto send;
|
|
|
|
/* End of IPv4 input header processing code. */
|
|
#else /* !CONFIG_NET_IPv6 */
|
|
|
|
/* This is IPv6 ICMPv6 processing code. */
|
|
dbg("icmp6_input: length %d\n", dev->d_len);
|
|
|
|
if (BUF->proto != UIP_PROTO_ICMP6)
|
|
{
|
|
/* We only allow ICMPv6 packets from here. */
|
|
|
|
UIP_STAT(++uip_stat.ip.drop);
|
|
UIP_STAT(++uip_stat.ip.protoerr);
|
|
UIP_LOG("ip: neither tcp nor icmp6.");
|
|
goto drop;
|
|
}
|
|
|
|
UIP_STAT(++uip_stat.icmp.recv);
|
|
|
|
/* If we get a neighbor solicitation for our address we should send
|
|
a neighbor advertisement message back. */
|
|
if (ICMPBUF->type == ICMP6_NEIGHBOR_SOLICITATION)
|
|
{
|
|
if (uip_ipaddr_cmp(ICMPBUF->icmp6data, uip_hostaddr))
|
|
{
|
|
if (ICMPBUF->options[0] == ICMP6_OPTION_SOURCE_LINK_ADDRESS)
|
|
{
|
|
/* Save the sender's address in our neighbor list. */
|
|
uip_neighbor_add(ICMPBUF->srcipaddr, &(ICMPBUF->options[2]));
|
|
}
|
|
|
|
/* We should now send a neighbor advertisement back to where the
|
|
neighbor solicication came from. */
|
|
ICMPBUF->type = ICMP6_NEIGHBOR_ADVERTISEMENT;
|
|
ICMPBUF->flags = ICMP6_FLAG_S; /* Solicited flag. */
|
|
|
|
ICMPBUF->reserved1 = ICMPBUF->reserved2 = ICMPBUF->reserved3 = 0;
|
|
|
|
uip_ipaddr_copy(ICMPBUF->destipaddr, ICMPBUF->srcipaddr);
|
|
uip_ipaddr_copy(ICMPBUF->srcipaddr, uip_hostaddr);
|
|
ICMPBUF->options[0] = ICMP6_OPTION_TARGET_LINK_ADDRESS;
|
|
ICMPBUF->options[1] = 1; /* Options length, 1 = 8 bytes. */
|
|
memcpy(&(ICMPBUF->options[2]), &uip_ethaddr, sizeof(uip_ethaddr));
|
|
ICMPBUF->icmpchksum = 0;
|
|
ICMPBUF->icmpchksum = ~uip_icmp6chksum(dev);
|
|
goto send;
|
|
}
|
|
goto drop;
|
|
}
|
|
else if (ICMPBUF->type == ICMP6_ECHO)
|
|
{
|
|
/* ICMP echo (i.e., ping) processing. This is simple, we only
|
|
change the ICMP type from ECHO to ECHO_REPLY and update the
|
|
ICMP checksum before we return the packet. */
|
|
|
|
ICMPBUF->type = ICMP6_ECHO_REPLY;
|
|
|
|
uip_ipaddr_copy(BUF->destipaddr, BUF->srcipaddr);
|
|
uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr);
|
|
ICMPBUF->icmpchksum = 0;
|
|
ICMPBUF->icmpchksum = ~uip_icmp6chksum(dev);
|
|
|
|
UIP_STAT(++uip_stat.icmp.sent);
|
|
goto send;
|
|
}
|
|
else
|
|
{
|
|
dbg("Unknown icmp6 message type %d\n", ICMPBUF->type);
|
|
UIP_STAT(++uip_stat.icmp.drop);
|
|
UIP_STAT(++uip_stat.icmp.typeerr);
|
|
UIP_LOG("icmp: unknown ICMP message.");
|
|
goto drop;
|
|
}
|
|
|
|
/* End of IPv6 ICMP processing. */
|
|
|
|
#endif /* !CONFIG_NET_IPv6 */
|
|
|
|
#ifdef CONFIG_NET_UDP
|
|
/* UDP input processing. */
|
|
udp_input:
|
|
/* UDP processing is really just a hack. We don't do anything to the
|
|
UDP/IP headers, but let the UDP application do all the hard
|
|
work. If the application sets d_sndlen, it has a packet to
|
|
send. */
|
|
#ifdef CONFIG_NET_UDP_CHECKSUMS
|
|
dev->d_len -= UIP_IPUDPH_LEN;
|
|
dev->d_appdata = &dev->d_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
|
|
if (UDPBUF->udpchksum != 0 && uip_udpchksum(dev) != 0xffff)
|
|
{
|
|
UIP_STAT(++uip_stat.udp.drop);
|
|
UIP_STAT(++uip_stat.udp.chkerr);
|
|
UIP_LOG("udp: bad checksum.");
|
|
goto drop;
|
|
}
|
|
#else /* UIP_UDP_CHECKSUMS */
|
|
dev->d_len -= UIP_IPUDPH_LEN;
|
|
#endif /* UIP_UDP_CHECKSUMS */
|
|
|
|
/* Demultiplex this UDP packet between the UDP "connections". */
|
|
|
|
uip_udp_conn = uip_udpactive(UDPBUF);
|
|
if (uip_udp_conn)
|
|
{
|
|
goto udp_found;
|
|
}
|
|
|
|
UIP_LOG("udp: no matching connection found");
|
|
goto drop;
|
|
|
|
udp_found:
|
|
uip_conn = NULL;
|
|
uip_flags = UIP_NEWDATA;
|
|
dev->d_snddata = dev->d_appdata = &dev->d_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
|
|
dev->d_sndlen = 0;
|
|
uip_udp_callback(dev);
|
|
|
|
udp_send:
|
|
if (dev->d_sndlen == 0)
|
|
{
|
|
goto drop;
|
|
}
|
|
dev->d_len = dev->d_sndlen + UIP_IPUDPH_LEN;
|
|
|
|
#ifdef CONFIG_NET_IPv6
|
|
/* For IPv6, the IP length field does not include the IPv6 IP header
|
|
length. */
|
|
BUF->len[0] = ((dev->d_len - UIP_IPH_LEN) >> 8);
|
|
BUF->len[1] = ((dev->d_len - UIP_IPH_LEN) & 0xff);
|
|
#else /* CONFIG_NET_IPv6 */
|
|
BUF->len[0] = (dev->d_len >> 8);
|
|
BUF->len[1] = (dev->d_len & 0xff);
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
BUF->ttl = uip_udp_conn->ttl;
|
|
BUF->proto = UIP_PROTO_UDP;
|
|
|
|
UDPBUF->udplen = HTONS(dev->d_sndlen + UIP_UDPH_LEN);
|
|
UDPBUF->udpchksum = 0;
|
|
|
|
BUF->srcport = uip_udp_conn->lport;
|
|
BUF->destport = uip_udp_conn->rport;
|
|
|
|
uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr);
|
|
uip_ipaddr_copy(BUF->destipaddr, uip_udp_conn->ripaddr);
|
|
|
|
dev->d_appdata = &dev->d_buf[UIP_LLH_LEN + UIP_IPTCPH_LEN];
|
|
|
|
#ifdef CONFIG_NET_UDP_CHECKSUMS
|
|
/* Calculate UDP checksum. */
|
|
UDPBUF->udpchksum = ~(uip_udpchksum(dev));
|
|
if (UDPBUF->udpchksum == 0)
|
|
{
|
|
UDPBUF->udpchksum = 0xffff;
|
|
}
|
|
#endif /* UIP_UDP_CHECKSUMS */
|
|
|
|
goto ip_send_nolen;
|
|
#endif /* CONFIG_NET_UDP */
|
|
|
|
/* TCP input processing. */
|
|
tcp_input:
|
|
UIP_STAT(++uip_stat.tcp.recv);
|
|
|
|
/* Start of TCP input header processing code. */
|
|
|
|
if (uip_tcpchksum(dev) != 0xffff)
|
|
{
|
|
/* Compute and check the TCP checksum. */
|
|
|
|
UIP_STAT(++uip_stat.tcp.drop);
|
|
UIP_STAT(++uip_stat.tcp.chkerr);
|
|
UIP_LOG("tcp: bad checksum.");
|
|
goto drop;
|
|
}
|
|
|
|
/* Demultiplex this segment. First check any active connections. */
|
|
|
|
uip_connr = uip_tcpactive(BUF);
|
|
if (uip_connr)
|
|
{
|
|
goto found;
|
|
}
|
|
|
|
/* If we didn't find and active connection that expected the packet,
|
|
* either this packet is an old duplicate, or this is a SYN packet
|
|
* destined for a connection in LISTEN. If the SYN flag isn't set,
|
|
* it is an old packet and we send a RST.
|
|
*/
|
|
|
|
if ((BUF->flags & TCP_CTL) != TCP_SYN)
|
|
{
|
|
goto reset;
|
|
}
|
|
|
|
tmp16 = BUF->destport;
|
|
|
|
/* Next, check listening connections. */
|
|
for (c = 0; c < UIP_LISTENPORTS; ++c)
|
|
{
|
|
if (tmp16 == uip_listenports[c])
|
|
goto found_listen;
|
|
}
|
|
|
|
/* No matching connection found, so we send a RST packet. */
|
|
UIP_STAT(++uip_stat.tcp.synrst);
|
|
reset:
|
|
|
|
/* We do not send resets in response to resets. */
|
|
if (BUF->flags & TCP_RST)
|
|
{
|
|
goto drop;
|
|
}
|
|
|
|
UIP_STAT(++uip_stat.tcp.rst);
|
|
|
|
BUF->flags = TCP_RST | TCP_ACK;
|
|
dev->d_len = UIP_IPTCPH_LEN;
|
|
BUF->tcpoffset = 5 << 4;
|
|
|
|
/* Flip the seqno and ackno fields in the TCP header. */
|
|
c = BUF->seqno[3];
|
|
BUF->seqno[3] = BUF->ackno[3];
|
|
BUF->ackno[3] = c;
|
|
|
|
c = BUF->seqno[2];
|
|
BUF->seqno[2] = BUF->ackno[2];
|
|
BUF->ackno[2] = c;
|
|
|
|
c = BUF->seqno[1];
|
|
BUF->seqno[1] = BUF->ackno[1];
|
|
BUF->ackno[1] = c;
|
|
|
|
c = BUF->seqno[0];
|
|
BUF->seqno[0] = BUF->ackno[0];
|
|
BUF->ackno[0] = c;
|
|
|
|
/* We also have to increase the sequence number we are
|
|
acknowledging. If the least significant byte overflowed, we need
|
|
to propagate the carry to the other bytes as well. */
|
|
if (++BUF->ackno[3] == 0)
|
|
{
|
|
if (++BUF->ackno[2] == 0)
|
|
{
|
|
if (++BUF->ackno[1] == 0)
|
|
{
|
|
++BUF->ackno[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Swap port numbers. */
|
|
tmp16 = BUF->srcport;
|
|
BUF->srcport = BUF->destport;
|
|
BUF->destport = tmp16;
|
|
|
|
/* Swap IP addresses. */
|
|
uip_ipaddr_copy(BUF->destipaddr, BUF->srcipaddr);
|
|
uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr);
|
|
|
|
/* And send out the RST packet! */
|
|
goto tcp_send_noconn;
|
|
|
|
/* This label will be jumped to if we matched the incoming packet
|
|
* with a connection in LISTEN. In that case, we should create a new
|
|
* connection and send a SYNACK in return.
|
|
*/
|
|
|
|
found_listen:
|
|
|
|
/* First allocate a new connection structure */
|
|
|
|
uip_connr = uip_tcplistener(BUF);
|
|
if (!uip_connr)
|
|
{
|
|
/* All connections are used already, we drop packet and hope that
|
|
* the remote end will retransmit the packet at a time when we
|
|
* have more spare connections.
|
|
*/
|
|
|
|
UIP_STAT(++uip_stat.tcp.syndrop);
|
|
UIP_LOG("tcp: found no unused connections.");
|
|
goto drop;
|
|
}
|
|
|
|
uip_add_rcv_nxt(1);
|
|
uip_conn = uip_connr;
|
|
|
|
/* Parse the TCP MSS option, if present. */
|
|
|
|
if ((BUF->tcpoffset & 0xf0) > 0x50)
|
|
{
|
|
for (c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;)
|
|
{
|
|
opt = dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + c];
|
|
if (opt == TCP_OPT_END)
|
|
{
|
|
/* End of options. */
|
|
break;
|
|
}
|
|
else if (opt == TCP_OPT_NOOP)
|
|
{
|
|
++c;
|
|
/* NOP option. */
|
|
}
|
|
else if (opt == TCP_OPT_MSS &&
|
|
dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN)
|
|
{
|
|
/* An MSS option with the right option length. */
|
|
tmp16 = ((uint16)dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) |
|
|
(uint16)dev->d_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + c];
|
|
uip_connr->initialmss = uip_connr->mss =
|
|
tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16;
|
|
|
|
/* And we are done processing options. */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* All other options have a length field, so that we easily
|
|
can skip past them. */
|
|
if (dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0)
|
|
{
|
|
/* If the length field is zero, the options are malformed
|
|
and we don't process them further. */
|
|
break;
|
|
}
|
|
c += dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Our response will be a SYNACK. */
|
|
tcp_send_synack:
|
|
BUF->flags = TCP_ACK;
|
|
|
|
tcp_send_syn:
|
|
BUF->flags |= TCP_SYN;
|
|
|
|
/* We send out the TCP Maximum Segment Size option with our
|
|
SYNACK. */
|
|
BUF->optdata[0] = TCP_OPT_MSS;
|
|
BUF->optdata[1] = TCP_OPT_MSS_LEN;
|
|
BUF->optdata[2] = (UIP_TCP_MSS) / 256;
|
|
BUF->optdata[3] = (UIP_TCP_MSS) & 255;
|
|
dev->d_len = UIP_IPTCPH_LEN + TCP_OPT_MSS_LEN;
|
|
BUF->tcpoffset = ((UIP_TCPH_LEN + TCP_OPT_MSS_LEN) / 4) << 4;
|
|
goto tcp_send;
|
|
|
|
/* This label will be jumped to if we found an active connection. */
|
|
found:
|
|
uip_conn = uip_connr;
|
|
uip_flags = 0;
|
|
|
|
/* We do a very naive form of TCP reset processing; we just accept
|
|
* any RST and kill our connection. We should in fact check if the
|
|
* sequence number of this reset is wihtin our advertised window
|
|
* before we accept the reset.
|
|
*/
|
|
|
|
if (BUF->flags & TCP_RST)
|
|
{
|
|
uip_connr->tcpstateflags = UIP_CLOSED;
|
|
UIP_LOG("tcp: got reset, aborting connection.");
|
|
uip_flags = UIP_ABORT;
|
|
uip_tcp_callback(dev);
|
|
goto drop;
|
|
}
|
|
|
|
/* Calculated the length of the data, if the application has sent
|
|
* any data to us.
|
|
*/
|
|
|
|
c = (BUF->tcpoffset >> 4) << 2;
|
|
|
|
/* d_len will contain the length of the actual TCP data. This is
|
|
* calculated by subtracing the length of the TCP header (in
|
|
* c) and the length of the IP header (20 bytes).
|
|
*/
|
|
|
|
dev->d_len -= (c + UIP_IPH_LEN);
|
|
|
|
/* First, check if the sequence number of the incoming packet is
|
|
* what we're expecting next. If not, we send out an ACK with the
|
|
* correct numbers in.
|
|
*/
|
|
|
|
if (!(((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_SYN_SENT) &&
|
|
((BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK))))
|
|
{
|
|
if ((dev->d_len > 0 || ((BUF->flags & (TCP_SYN | TCP_FIN)) != 0)) &&
|
|
(BUF->seqno[0] != uip_connr->rcv_nxt[0] ||
|
|
BUF->seqno[1] != uip_connr->rcv_nxt[1] ||
|
|
BUF->seqno[2] != uip_connr->rcv_nxt[2] ||
|
|
BUF->seqno[3] != uip_connr->rcv_nxt[3]))
|
|
{
|
|
goto tcp_send_ack;
|
|
}
|
|
}
|
|
|
|
/* Next, check if the incoming segment acknowledges any outstanding
|
|
data. If so, we update the sequence number, reset the length of
|
|
the outstanding data, calculate RTT estimations, and reset the
|
|
retransmission timer. */
|
|
if ((BUF->flags & TCP_ACK) && uip_outstanding(uip_connr))
|
|
{
|
|
uip_add32(uip_connr->snd_nxt, uip_connr->len);
|
|
|
|
if (BUF->ackno[0] == uip_acc32[0] &&
|
|
BUF->ackno[1] == uip_acc32[1] &&
|
|
BUF->ackno[2] == uip_acc32[2] &&
|
|
BUF->ackno[3] == uip_acc32[3])
|
|
{
|
|
/* Update sequence number. */
|
|
uip_connr->snd_nxt[0] = uip_acc32[0];
|
|
uip_connr->snd_nxt[1] = uip_acc32[1];
|
|
uip_connr->snd_nxt[2] = uip_acc32[2];
|
|
uip_connr->snd_nxt[3] = uip_acc32[3];
|
|
|
|
/* Do RTT estimation, unless we have done retransmissions. */
|
|
if (uip_connr->nrtx == 0)
|
|
{
|
|
signed char m;
|
|
m = uip_connr->rto - uip_connr->timer;
|
|
|
|
/* This is taken directly from VJs original code in his paper */
|
|
m = m - (uip_connr->sa >> 3);
|
|
uip_connr->sa += m;
|
|
if (m < 0)
|
|
{
|
|
m = -m;
|
|
}
|
|
m = m - (uip_connr->sv >> 2);
|
|
uip_connr->sv += m;
|
|
uip_connr->rto = (uip_connr->sa >> 3) + uip_connr->sv;
|
|
}
|
|
|
|
/* Set the acknowledged flag. */
|
|
uip_flags = UIP_ACKDATA;
|
|
|
|
/* Reset the retransmission timer. */
|
|
uip_connr->timer = uip_connr->rto;
|
|
|
|
/* Reset length of outstanding data. */
|
|
uip_connr->len = 0;
|
|
}
|
|
}
|
|
|
|
/* Do different things depending on in what state the connection is. */
|
|
switch(uip_connr->tcpstateflags & UIP_TS_MASK)
|
|
{
|
|
/* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not
|
|
implemented, since we force the application to close when the
|
|
peer sends a FIN (hence the application goes directly from
|
|
ESTABLISHED to LAST_ACK). */
|
|
case UIP_SYN_RCVD:
|
|
/* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and
|
|
* we are waiting for an ACK that acknowledges the data we sent
|
|
* out the last time. Therefore, we want to have the UIP_ACKDATA
|
|
* flag set. If so, we enter the ESTABLISHED state.
|
|
*/
|
|
|
|
if (uip_flags & UIP_ACKDATA)
|
|
{
|
|
uip_connr->tcpstateflags = UIP_ESTABLISHED;
|
|
uip_flags = UIP_CONNECTED;
|
|
uip_connr->len = 0;
|
|
|
|
if (dev->d_len > 0)
|
|
{
|
|
uip_flags |= UIP_NEWDATA;
|
|
uip_add_rcv_nxt(dev->d_len);
|
|
}
|
|
|
|
dev->d_sndlen = 0;
|
|
uip_tcp_callback(dev);
|
|
goto appsend;
|
|
}
|
|
goto drop;
|
|
|
|
case UIP_SYN_SENT:
|
|
/* In SYN_SENT, we wait for a SYNACK that is sent in response to
|
|
our SYN. The rcv_nxt is set to sequence number in the SYNACK
|
|
plus one, and we send an ACK. We move into the ESTABLISHED
|
|
state. */
|
|
if ((uip_flags & UIP_ACKDATA) &&
|
|
(BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK))
|
|
{
|
|
/* Parse the TCP MSS option, if present. */
|
|
if ((BUF->tcpoffset & 0xf0) > 0x50)
|
|
{
|
|
for (c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;)
|
|
{
|
|
opt = dev->d_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + c];
|
|
if (opt == TCP_OPT_END)
|
|
{
|
|
/* End of options. */
|
|
break;
|
|
}
|
|
else if (opt == TCP_OPT_NOOP)
|
|
{
|
|
++c;
|
|
/* NOP option. */
|
|
}
|
|
else if (opt == TCP_OPT_MSS &&
|
|
dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN)
|
|
{
|
|
/* An MSS option with the right option length. */
|
|
tmp16 = (dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) |
|
|
dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + c];
|
|
uip_connr->initialmss =
|
|
uip_connr->mss = tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16;
|
|
|
|
/* And we are done processing options. */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* All other options have a length field, so that we easily
|
|
can skip past them. */
|
|
if (dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0)
|
|
{
|
|
/* If the length field is zero, the options are malformed
|
|
and we don't process them further. */
|
|
break;
|
|
}
|
|
c += dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
|
|
}
|
|
}
|
|
}
|
|
|
|
uip_connr->tcpstateflags = UIP_ESTABLISHED;
|
|
uip_connr->rcv_nxt[0] = BUF->seqno[0];
|
|
uip_connr->rcv_nxt[1] = BUF->seqno[1];
|
|
uip_connr->rcv_nxt[2] = BUF->seqno[2];
|
|
uip_connr->rcv_nxt[3] = BUF->seqno[3];
|
|
uip_add_rcv_nxt(1);
|
|
uip_flags = UIP_CONNECTED | UIP_NEWDATA;
|
|
uip_connr->len = 0;
|
|
dev->d_len = 0;
|
|
dev->d_sndlen = 0;
|
|
uip_tcp_callback(dev);
|
|
goto appsend;
|
|
}
|
|
|
|
/* Inform the application that the connection failed */
|
|
uip_flags = UIP_ABORT;
|
|
uip_tcp_callback(dev);
|
|
|
|
/* The connection is closed after we send the RST */
|
|
uip_conn->tcpstateflags = UIP_CLOSED;
|
|
goto reset;
|
|
|
|
case UIP_ESTABLISHED:
|
|
/* In the ESTABLISHED state, we call upon the application to feed
|
|
data into the d_buf. If the UIP_ACKDATA flag is set, the
|
|
application should put new data into the buffer, otherwise we are
|
|
retransmitting an old segment, and the application should put that
|
|
data into the buffer.
|
|
|
|
If the incoming packet is a FIN, we should close the connection on
|
|
this side as well, and we send out a FIN and enter the LAST_ACK
|
|
state. We require that there is no outstanding data; otherwise the
|
|
sequence numbers will be screwed up. */
|
|
|
|
if (BUF->flags & TCP_FIN && !(uip_connr->tcpstateflags & UIP_STOPPED))
|
|
{
|
|
if (uip_outstanding(uip_connr))
|
|
{
|
|
goto drop;
|
|
}
|
|
|
|
uip_add_rcv_nxt(dev->d_len + 1);
|
|
uip_flags |= UIP_CLOSE;
|
|
|
|
if (dev->d_len > 0)
|
|
{
|
|
uip_flags |= UIP_NEWDATA;
|
|
}
|
|
|
|
uip_tcp_callback(dev);
|
|
uip_connr->len = 1;
|
|
uip_connr->tcpstateflags = UIP_LAST_ACK;
|
|
uip_connr->nrtx = 0;
|
|
|
|
tcp_send_finack:
|
|
BUF->flags = TCP_FIN | TCP_ACK;
|
|
goto tcp_send_nodata;
|
|
}
|
|
|
|
/* Check the URG flag. If this is set, the segment carries urgent
|
|
data that we must pass to the application. */
|
|
if ((BUF->flags & TCP_URG) != 0)
|
|
{
|
|
#if UIP_URGDATA > 0
|
|
uip_urglen = (BUF->urgp[0] << 8) | BUF->urgp[1];
|
|
if (uip_urglen > dev->d_len)
|
|
{
|
|
/* There is more urgent data in the next segment to come. */
|
|
uip_urglen = dev->d_len;
|
|
}
|
|
uip_add_rcv_nxt(uip_urglen);
|
|
dev->d_len -= uip_urglen;
|
|
uip_urgdata = dev->d_appdata;
|
|
dev->d_appdata += uip_urglen;
|
|
}
|
|
else
|
|
{
|
|
uip_urglen = 0;
|
|
#else /* UIP_URGDATA > 0 */
|
|
dev->d_appdata = ((uint8*)dev->d_appdata) + ((BUF->urgp[0] << 8) | BUF->urgp[1]);
|
|
dev->d_len -= (BUF->urgp[0] << 8) | BUF->urgp[1];
|
|
#endif /* UIP_URGDATA > 0 */
|
|
}
|
|
|
|
/* If d_len > 0 we have TCP data in the packet, and we flag this
|
|
by setting the UIP_NEWDATA flag and update the sequence number
|
|
we acknowledge. If the application has stopped the dataflow
|
|
using uip_stop(), we must not accept any data packets from the
|
|
remote host. */
|
|
if (dev->d_len > 0 && !(uip_connr->tcpstateflags & UIP_STOPPED))
|
|
{
|
|
uip_flags |= UIP_NEWDATA;
|
|
uip_add_rcv_nxt(dev->d_len);
|
|
}
|
|
|
|
/* Check if the available buffer space advertised by the other end
|
|
is smaller than the initial MSS for this connection. If so, we
|
|
set the current MSS to the window size to ensure that the
|
|
application does not send more data than the other end can
|
|
handle.
|
|
|
|
If the remote host advertises a zero window, we set the MSS to
|
|
the initial MSS so that the application will send an entire MSS
|
|
of data. This data will not be acknowledged by the receiver,
|
|
and the application will retransmit it. This is called the
|
|
"persistent timer" and uses the retransmission mechanim.
|
|
*/
|
|
tmp16 = ((uint16)BUF->wnd[0] << 8) + (uint16)BUF->wnd[1];
|
|
if (tmp16 > uip_connr->initialmss || tmp16 == 0)
|
|
{
|
|
tmp16 = uip_connr->initialmss;
|
|
}
|
|
uip_connr->mss = tmp16;
|
|
|
|
/* If this packet constitutes an ACK for outstanding data (flagged
|
|
by the UIP_ACKDATA flag, we should call the application since it
|
|
might want to send more data. If the incoming packet had data
|
|
from the peer (as flagged by the UIP_NEWDATA flag), the
|
|
application must also be notified.
|
|
|
|
When the application is called, the d_len field
|
|
contains the length of the incoming data. The application can
|
|
access the incoming data through the global pointer
|
|
d_appdata, which usually points UIP_IPTCPH_LEN + UIP_LLH_LEN
|
|
bytes into the d_buf array.
|
|
|
|
If the application wishes to send any data, this data should be
|
|
put into the d_appdata and the length of the data should be
|
|
put into d_len. If the application don't have any data to
|
|
send, d_len must be set to 0. */
|
|
if (uip_flags & (UIP_NEWDATA | UIP_ACKDATA))
|
|
{
|
|
dev->d_sndlen = 0;
|
|
uip_tcp_callback(dev);
|
|
|
|
appsend:
|
|
if (uip_flags & UIP_ABORT)
|
|
{
|
|
dev->d_sndlen = 0;
|
|
uip_connr->tcpstateflags = UIP_CLOSED;
|
|
BUF->flags = TCP_RST | TCP_ACK;
|
|
goto tcp_send_nodata;
|
|
}
|
|
|
|
if (uip_flags & UIP_CLOSE)
|
|
{
|
|
dev->d_sndlen = 0;
|
|
uip_connr->len = 1;
|
|
uip_connr->tcpstateflags = UIP_FIN_WAIT_1;
|
|
uip_connr->nrtx = 0;
|
|
BUF->flags = TCP_FIN | TCP_ACK;
|
|
goto tcp_send_nodata;
|
|
}
|
|
|
|
/* If d_sndlen > 0, the application has data to be sent. */
|
|
if (dev->d_sndlen > 0)
|
|
{
|
|
/* If the connection has acknowledged data, the contents of
|
|
the ->len variable should be discarded. */
|
|
if ((uip_flags & UIP_ACKDATA) != 0)
|
|
{
|
|
uip_connr->len = 0;
|
|
}
|
|
|
|
/* If the ->len variable is non-zero the connection has
|
|
already data in transit and cannot send anymore right
|
|
now. */
|
|
if (uip_connr->len == 0)
|
|
{
|
|
/* The application cannot send more than what is allowed by
|
|
the mss (the minumum of the MSS and the available
|
|
window). */
|
|
if (dev->d_sndlen > uip_connr->mss)
|
|
{
|
|
dev->d_sndlen = uip_connr->mss;
|
|
}
|
|
|
|
/* Remember how much data we send out now so that we know
|
|
when everything has been acknowledged. */
|
|
uip_connr->len = dev->d_sndlen;
|
|
}
|
|
else
|
|
{
|
|
/* If the application already had unacknowledged data, we
|
|
make sure that the application does not send (i.e.,
|
|
retransmit) out more than it previously sent out. */
|
|
dev->d_sndlen = uip_connr->len;
|
|
}
|
|
}
|
|
uip_connr->nrtx = 0;
|
|
apprexmit:
|
|
dev->d_appdata = dev->d_snddata;
|
|
|
|
/* If the application has data to be sent, or if the incoming
|
|
packet had new data in it, we must send out a packet. */
|
|
if (dev->d_sndlen > 0 && uip_connr->len > 0)
|
|
{
|
|
/* Add the length of the IP and TCP headers. */
|
|
dev->d_len = uip_connr->len + UIP_TCPIP_HLEN;
|
|
|
|
/* We always set the ACK flag in response packets. */
|
|
BUF->flags = TCP_ACK | TCP_PSH;
|
|
|
|
/* Send the packet. */
|
|
goto tcp_send_noopts;
|
|
}
|
|
|
|
/* If there is no data to send, just send out a pure ACK if
|
|
there is newdata. */
|
|
if (uip_flags & UIP_NEWDATA)
|
|
{
|
|
dev->d_len = UIP_TCPIP_HLEN;
|
|
BUF->flags = TCP_ACK;
|
|
goto tcp_send_noopts;
|
|
}
|
|
}
|
|
goto drop;
|
|
|
|
case UIP_LAST_ACK:
|
|
/* We can close this connection if the peer has acknowledged our
|
|
FIN. This is indicated by the UIP_ACKDATA flag. */
|
|
if (uip_flags & UIP_ACKDATA)
|
|
{
|
|
uip_connr->tcpstateflags = UIP_CLOSED;
|
|
uip_flags = UIP_CLOSE;
|
|
uip_tcp_callback(dev);
|
|
}
|
|
break;
|
|
|
|
case UIP_FIN_WAIT_1:
|
|
/* The application has closed the connection, but the remote host
|
|
hasn't closed its end yet. Thus we do nothing but wait for a
|
|
FIN from the other side. */
|
|
if (dev->d_len > 0)
|
|
{
|
|
uip_add_rcv_nxt(dev->d_len);
|
|
}
|
|
if (BUF->flags & TCP_FIN)
|
|
{
|
|
if (uip_flags & UIP_ACKDATA)
|
|
{
|
|
uip_connr->tcpstateflags = UIP_TIME_WAIT;
|
|
uip_connr->timer = 0;
|
|
uip_connr->len = 0;
|
|
}
|
|
else
|
|
{
|
|
uip_connr->tcpstateflags = UIP_CLOSING;
|
|
}
|
|
|
|
uip_add_rcv_nxt(1);
|
|
uip_flags = UIP_CLOSE;
|
|
uip_tcp_callback(dev);
|
|
goto tcp_send_ack;
|
|
}
|
|
else if (uip_flags & UIP_ACKDATA)
|
|
{
|
|
uip_connr->tcpstateflags = UIP_FIN_WAIT_2;
|
|
uip_connr->len = 0;
|
|
goto drop;
|
|
}
|
|
if (dev->d_len > 0)
|
|
{
|
|
goto tcp_send_ack;
|
|
}
|
|
goto drop;
|
|
|
|
case UIP_FIN_WAIT_2:
|
|
if (dev->d_len > 0)
|
|
{
|
|
uip_add_rcv_nxt(dev->d_len);
|
|
}
|
|
if (BUF->flags & TCP_FIN)
|
|
{
|
|
uip_connr->tcpstateflags = UIP_TIME_WAIT;
|
|
uip_connr->timer = 0;
|
|
uip_add_rcv_nxt(1);
|
|
uip_flags = UIP_CLOSE;
|
|
uip_tcp_callback(dev);
|
|
goto tcp_send_ack;
|
|
}
|
|
if (dev->d_len > 0)
|
|
{
|
|
goto tcp_send_ack;
|
|
}
|
|
goto drop;
|
|
|
|
case UIP_TIME_WAIT:
|
|
goto tcp_send_ack;
|
|
|
|
case UIP_CLOSING:
|
|
if (uip_flags & UIP_ACKDATA)
|
|
{
|
|
uip_connr->tcpstateflags = UIP_TIME_WAIT;
|
|
uip_connr->timer = 0;
|
|
}
|
|
}
|
|
goto drop;
|
|
|
|
/* We jump here when we are ready to send the packet, and just want
|
|
to set the appropriate TCP sequence numbers in the TCP header. */
|
|
tcp_send_ack:
|
|
BUF->flags = TCP_ACK;
|
|
tcp_send_nodata:
|
|
dev->d_len = UIP_IPTCPH_LEN;
|
|
tcp_send_noopts:
|
|
BUF->tcpoffset = (UIP_TCPH_LEN / 4) << 4;
|
|
tcp_send:
|
|
/* We're done with the input processing. We are now ready to send a
|
|
reply. Our job is to fill in all the fields of the TCP and IP
|
|
headers before calculating the checksum and finally send the
|
|
packet. */
|
|
BUF->ackno[0] = uip_connr->rcv_nxt[0];
|
|
BUF->ackno[1] = uip_connr->rcv_nxt[1];
|
|
BUF->ackno[2] = uip_connr->rcv_nxt[2];
|
|
BUF->ackno[3] = uip_connr->rcv_nxt[3];
|
|
|
|
BUF->seqno[0] = uip_connr->snd_nxt[0];
|
|
BUF->seqno[1] = uip_connr->snd_nxt[1];
|
|
BUF->seqno[2] = uip_connr->snd_nxt[2];
|
|
BUF->seqno[3] = uip_connr->snd_nxt[3];
|
|
|
|
BUF->proto = UIP_PROTO_TCP;
|
|
|
|
BUF->srcport = uip_connr->lport;
|
|
BUF->destport = uip_connr->rport;
|
|
|
|
uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr);
|
|
uip_ipaddr_copy(BUF->destipaddr, uip_connr->ripaddr);
|
|
|
|
if (uip_connr->tcpstateflags & UIP_STOPPED)
|
|
{
|
|
/* If the connection has issued uip_stop(), we advertise a zero
|
|
window so that the remote host will stop sending data. */
|
|
BUF->wnd[0] = BUF->wnd[1] = 0;
|
|
}
|
|
else
|
|
{
|
|
BUF->wnd[0] = ((UIP_RECEIVE_WINDOW) >> 8);
|
|
BUF->wnd[1] = ((UIP_RECEIVE_WINDOW) & 0xff);
|
|
}
|
|
|
|
tcp_send_noconn:
|
|
BUF->ttl = UIP_TTL;
|
|
#ifdef CONFIG_NET_IPv6
|
|
/* For IPv6, the IP length field does not include the IPv6 IP header
|
|
length. */
|
|
BUF->len[0] = ((dev->d_len - UIP_IPH_LEN) >> 8);
|
|
BUF->len[1] = ((dev->d_len - UIP_IPH_LEN) & 0xff);
|
|
#else /* CONFIG_NET_IPv6 */
|
|
BUF->len[0] = (dev->d_len >> 8);
|
|
BUF->len[1] = (dev->d_len & 0xff);
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
BUF->urgp[0] = BUF->urgp[1] = 0;
|
|
|
|
/* Calculate TCP checksum. */
|
|
BUF->tcpchksum = 0;
|
|
BUF->tcpchksum = ~(uip_tcpchksum(dev));
|
|
|
|
#ifdef CONFIG_NET_UDP
|
|
ip_send_nolen:
|
|
#endif /* CONFIG_NET_UDP */
|
|
|
|
#ifdef CONFIG_NET_IPv6
|
|
BUF->vtc = 0x60;
|
|
BUF->tcflow = 0x00;
|
|
BUF->flow = 0x00;
|
|
#else /* CONFIG_NET_IPv6 */
|
|
BUF->vhl = 0x45;
|
|
BUF->tos = 0;
|
|
BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
|
|
++ipid;
|
|
BUF->ipid[0] = ipid >> 8;
|
|
BUF->ipid[1] = ipid & 0xff;
|
|
|
|
/* Calculate IP checksum. */
|
|
BUF->ipchksum = 0;
|
|
BUF->ipchksum = ~(uip_ipchksum(dev));
|
|
dbg("uip ip_send_nolen: chkecum 0x%04x\n", uip_ipchksum(dev));
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
UIP_STAT(++uip_stat.tcp.sent);
|
|
send:
|
|
dbg("Sending packet with length %d (%d)\n", dev->d_len,
|
|
(BUF->len[0] << 8) | BUF->len[1]);
|
|
|
|
UIP_STAT(++uip_stat.ip.sent);
|
|
|
|
/* Return and let the caller do the actual transmission. */
|
|
uip_flags = 0;
|
|
return;
|
|
drop:
|
|
dev->d_len = 0;
|
|
uip_flags = 0;
|
|
return;
|
|
}
|