609 lines
19 KiB
C
609 lines
19 KiB
C
/****************************************************************************
|
|
* net/socket/net_sendfile.c
|
|
*
|
|
* Copyright (C) 2013 UVC Ingenieure. All rights reserved.
|
|
* Copyright (C) 2007-2014 Gregory Nutt. All rights reserved.
|
|
* Authors: Gregory Nutt <gnutt@nuttx.org>
|
|
* Max Holtzberg <mh@uvc.de>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
#if defined(CONFIG_NET) && defined(CONFIG_NET_TCP)
|
|
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <fcntl.h>
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include <debug.h>
|
|
|
|
#include <arch/irq.h>
|
|
#include <nuttx/clock.h>
|
|
#include <nuttx/fs/fs.h>
|
|
#include <nuttx/net/net.h>
|
|
#include <nuttx/net/netdev.h>
|
|
#include <nuttx/net/arp.h>
|
|
#include <nuttx/net/tcp.h>
|
|
|
|
#include "netdev/netdev.h"
|
|
#include "devif/devif.h"
|
|
#include "arp/arp.h"
|
|
#include "tcp/tcp.h"
|
|
#include "socket/socket.h"
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
|
|
#if defined(CONFIG_NET_TCP_SPLIT) && !defined(CONFIG_NET_TCP_SPLIT_SIZE)
|
|
# define CONFIG_NET_TCP_SPLIT_SIZE 40
|
|
#endif
|
|
|
|
#define TCPBUF ((struct tcp_iphdr_s *)&dev->d_buf[NET_LL_HDRLEN(dev)])
|
|
|
|
/****************************************************************************
|
|
* Private Types
|
|
****************************************************************************/
|
|
|
|
/* This structure holds the state of the send operation until it can be
|
|
* operated upon from the interrupt level.
|
|
*/
|
|
|
|
struct sendfile_s
|
|
{
|
|
FAR struct socket *snd_sock; /* Points to the parent socket structure */
|
|
FAR struct devif_callback_s *snd_datacb; /* Data callback */
|
|
FAR struct devif_callback_s *snd_ackcb; /* ACK callback */
|
|
FAR struct file *snd_file; /* File structure of the input file */
|
|
sem_t snd_sem; /* Used to wake up the waiting thread */
|
|
off_t snd_foffset; /* Input file offset */
|
|
size_t snd_flen; /* File length */
|
|
ssize_t snd_sent; /* The number of bytes sent */
|
|
uint32_t snd_isn; /* Initial sequence number */
|
|
uint32_t snd_acked; /* The number of bytes acked */
|
|
#ifdef CONFIG_NET_SOCKOPTS
|
|
uint32_t snd_time; /* Last send time for determining timeout */
|
|
#endif
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Function: sendfile_timeout
|
|
*
|
|
* Description:
|
|
* Check for send timeout.
|
|
*
|
|
* Parameters:
|
|
* pstate send state structure
|
|
*
|
|
* Returned Value:
|
|
* TRUE:timeout FALSE:no timeout
|
|
*
|
|
* Assumptions:
|
|
* Running at the interrupt level
|
|
*
|
|
****************************************************************************/
|
|
|
|
#ifdef CONFIG_NET_SOCKOPTS
|
|
static inline int sendfile_timeout(FAR struct sendfile_s *pstate)
|
|
{
|
|
FAR struct socket *psock = 0;
|
|
|
|
/* Check for a timeout configured via setsockopts(SO_SNDTIMEO).
|
|
* If none... we well let the send wait forever.
|
|
*/
|
|
|
|
psock = pstate->snd_sock;
|
|
if (psock && psock->s_sndtimeo != 0)
|
|
{
|
|
/* Check if the configured timeout has elapsed */
|
|
|
|
return net_timeo(pstate->snd_time, psock->s_sndtimeo);
|
|
}
|
|
|
|
/* No timeout */
|
|
|
|
return FALSE;
|
|
}
|
|
#endif /* CONFIG_NET_SOCKOPTS */
|
|
|
|
static uint16_t ack_interrupt(FAR struct net_driver_s *dev, FAR void *pvconn,
|
|
FAR void *pvpriv, uint16_t flags)
|
|
{
|
|
FAR struct sendfile_s *pstate = (FAR struct sendfile_s *)pvpriv;
|
|
|
|
nllvdbg("flags: %04x\n", flags);
|
|
|
|
if ((flags & TCP_ACKDATA) != 0)
|
|
{
|
|
#ifdef CONFIG_NET_SOCKOPTS
|
|
/* Update the timeout */
|
|
|
|
pstate->snd_time = clock_systimer();
|
|
#endif
|
|
|
|
/* The current acknowledgement number number is the (relative) offset
|
|
* of the of the next byte needed by the receiver. The snd_isn is the
|
|
* offset of the first byte to send to the receiver. The difference
|
|
* is the number of bytes to be acknowledged.
|
|
*/
|
|
|
|
pstate->snd_acked = tcp_getsequence(TCPBUF->ackno) - pstate->snd_isn;
|
|
nllvdbg("ACK: acked=%d sent=%d flen=%d\n",
|
|
pstate->snd_acked, pstate->snd_sent, pstate->snd_flen);
|
|
|
|
dev->d_sndlen = 0;
|
|
|
|
flags &= ~TCP_ACKDATA;
|
|
}
|
|
else if ((flags & TCP_REXMIT) != 0)
|
|
{
|
|
nlldbg("REXMIT\n");
|
|
|
|
/* Yes.. in this case, reset the number of bytes that have been sent
|
|
* to the number of bytes that have been ACKed.
|
|
*/
|
|
|
|
pstate->snd_sent = pstate->snd_acked;
|
|
}
|
|
|
|
/* Check for a loss of connection */
|
|
|
|
else if ((flags & (TCP_CLOSE | TCP_ABORT | TCP_TIMEDOUT)) != 0)
|
|
{
|
|
/* Report not connected */
|
|
|
|
nlldbg("Lost connection\n");
|
|
|
|
net_lostconnection(pstate->snd_sock, flags);
|
|
pstate->snd_sent = -ENOTCONN;
|
|
}
|
|
|
|
/* Wake up the waiting thread */
|
|
|
|
sem_post(&pstate->snd_sem);
|
|
|
|
return flags;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Function: sendfile_interrupt
|
|
*
|
|
* Description:
|
|
* This function is called from the interrupt level to perform the actual
|
|
* send operation when polled by the lower, device interfacing layer.
|
|
*
|
|
* Parameters:
|
|
* dev The structure of the network driver that caused the interrupt
|
|
* conn The connection structure associated with the socket
|
|
* flags Set of events describing why the callback was invoked
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
* Assumptions:
|
|
* Running at the interrupt level
|
|
*
|
|
****************************************************************************/
|
|
|
|
static uint16_t sendfile_interrupt(FAR struct net_driver_s *dev, FAR void *pvconn,
|
|
FAR void *pvpriv, uint16_t flags)
|
|
{
|
|
FAR struct tcp_conn_s *conn = (FAR struct tcp_conn_s*)pvconn;
|
|
FAR struct sendfile_s *pstate = (FAR struct sendfile_s *)pvpriv;
|
|
int ret;
|
|
|
|
nllvdbg("flags: %04x acked: %d sent: %d\n",
|
|
flags, pstate->snd_acked, pstate->snd_sent);
|
|
|
|
/* Check for a loss of connection */
|
|
|
|
if ((flags & (TCP_CLOSE | TCP_ABORT | TCP_TIMEDOUT)) != 0)
|
|
{
|
|
/* Report not connected */
|
|
|
|
nlldbg("Lost connection\n");
|
|
|
|
net_lostconnection(pstate->snd_sock, flags);
|
|
pstate->snd_sent = -ENOTCONN;
|
|
goto end_wait;
|
|
}
|
|
|
|
/* We get here if (1) not all of the data has been ACKed, (2) we have been
|
|
* asked to retransmit data, (3) the connection is still healthy, and (4)
|
|
* the outgoing packet is available for our use. In this case, we are
|
|
* now free to send more data to receiver -- UNLESS the buffer contains
|
|
* unprocessing incoming data. In that event, we will have to wait for the
|
|
* next polling cycle.
|
|
*/
|
|
|
|
if ((flags & TCP_NEWDATA) == 0 && pstate->snd_sent < pstate->snd_flen)
|
|
{
|
|
/* Get the amount of data that we can send in the next packet */
|
|
|
|
uint32_t sndlen = pstate->snd_flen - pstate->snd_sent;
|
|
|
|
if (sndlen > tcp_mss(conn))
|
|
{
|
|
sndlen = tcp_mss(conn);
|
|
}
|
|
|
|
/* Check if we have "space" in the window */
|
|
|
|
if ((pstate->snd_sent - pstate->snd_acked + sndlen) < conn->winsize)
|
|
{
|
|
uint32_t seqno;
|
|
|
|
/* Then set-up to send that amount of data. (this won't actually
|
|
* happen until the polling cycle completes).
|
|
*/
|
|
|
|
ret = file_seek(pstate->snd_file,
|
|
pstate->snd_foffset + pstate->snd_sent, SEEK_SET);
|
|
if (ret < 0)
|
|
{
|
|
int errcode = errno;
|
|
nlldbg("failed to lseek: %d\n", errcode);
|
|
pstate->snd_sent = -errcode;
|
|
goto end_wait;
|
|
}
|
|
|
|
ret = file_read(pstate->snd_file, dev->d_appdata, sndlen);
|
|
if (ret < 0)
|
|
{
|
|
int errcode = errno;
|
|
nlldbg("failed to read from input file: %d\n", errcode);
|
|
pstate->snd_sent = -errcode;
|
|
goto end_wait;
|
|
}
|
|
|
|
dev->d_sndlen = sndlen;
|
|
|
|
/* Set the sequence number for this packet. NOTE: uIP updates
|
|
* sndseq on recept of ACK *before* this function is called. In that
|
|
* case sndseq will point to the next unacknowledge byte (which might
|
|
* have already been sent). We will overwrite the value of sndseq
|
|
* here before the packet is sent.
|
|
*/
|
|
|
|
seqno = pstate->snd_sent + pstate->snd_isn;
|
|
nllvdbg("SEND: sndseq %08x->%08x len: %d\n", conn->sndseq, seqno, ret);
|
|
|
|
tcp_setsequence(conn->sndseq, seqno);
|
|
|
|
/* Check if the destination IP address is in the ARP table. If not,
|
|
* then the send won't actually make it out... it will be replaced with
|
|
* an ARP request.
|
|
*
|
|
* NOTE 1: This could be an expensive check if there are a lot of entries
|
|
* in the ARP table. Hence, we only check on the first packet -- when
|
|
* snd_sent is zero.
|
|
*
|
|
* NOTE 2: If we are actually harvesting IP addresses on incoming IP
|
|
* packets, then this check should not be necessary; the MAC mapping
|
|
* should already be in the ARP table in many cases.
|
|
*
|
|
* NOTE 3: If CONFIG_NET_ARP_SEND then we can be assured that the IP
|
|
* address mapping is already in the ARP table.
|
|
*/
|
|
|
|
#if defined(CONFIG_NET_ETHERNET) && !defined(CONFIG_NET_ARP_IPIN) && \
|
|
!defined(CONFIG_NET_ARP_SEND)
|
|
if (pstate->snd_sent != 0 || arp_find(conn->u.ipv4.raddr) != NULL)
|
|
#endif
|
|
{
|
|
/* Update the amount of data sent (but not necessarily ACKed) */
|
|
|
|
pstate->snd_sent += sndlen;
|
|
nllvdbg("pid: %d SEND: acked=%d sent=%d flen=%d\n", getpid(),
|
|
pstate->snd_acked, pstate->snd_sent, pstate->snd_flen);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
nlldbg("Window full, wait for ack\n");
|
|
goto wait;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_NET_SOCKOPTS
|
|
/* All data has been send and we are just waiting for ACK or re-transmit
|
|
* indications to complete the send. Check for a timeout.
|
|
*/
|
|
|
|
if (sendfile_timeout(pstate))
|
|
{
|
|
/* Yes.. report the timeout */
|
|
|
|
nlldbg("SEND timeout\n");
|
|
pstate->snd_sent = -ETIMEDOUT;
|
|
goto end_wait;
|
|
}
|
|
#endif /* CONFIG_NET_SOCKOPTS */
|
|
|
|
if (pstate->snd_sent >= pstate->snd_flen
|
|
&& pstate->snd_acked < pstate->snd_flen)
|
|
{
|
|
/* All data has been sent, but there are outstanding ACK's */
|
|
|
|
goto wait;
|
|
}
|
|
|
|
end_wait:
|
|
|
|
/* Do not allow any further callbacks */
|
|
|
|
pstate->snd_datacb->flags = 0;
|
|
pstate->snd_datacb->priv = NULL;
|
|
pstate->snd_datacb->event = NULL;
|
|
|
|
/* Wake up the waiting thread */
|
|
|
|
sem_post(&pstate->snd_sem);
|
|
|
|
wait:
|
|
return flags;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Function: net_sendfile
|
|
*
|
|
* Description:
|
|
* The send() call may be used only when the socket is in a connected state
|
|
* (so that the intended recipient is known). The only difference between
|
|
* send() and write() is the presence of flags. With zero flags parameter,
|
|
* send() is equivalent to write(). Also, send(sockfd,buf,len,flags) is
|
|
* equivalent to sendto(sockfd,buf,len,flags,NULL,0).
|
|
*
|
|
* Parameters:
|
|
* psock An instance of the internal socket structure.
|
|
* buf Data to send
|
|
* len Length of data to send
|
|
* flags Send flags
|
|
*
|
|
* Returned Value:
|
|
* On success, returns the number of characters sent. On error,
|
|
* -1 is returned, and errno is set appropriately:
|
|
*
|
|
* EAGAIN or EWOULDBLOCK
|
|
* The socket is marked non-blocking and the requested operation
|
|
* would block.
|
|
* EBADF
|
|
* An invalid descriptor was specified.
|
|
* ECONNRESET
|
|
* Connection reset by peer.
|
|
* EDESTADDRREQ
|
|
* The socket is not connection-mode, and no peer address is set.
|
|
* EFAULT
|
|
* An invalid user space address was specified for a parameter.
|
|
* EINTR
|
|
* A signal occurred before any data was transmitted.
|
|
* EINVAL
|
|
* Invalid argument passed.
|
|
* EISCONN
|
|
* The connection-mode socket was connected already but a recipient
|
|
* was specified. (Now either this error is returned, or the recipient
|
|
* specification is ignored.)
|
|
* EMSGSIZE
|
|
* The socket type requires that message be sent atomically, and the
|
|
* size of the message to be sent made this impossible.
|
|
* ENOBUFS
|
|
* The output queue for a network interface was full. This generally
|
|
* indicates that the interface has stopped sending, but may be
|
|
* caused by transient congestion.
|
|
* ENOMEM
|
|
* No memory available.
|
|
* ENOTCONN
|
|
* The socket is not connected, and no target has been given.
|
|
* ENOTSOCK
|
|
* The argument s is not a socket.
|
|
* EOPNOTSUPP
|
|
* Some bit in the flags argument is inappropriate for the socket
|
|
* type.
|
|
* EPIPE
|
|
* The local end has been shut down on a connection oriented socket.
|
|
* In this case the process will also receive a SIGPIPE unless
|
|
* MSG_NOSIGNAL is set.
|
|
*
|
|
* Assumptions:
|
|
*
|
|
****************************************************************************/
|
|
|
|
ssize_t net_sendfile(int outfd, struct file *infile, off_t *offset,
|
|
size_t count)
|
|
{
|
|
FAR struct socket *psock = sockfd_socket(outfd);
|
|
FAR struct tcp_conn_s *conn = (FAR struct tcp_conn_s*)psock->s_conn;
|
|
struct sendfile_s state;
|
|
net_lock_t save;
|
|
int err;
|
|
|
|
/* Verify that the sockfd corresponds to valid, allocated socket */
|
|
|
|
if (!psock || psock->s_crefs <= 0)
|
|
{
|
|
ndbg("ERROR: Invalid socket\n");
|
|
err = EBADF;
|
|
goto errout;
|
|
}
|
|
|
|
/* If this is an un-connected socket, then return ENOTCONN */
|
|
|
|
if (psock->s_type != SOCK_STREAM || !_SS_ISCONNECTED(psock->s_flags))
|
|
{
|
|
ndbg("ERROR: Not connected\n");
|
|
err = ENOTCONN;
|
|
goto errout;
|
|
}
|
|
|
|
/* Make sure that the IP address mapping is in the ARP table */
|
|
|
|
#ifdef CONFIG_NET_ARP_SEND
|
|
ret = arp_send(conn->u.ipv4.raddr);
|
|
if (ret < 0)
|
|
{
|
|
ndbg("ERROR: Not reachable\n");
|
|
err = ENETUNREACH;
|
|
goto errout;
|
|
}
|
|
#endif
|
|
|
|
/* Set the socket state to sending */
|
|
|
|
psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_SEND);
|
|
|
|
/* Initialize the state structure. This is done with interrupts
|
|
* disabled because we don't want anything to happen until we
|
|
* are ready.
|
|
*/
|
|
|
|
save = net_lock();
|
|
|
|
memset(&state, 0, sizeof(struct sendfile_s));
|
|
sem_init(&state. snd_sem, 0, 0); /* Doesn't really fail */
|
|
state.snd_sock = psock; /* Socket descriptor to use */
|
|
state.snd_foffset = offset ? *offset : 0; /* Input file offset */
|
|
state.snd_flen = count; /* Number of bytes to send */
|
|
state.snd_file = infile; /* File to read from */
|
|
|
|
/* Allocate resources to receive a callback */
|
|
|
|
state.snd_datacb = tcp_callback_alloc(conn);
|
|
|
|
if (state.snd_datacb == NULL)
|
|
{
|
|
nlldbg("Failed to allocate data callback\n");
|
|
err = ENOMEM;
|
|
goto errout_locked;
|
|
}
|
|
|
|
state.snd_ackcb = tcp_callback_alloc(conn);
|
|
|
|
if (state.snd_ackcb == NULL)
|
|
{
|
|
nlldbg("Failed to allocate ack callback\n");
|
|
err = ENOMEM;
|
|
goto errout_datacb;
|
|
}
|
|
|
|
/* Get the initial sequence number that will be used */
|
|
|
|
state.snd_isn = tcp_getsequence(conn->sndseq);
|
|
|
|
/* There is no outstanding, unacknowledged data after this
|
|
* initial sequence number.
|
|
*/
|
|
|
|
conn->unacked = 0;
|
|
|
|
#ifdef CONFIG_NET_SOCKOPTS
|
|
/* Set the initial time for calculating timeouts */
|
|
|
|
state.snd_time = clock_systimer();
|
|
#endif
|
|
|
|
/* Set up the ACK callback in the connection */
|
|
|
|
state.snd_ackcb->flags = (TCP_ACKDATA | TCP_REXMIT | TCP_CLOSE |
|
|
TCP_ABORT | TCP_TIMEDOUT);
|
|
state.snd_ackcb->priv = (void*)&state;
|
|
state.snd_ackcb->event = ack_interrupt;
|
|
|
|
/* Perform the TCP send operation */
|
|
|
|
do
|
|
{
|
|
state.snd_datacb->flags = TCP_POLL;
|
|
state.snd_datacb->priv = (void*)&state;
|
|
state.snd_datacb->event = sendfile_interrupt;
|
|
|
|
/* Notify the device driver of the availability of TX data */
|
|
|
|
#ifdef CONFIG_NET_MULTILINK
|
|
netdev_ipv4_txnotify(conn->u.ipv4.laddr, conn->u.ipv4.raddr);
|
|
#else
|
|
netdev_ipv4_txnotify(conn->u.ipv4.raddr);
|
|
#endif
|
|
net_lockedwait(&state.snd_sem);
|
|
}
|
|
while (state.snd_sent >= 0 && state.snd_acked < state.snd_flen);
|
|
|
|
/* Set the socket state to idle */
|
|
|
|
psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_IDLE);
|
|
|
|
tcp_callback_free(conn, state.snd_ackcb);
|
|
|
|
errout_datacb:
|
|
tcp_callback_free(conn, state.snd_datacb);
|
|
|
|
errout_locked:
|
|
|
|
sem_destroy(&state. snd_sem);
|
|
net_unlock(save);
|
|
|
|
errout:
|
|
|
|
if (err)
|
|
{
|
|
set_errno(err);
|
|
return ERROR;
|
|
}
|
|
else if (state.snd_sent < 0)
|
|
{
|
|
set_errno(-state.snd_sent);
|
|
return ERROR;
|
|
}
|
|
else
|
|
{
|
|
return state.snd_sent;
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_NET && CONFIG_NET_TCP */
|