nuttx/arch/arm/src/sama5/sam_ohci.c
2020-12-05 08:13:32 -06:00

4347 lines
125 KiB
C

/****************************************************************************
* arch/arm/src/sama5/sam_ohci.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/arch.h>
#include <nuttx/kmalloc.h>
#include <nuttx/wqueue.h>
#include <nuttx/semaphore.h>
#include <nuttx/usb/usb.h>
#include <nuttx/usb/ohci.h>
#include <nuttx/usb/usbhost.h>
#include <nuttx/usb/usbhost_devaddr.h>
#include <nuttx/usb/usbhost_trace.h>
#include <nuttx/irq.h>
#include <arch/board/board.h> /* May redefine PIO settings */
#include "arm_arch.h"
#include "arm_internal.h"
#include "chip.h"
#include "sam_periphclks.h"
#include "sam_memories.h"
#include "sam_usbhost.h"
#include "hardware/sam_pmc.h"
#include "hardware/sam_sfr.h"
#include "hardware/sam_ohci.h"
#ifdef CONFIG_SAMA5_OHCI
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* Pre-requisites */
#ifndef CONFIG_SCHED_WORKQUEUE
# error Work queue support is required (CONFIG_SCHED_WORKQUEUE)
#endif
/* Configurable number of user endpoint descriptors (EDs). This number
* excludes the control endpoint that is always allocated.
*/
#ifndef CONFIG_SAMA5_OHCI_NEDS
# define CONFIG_SAMA5_OHCI_NEDS 2
#endif
/* Configurable number of user transfer descriptors (TDs). */
#ifndef CONFIG_SAMA5_OHCI_NTDS
# define CONFIG_SAMA5_OHCI_NTDS 3
#endif
#if CONFIG_SAMA5_OHCI_NTDS < 2
# error Insufficient number of transfer descriptors (CONFIG_SAMA5_OHCI_NTDS < 2)
#endif
/* Minimum alignment for DMA access is 16 bytes, but it is safer to align to
* the cache line size.
*/
#if ARMV7A_DCACHE_LINESIZE > 16
# define SAMA5_DMA_ALIGN ARMV7A_DCACHE_LINESIZE
#else
# define SAMA5_DMA_ALIGN 16
#endif
/* Configurable number of request/descriptor buffers (TDBUFFER) */
#ifndef CONFIG_SAMA5_OHCI_TDBUFFERS
# define CONFIG_SAMA5_OHCI_TDBUFFERS 2
#endif
#if CONFIG_SAMA5_OHCI_TDBUFFERS < 2
# error At least two TD buffers are required (CONFIG_SAMA5_OHCI_TDBUFFERS < 2)
#endif
/* Configurable size of one TD buffer */
#if CONFIG_SAMA5_OHCI_TDBUFFERS > 0 && !defined(CONFIG_SAMA5_OHCI_TDBUFSIZE)
# define CONFIG_SAMA5_OHCI_TDBUFSIZE 128
#endif
#if (CONFIG_SAMA5_OHCI_TDBUFSIZE & 3) != 0
# error "TD buffer size must be an even number of 32-bit words"
#endif
/* Total buffer size */
#define SAM_BUFALLOC (CONFIG_SAMA5_OHCI_TDBUFFERS * CONFIG_SAMA5_OHCI_TDBUFSIZE)
/* If UDPHS is enabled, then don't use port A */
#ifdef CONFIG_SAMA5_UDPHS
# undef CONFIG_SAMA5_UHPHS_RHPORT1
#endif
/* For now, suppress use of PORTA in any event. I use that for SAM-BA and
* would prefer that the board not try to drive VBUS on that port!
*/
#undef CONFIG_SAMA5_UHPHS_RHPORT1
/* Debug */
#ifndef CONFIG_DEBUG_USB_INFO
# undef CONFIG_SAMA5_OHCI_REGDEBUG
#endif
/* OHCI Setup ***************************************************************/
/* Frame Interval / Periodic Start.
*
* At 12Mbps, there are 12000 bit time in each 1Msec frame.
*/
#define BITS_PER_FRAME 12000
#define FI (BITS_PER_FRAME-1)
#define FSMPS ((6 * (FI - 210)) / 7)
#define DEFAULT_FMINTERVAL ((FSMPS << OHCI_FMINT_FSMPS_SHIFT) | FI)
#define DEFAULT_PERSTART (((9 * BITS_PER_FRAME) / 10) - 1)
/* CLKCTRL enable bits */
#define SAM_CLKCTRL_ENABLES (USBOTG_CLK_HOSTCLK|USBOTG_CLK_PORTSELCLK|USBOTG_CLK_AHBCLK)
/* Interrupt enable bits */
#ifdef CONFIG_DEBUG_USB
# define SAM_DEBUG_INTS (OHCI_INT_SO|OHCI_INT_RD|OHCI_INT_UE|OHCI_INT_OC)
#else
# define SAM_DEBUG_INTS 0
#endif
#define SAM_NORMAL_INTS (OHCI_INT_WDH|OHCI_INT_RHSC)
#define SAM_ALL_INTS (SAM_NORMAL_INTS|SAM_DEBUG_INTS)
/* Periodic Intervals *******************************************************/
/* Periodic intervals 2, 4, 8, 16,and 32 supported */
#define MIN_PERINTERVAL 2
#define MAX_PERINTERVAL 32
/* Descriptors **************************************************************/
/* Actual number of allocated EDs and TDs will include one for the control ED
* and one for the tail ED for each RHPort:
*/
#define SAMA5_OHCI_NEDS (CONFIG_SAMA5_OHCI_NEDS + SAM_OHCI_NRHPORT)
#define SAMA5_OHCI_NTDS (CONFIG_SAMA5_OHCI_NTDS + SAM_OHCI_NRHPORT)
/* TD delay interrupt value */
#define TD_DELAY(n) (uint32_t)((n) << GTD_STATUS_DI_SHIFT)
/* Port numbers */
#define HPNDX(hp) ((hp)->port)
#define HPORT(hp) (HPNDX(hp)+1)
#define RHPNDX(rh) ((rh)->hport.hport.port)
#define RHPORT(rh) (RHPNDX(rh)+1)
/****************************************************************************
* Private Types
****************************************************************************/
/* This structure contains one endpoint list. The main reason for the
* existence of this structure is to contain the sem_t value associated with
* the ED. It doesn't work well within the ED itself because then the
* semaphore counter is subject to DMA cache operations (invalidate a
* modified semaphore count is fatal!).
*/
struct sam_eplist_s
{
volatile bool wdhwait; /* TRUE: Thread is waiting for WDH interrupt */
sem_t wdhsem; /* Semaphore used to wait for Writeback Done Head event */
#ifdef CONFIG_USBHOST_ASYNCH
usbhost_asynch_t callback; /* Transfer complete callback */
void *arg; /* Argument that accompanies the callback */
#endif
uint8_t *buffer; /* Buffer being transferred */
uint16_t buflen; /* Length of the buffer */
uint16_t xfrd; /* Number of bytes completed in the last transfer */
struct sam_ed_s *ed; /* Endpoint descriptor (ED) */
struct sam_gtd_s *tail; /* Tail transfer descriptor (TD) */
};
/* This structure retains the state of one root hub port */
struct sam_rhport_s
{
/* Common device fields. This must be the first thing defined in the
* structure so that it is possible to simply cast from struct usbhost_s
* to struct sam_rhport_s.
*/
struct usbhost_driver_s drvr;
/* Root hub port status */
volatile bool connected; /* Connected to device */
uint8_t rhpndx; /* Root hub port index */
bool ep0init; /* True: EP0 initialized */
struct sam_eplist_s ep0; /* EP0 endpoint list */
/* This is the hub port description understood by class drivers */
struct usbhost_roothubport_s hport;
};
/* This structure retains the overall state of the USB host controller */
struct sam_ohci_s
{
volatile bool pscwait; /* TRUE: Thread is waiting for Root Hub Status change */
#ifndef CONFIG_USBHOST_INT_DISABLE
uint8_t ininterval; /* Minimum periodic IN EP polling interval: 2, 4, 6, 16, or 32 */
uint8_t outinterval; /* Minimum periodic IN EP polling interval: 2, 4, 6, 16, or 32 */
#endif
sem_t exclsem; /* Support mutually exclusive access */
sem_t pscsem; /* Semaphore to wait Writeback Done Head event */
struct work_s work; /* Supports interrupt bottom half */
#ifdef CONFIG_USBHOST_HUB
/* Used to pass external hub port events */
volatile struct usbhost_hubport_s *hport;
#endif
/* Root hub ports */
struct sam_rhport_s rhport[SAM_OHCI_NRHPORT];
};
/* The OCHI expects the size of an endpoint descriptor to be 16 bytes.
* However, the size allocated for an endpoint descriptor is 32 bytes. This
* is necessary first because the Cortex-A5 cache line size is 32 bytes and
* this is the smallest amount of memory that we can perform cache
* operations on. The 16-bytes is also used by the OHCI host driver in
* order to maintain additional endpoint-specific data.
*/
struct sam_ed_s
{
/* Hardware specific fields */
struct ohci_ed_s hw; /* 0-15 */
/* Software specific fields */
struct sam_eplist_s *eplist; /* 16-19: List structure associated with the ED */
uint8_t xfrtype; /* 20: Transfer type. See SB_EP_ATTR_XFER_* in usb.h */
uint8_t interval; /* 21: Periodic EP polling interval: 2, 4, 6, 16, or 32 */
volatile uint8_t tdstatus; /* 22: TD control status bits from last Writeback Done Head event */
uint8_t pad[9]; /* 23-31: Pad to 32-bytes */
};
#define SIZEOF_SAM_ED_S 32
/* The OCHI expects the size of an transfer descriptor to be 16 bytes.
* However, the size allocated for an endpoint descriptor is 32 bytes in
* RAM. This extra 16-bytes is used by the OHCI host driver in order to
* maintain additional endpoint-specific data.
*/
struct sam_gtd_s
{
/* Hardware specific fields */
struct ohci_gtd_s hw; /* 0-15 */
/* Software specific fields */
struct sam_ed_s *ed; /* 16-19: Pointer to parent ED */
uint8_t pad[12]; /* 20-31: Pad to 32 bytes */
};
#define SIZEOF_SAM_TD_S 32
/* The following is used to manage lists of free EDs, TDs, and TD buffers */
struct sam_list_s
{
struct sam_list_s *flink; /* Link to next buffer in the list */
/* Variable length buffer data follows */
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Register operations ******************************************************/
#ifdef CONFIG_SAMA5_OHCI_REGDEBUG
static void sam_printreg(uint32_t addr, uint32_t val, bool iswrite);
static void sam_checkreg(uint32_t addr, uint32_t val, bool iswrite);
static uint32_t sam_getreg(uint32_t addr);
static void sam_putreg(uint32_t val, uint32_t addr);
#else
# define sam_getreg(addr) getreg32(addr)
# define sam_putreg(val,addr) putreg32(val,addr)
#endif
/* Semaphores ***************************************************************/
static int sam_takesem(sem_t *sem);
static int sam_takesem_noncancelable(sem_t *sem);
#define sam_givesem(s) nxsem_post(s);
/* Byte stream access helper functions **************************************/
static inline uint16_t sam_getle16(const uint8_t *val);
#if 0 /* Not used */
static void sam_putle16(uint8_t *dest, uint16_t val);
#endif
/* OHCI memory pool helper functions ****************************************/
static struct sam_ed_s *sam_edalloc(void);
static void sam_edfree(struct sam_ed_s *ed);
static struct sam_gtd_s *sam_tdalloc(void);
static void sam_tdfree(struct sam_gtd_s *buffer);
static uint8_t *sam_tballoc(void);
static void sam_tbfree(uint8_t *buffer);
/* ED list helper functions *************************************************/
static int sam_addctrled(struct sam_ed_s *ed);
static inline int sam_remctrled(struct sam_ed_s *ed);
static inline int sam_addbulked(struct sam_ed_s *ed);
static inline int sam_rembulked(struct sam_ed_s *ed);
#if !defined(CONFIG_USBHOST_INT_DISABLE) || !defined(CONFIG_USBHOST_ISOC_DISABLE)
static unsigned int sam_getinterval(uint8_t interval);
static void sam_setinttab(uint32_t value, unsigned int interval,
unsigned int offset);
#endif
static inline int sam_addinted(const struct usbhost_epdesc_s *epdesc,
struct sam_ed_s *ed);
static inline int sam_reminted(struct sam_ed_s *ed);
static inline int sam_addisoced(const struct usbhost_epdesc_s *epdesc,
struct sam_ed_s *ed);
static inline int sam_remisoced(struct sam_ed_s *ed);
/* Descriptor helper functions **********************************************/
static int sam_enqueuetd(struct sam_rhport_s *rhport,
struct sam_eplist_s *eplist, struct sam_ed_s *ed,
uint32_t dirpid, uint32_t toggle,
volatile uint8_t *buffer, size_t buflen);
static int sam_ep0enqueue(struct sam_rhport_s *rhport);
static void sam_ep0dequeue(struct sam_eplist_s *ep0);
static int sam_wdhwait(struct sam_rhport_s *rhport, struct sam_ed_s *ed,
uint8_t *buffer, uint16_t buflen);
#ifdef CONFIG_USBHOST_ASYNCH
static int sam_wdhasynch(struct sam_rhport_s *rhport, struct sam_ed_s *ed,
usbhost_asynch_t callback, void *arg,
uint8_t *buffer, uint16_t buflen);
#endif
static int sam_ctrltd(struct sam_rhport_s *rhport, struct sam_eplist_s *ep0,
uint32_t dirpid, uint8_t *buffer, size_t buflen);
/* Interrupt handling *******************************************************/
static void sam_rhsc_bottomhalf(void);
static void sam_wdh_bottomhalf(void);
static void sam_ohci_bottomhalf(void *arg);
/* USB host controller operations *******************************************/
static int sam_wait(struct usbhost_connection_s *conn,
struct usbhost_hubport_s **hport);
static int sam_rh_enumerate(struct usbhost_connection_s *conn,
struct usbhost_hubport_s *hport);
static int sam_enumerate(struct usbhost_connection_s *conn,
struct usbhost_hubport_s *hport);
static int sam_ep0configure(struct usbhost_driver_s *drvr,
usbhost_ep_t ep0, uint8_t funcaddr,
uint8_t speed, uint16_t maxpacketsize);
static int sam_epalloc(struct usbhost_driver_s *drvr,
const struct usbhost_epdesc_s *epdesc,
usbhost_ep_t *ep);
static int sam_epfree(struct usbhost_driver_s *drvr, usbhost_ep_t ep);
static int sam_alloc(struct usbhost_driver_s *drvr,
uint8_t **buffer, size_t *maxlen);
static int sam_free(struct usbhost_driver_s *drvr, uint8_t *buffer);
static int sam_ioalloc(struct usbhost_driver_s *drvr,
uint8_t **buffer, size_t buflen);
static int sam_iofree(struct usbhost_driver_s *drvr, uint8_t *buffer);
static int sam_ctrlin(struct usbhost_driver_s *drvr, usbhost_ep_t ep0,
const struct usb_ctrlreq_s *req,
uint8_t *buffer);
static int sam_ctrlout(struct usbhost_driver_s *drvr, usbhost_ep_t ep0,
const struct usb_ctrlreq_s *req,
const uint8_t *buffer);
static int sam_transfer_common(struct sam_rhport_s *rhport,
struct sam_eplist_s *eplist,
uint8_t *buffer, size_t buflen);
static ssize_t sam_transfer(struct usbhost_driver_s *drvr, usbhost_ep_t ep,
uint8_t *buffer, size_t buflen);
#ifdef CONFIG_USBHOST_ASYNCH
static void sam_asynch_completion(struct sam_eplist_s *eplist);
static int sam_asynch(struct usbhost_driver_s *drvr, usbhost_ep_t ep,
uint8_t *buffer, size_t buflen,
usbhost_asynch_t callback, void *arg);
#endif
static int sam_cancel(struct usbhost_driver_s *drvr, usbhost_ep_t ep);
#ifdef CONFIG_USBHOST_HUB
static int sam_connect(struct usbhost_driver_s *drvr,
struct usbhost_hubport_s *hport,
bool connected);
#endif
static void sam_disconnect(struct usbhost_driver_s *drvr,
struct usbhost_hubport_s *hport);
/****************************************************************************
* Private Data
****************************************************************************/
/* In this driver implementation, support is provided for only a single a
* single USB device. All status information can be simply retained in a
* single global instance.
*/
static struct sam_ohci_s g_ohci;
/* This is the connection/enumeration interface */
static struct usbhost_connection_s g_ohciconn;
/* This is a free list of EDs and TD buffers */
static struct sam_list_s *g_edfree; /* List of unused EDs */
static struct sam_list_s *g_tdfree; /* List of unused TDs */
static struct sam_list_s *g_tbfree; /* List of unused transfer buffers */
/* Allocated descriptor memory. These must all be properly aligned
* and must be positioned in a DMA-able memory region.
*/
/* This must be aligned to a 256-byte boundary */
static struct ohci_hcca_s g_hcca
__attribute__ ((aligned (256)));
/* Pools of free descriptors and buffers. These will all be linked
* into the free lists declared above. These must be aligned to 8-byte
* boundaries (we do 16-byte alignment).
*/
static struct sam_ed_s g_edalloc[SAMA5_OHCI_NEDS]
__attribute__ ((aligned (SAMA5_DMA_ALIGN)));
static struct sam_gtd_s g_tdalloc[SAMA5_OHCI_NTDS]
__attribute__ ((aligned (SAMA5_DMA_ALIGN)));
static uint8_t g_bufalloc[SAM_BUFALLOC]
__attribute__ ((aligned (SAMA5_DMA_ALIGN)));
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: sam_printreg
*
* Description:
* Print the contents of an SAMA5 OHCI register operation
*
****************************************************************************/
#ifdef CONFIG_SAMA5_OHCI_REGDEBUG
static void sam_printreg(uint32_t addr, uint32_t val, bool iswrite)
{
uinfo("%08x%s%08x\n", addr, iswrite ? "<-" : "->", val);
}
#endif
/****************************************************************************
* Name: sam_checkreg
*
* Description:
* Get the contents of an SAMA5 OHCI register
*
****************************************************************************/
#ifdef CONFIG_SAMA5_OHCI_REGDEBUG
static void sam_checkreg(uint32_t addr, uint32_t val, bool iswrite)
{
static uint32_t prevaddr = 0;
static uint32_t preval = 0;
static uint32_t count = 0;
static bool prevwrite = false;
/* Is this the same value that we read from/wrote to the same register
* last time? Are we polling the register? If so, suppress the output.
*/
if (addr == prevaddr && val == preval && prevwrite == iswrite)
{
/* Yes.. Just increment the count */
count++;
}
else
{
/* No this is a new address or value or operation. Were there any
* duplicate accesses before this one?
*/
if (count > 0)
{
/* Yes.. Just one? */
if (count == 1)
{
/* Yes.. Just one */
sam_printreg(prevaddr, preval, prevwrite);
}
else
{
/* No.. More than one. */
uinfo("[repeats %d more times]\n", count);
}
}
/* Save the new address, value, count, and operation for next time */
prevaddr = addr;
preval = val;
count = 0;
prevwrite = iswrite;
/* Show the new register access */
sam_printreg(addr, val, iswrite);
}
}
#endif
/****************************************************************************
* Name: sam_getreg
*
* Description:
* Get the contents of an SAMA5 register
*
****************************************************************************/
#ifdef CONFIG_SAMA5_OHCI_REGDEBUG
static uint32_t sam_getreg(uint32_t addr)
{
/* Read the value from the register */
uint32_t val = getreg32(addr);
/* Check if we need to print this value */
sam_checkreg(addr, val, false);
return val;
}
#endif
/****************************************************************************
* Name: sam_putreg
*
* Description:
* Set the contents of an SAMA5 register to a value
*
****************************************************************************/
#ifdef CONFIG_SAMA5_OHCI_REGDEBUG
static void sam_putreg(uint32_t val, uint32_t addr)
{
/* Check if we need to print this value */
sam_checkreg(addr, val, true);
/* Write the value */
putreg32(val, addr);
}
#endif
/****************************************************************************
* Name: sam_takesem
*
* Description:
* This is just a wrapper to handle the annoying behavior of semaphore
* waits that return due to the receipt of a signal.
*
****************************************************************************/
static int sam_takesem(sem_t *sem)
{
return nxsem_wait_uninterruptible(sem);
}
/****************************************************************************
* Name: sam_takesem_noncancelable
*
* Description:
* This is just a wrapper to handle the annoying behavior of semaphore
* waits that return due to the receipt of a signal. This version also
* ignores attempts to cancel the thread.
*
****************************************************************************/
static int sam_takesem_noncancelable(sem_t *sem)
{
int result;
int ret = OK;
do
{
result = nxsem_wait_uninterruptible(sem);
/* The only expected error is ECANCELED which would occur if the
* calling thread were canceled.
*/
DEBUGASSERT(result == OK || result == -ECANCELED);
if (ret == OK && result < 0)
{
ret = result;
}
}
while (result < 0);
return ret;
}
/****************************************************************************
* Name: sam_getle16
*
* Description:
* Get a (possibly unaligned) 16-bit little endian value.
*
****************************************************************************/
static inline uint16_t sam_getle16(const uint8_t *val)
{
return (uint16_t)val[1] << 8 | (uint16_t)val[0];
}
/****************************************************************************
* Name: sam_putle16
*
* Description:
* Put a (possibly unaligned) 16-bit little endian value.
*
****************************************************************************/
#if 0 /* Not used */
static void sam_putle16(uint8_t *dest, uint16_t val)
{
dest[0] = val & 0xff; /* Little endian means LS byte first in byte stream */
dest[1] = val >> 8;
}
#endif
/****************************************************************************
* Name: sam_edalloc
*
* Description:
* Allocate an endpoint descriptor by removing it from the free list
*
****************************************************************************/
static struct sam_ed_s *sam_edalloc(void)
{
struct sam_ed_s *ed;
/* Remove the ED from the freelist */
ed = (struct sam_ed_s *)g_edfree;
if (ed)
{
g_edfree = ((struct sam_list_s *)ed)->flink;
}
return ed;
}
/****************************************************************************
* Name: sam_edfree
*
* Description:
* Free an endpoint descriptor by returning to the free list
*
****************************************************************************/
static inline void sam_edfree(struct sam_ed_s *ed)
{
struct sam_list_s *entry = (struct sam_list_s *)ed;
/* Put the ED back into the free list */
entry->flink = g_edfree;
g_edfree = entry;
}
/****************************************************************************
* Name: sam_tdalloc
*
* Description:
* Allocate an transfer descriptor from the free list
*
* Assumptions:
* - Never called from an interrupt handler.
* - Protected from conconcurrent access to the TD pool by the interrupt
* handler
* - Protection from re-entrance must be assured by the caller
*
****************************************************************************/
static struct sam_gtd_s *sam_tdalloc(void)
{
struct sam_gtd_s *ret;
irqstate_t flags;
/* Disable interrupts momentarily so that sam_tdfree is not called from the
* interrupt handler.
*/
flags = enter_critical_section();
ret = (struct sam_gtd_s *)g_tdfree;
if (ret)
{
g_tdfree = ((struct sam_list_s *)ret)->flink;
}
leave_critical_section(flags);
return ret;
}
/****************************************************************************
* Name: sam_tdfree
*
* Description:
* Free a transfer descriptor by returning it to the free list
*
* Assumptions:
* - Only called from the WDH interrupt handler (and during
* initialization).
* - Interrupts are disabled in any case.
*
****************************************************************************/
static void sam_tdfree(struct sam_gtd_s *td)
{
struct sam_list_s *tdfree = (struct sam_list_s *)td;
DEBUGASSERT(td);
tdfree->flink = g_tdfree;
g_tdfree = tdfree;
}
/****************************************************************************
* Name: sam_tballoc
*
* Description:
* Allocate an request/descriptor transfer buffer from the free list
*
* Assumptions:
* - Never called from an interrupt handler.
* - Protection from re-entrance must be assured by the caller
*
****************************************************************************/
static uint8_t *sam_tballoc(void)
{
uint8_t *ret = (uint8_t *)g_tbfree;
if (ret)
{
g_tbfree = ((struct sam_list_s *)ret)->flink;
}
return ret;
}
/****************************************************************************
* Name: sam_tbfree
*
* Description:
* Return an request/descriptor transfer buffer to the free list
*
****************************************************************************/
static void sam_tbfree(uint8_t *buffer)
{
struct sam_list_s *tbfree = (struct sam_list_s *)buffer;
if (tbfree)
{
tbfree->flink = g_tbfree;
g_tbfree = tbfree;
}
}
/****************************************************************************
* Name: sam_addctrled
*
* Description:
* Helper function to add an ED to the control list.
*
****************************************************************************/
static int sam_addctrled(struct sam_ed_s *ed)
{
irqstate_t flags;
uint32_t regval;
uintptr_t physed;
/* Disable control list processing while we modify the list */
flags = enter_critical_section();
regval = sam_getreg(SAM_USBHOST_CTRL);
regval &= ~OHCI_CTRL_CLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
/* Add the new control ED to the head of the control list */
ed->hw.nexted = sam_getreg(SAM_USBHOST_CTRLHEADED);
up_clean_dcache((uintptr_t)ed, (uintptr_t)ed + sizeof(struct ohci_ed_s));
physed = sam_physramaddr((uintptr_t)ed);
sam_putreg((uint32_t)physed, SAM_USBHOST_CTRLHEADED);
/* Re-enable control list processing. */
sam_putreg(0, SAM_USBHOST_CTRLED);
regval = sam_getreg(SAM_USBHOST_CTRL);
regval |= OHCI_CTRL_CLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
leave_critical_section(flags);
return OK;
}
/****************************************************************************
* Name: sam_remctrled
*
* Description:
* Helper function remove an ED from the control list.
*
****************************************************************************/
static inline int sam_remctrled(struct sam_ed_s *ed)
{
struct sam_ed_s *curr;
struct sam_ed_s *prev;
irqstate_t flags;
uintptr_t physed;
uint32_t regval;
/* Disable control list processing while we modify the list */
flags = enter_critical_section();
regval = sam_getreg(SAM_USBHOST_CTRL);
regval &= ~OHCI_CTRL_CLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
/* Find the ED in the control list. */
physed = sam_getreg(SAM_USBHOST_CTRLHEADED);
for (curr = (struct sam_ed_s *)sam_virtramaddr(physed), prev = NULL;
curr && curr != ed;
prev = curr, curr = (struct sam_ed_s *)curr->hw.nexted);
/* Hmmm.. It would be a bug if we do not find the ED in the control list. */
DEBUGASSERT(curr != NULL);
/* Remove the ED from the control list */
if (curr != NULL)
{
/* Is this ED the first on in the control list? */
if (prev == NULL)
{
/* Yes... set the head of the control list to skip over this ED */
sam_putreg(ed->hw.nexted, SAM_USBHOST_CTRLHEADED);
}
else
{
/* No.. set the forward link of the previous ED in the list
* skip over this ED.
*/
prev->hw.nexted = ed->hw.nexted;
up_clean_dcache((uintptr_t)prev,
(uintptr_t)prev + sizeof(struct sam_ed_s));
}
}
/* Re-enable control list processing if the control list is still non-empty
* after removing the ED node.
*/
sam_putreg(0, SAM_USBHOST_CTRLED);
if (sam_getreg(SAM_USBHOST_CTRLHEADED) != 0)
{
/* If the control list is now empty, then disable it */
regval = sam_getreg(SAM_USBHOST_CTRL);
regval |= OHCI_CTRL_CLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
}
leave_critical_section(flags);
return OK;
}
/****************************************************************************
* Name: sam_addbulked
*
* Description:
* Helper function to add an ED to the bulk list.
*
****************************************************************************/
static inline int sam_addbulked(struct sam_ed_s *ed)
{
#ifndef CONFIG_USBHOST_BULK_DISABLE
irqstate_t flags;
uint32_t regval;
uintptr_t physed;
/* Disable bulk list processing while we modify the list */
flags = enter_critical_section();
regval = sam_getreg(SAM_USBHOST_CTRL);
regval &= ~OHCI_CTRL_BLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
/* Add the new bulk ED to the head of the bulk list */
ed->hw.nexted = sam_getreg(SAM_USBHOST_BULKHEADED);
up_clean_dcache((uintptr_t)ed, (uintptr_t)ed + sizeof(struct ohci_ed_s));
physed = sam_physramaddr((uintptr_t)ed);
sam_putreg((uint32_t)physed, SAM_USBHOST_BULKHEADED);
/* Re-enable bulk list processing. */
sam_putreg(0, SAM_USBHOST_BULKED);
regval = sam_getreg(SAM_USBHOST_CTRL);
regval |= OHCI_CTRL_BLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
leave_critical_section(flags);
return OK;
#else
return -ENOSYS;
#endif
}
/****************************************************************************
* Name: sam_rembulked
*
* Description:
* Helper function remove an ED from the bulk list.
*
****************************************************************************/
static inline int sam_rembulked(struct sam_ed_s *ed)
{
#ifndef CONFIG_USBHOST_BULK_DISABLE
struct sam_ed_s *curr;
struct sam_ed_s *prev;
irqstate_t flags;
uintptr_t physed;
uint32_t regval;
/* Disable bulk list processing while we modify the list */
flags = enter_critical_section();
regval = sam_getreg(SAM_USBHOST_CTRL);
regval &= ~OHCI_CTRL_BLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
/* Find the ED in the bulk list. */
physed = sam_getreg(SAM_USBHOST_BULKHEADED);
for (curr = (struct sam_ed_s *)sam_virtramaddr(physed), prev = NULL;
curr && curr != ed;
prev = curr, curr = (struct sam_ed_s *)curr->hw.nexted);
/* Hmmm.. It would be a bug if we do not find the ED in the bulk list. */
DEBUGASSERT(curr != NULL);
/* Remove the ED from the bulk list */
if (curr != NULL)
{
/* Is this ED the first on in the bulk list? */
if (prev == NULL)
{
/* Yes... set the head of the bulk list to skip over this ED */
sam_putreg(ed->hw.nexted, SAM_USBHOST_BULKHEADED);
}
else
{
/* No.. set the forward link of the previous ED in the list
* skip over this ED.
*/
prev->hw.nexted = ed->hw.nexted;
up_clean_dcache((uintptr_t)prev,
(uintptr_t)prev + sizeof(struct sam_ed_s));
}
}
/* Re-enable bulk list processing if the bulk list is still non-empty
* after removing the ED node.
*/
sam_putreg(0, SAM_USBHOST_BULKED);
if (sam_getreg(SAM_USBHOST_BULKHEADED) != 0)
{
/* If the bulk list is now empty, then disable it */
regval = sam_getreg(SAM_USBHOST_CTRL);
regval |= OHCI_CTRL_BLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
}
leave_critical_section(flags);
return OK;
#else
return -ENOSYS;
#endif
}
/****************************************************************************
* Name: sam_getinterval
*
* Description:
* Convert the endpoint polling interval into a HCCA table increment
*
****************************************************************************/
#if !defined(CONFIG_USBHOST_INT_DISABLE) || !defined(CONFIG_USBHOST_ISOC_DISABLE)
static unsigned int sam_getinterval(uint8_t interval)
{
/* The bInterval field of the endpoint descriptor contains the polling
* interval for interrupt and isochronous endpoints. For other types of
* endpoint, this value should be ignored. bInterval is provided in units
* of 1MS frames.
*/
if (interval < 3)
{
return 2;
}
else if (interval < 7)
{
return 4;
}
else if (interval < 15)
{
return 8;
}
else if (interval < 31)
{
return 16;
}
else
{
return 32;
}
}
#endif
/****************************************************************************
* Name: sam_setinttab
*
* Description:
* Set the interrupt table to the selected value using the provided
* interval and offset.
*
****************************************************************************/
#if !defined(CONFIG_USBHOST_INT_DISABLE) || !defined(CONFIG_USBHOST_ISOC_DISABLE)
static void sam_setinttab(uint32_t value, unsigned int interval,
unsigned int offset)
{
uintptr_t inttbl;
unsigned int i;
for (i = offset; i < HCCA_INTTBL_WSIZE; i += interval)
{
/* Modify the table value */
g_hcca.inttbl[i] = value;
}
/* Make sure that the modified table value is flushed to RAM */
inttbl = (uintptr_t)g_hcca.inttbl;
up_clean_dcache(inttbl, inttbl + sizeof(uint32_t)*HCCA_INTTBL_WSIZE);
}
#endif
/****************************************************************************
* Name: sam_addinted
*
* Description:
* Helper function to add an ED to the HCCA interrupt table.
*
* To avoid reshuffling the table so much and to keep life simple in
* general, the following rules are applied:
*
* 1. IN EDs get the even entries, OUT EDs get the odd entries.
* 2. Add IN/OUT EDs are scheduled together at the minimum interval of
* all IN/OUT EDs.
*
* This has the following consequences:
*
* 1. The minimum support polling rate is 2MS, and
* 2. Some devices may get polled at a much higher rate than they
* request.
*
****************************************************************************/
static inline int sam_addinted(const struct usbhost_epdesc_s *epdesc,
struct sam_ed_s *ed)
{
#ifndef CONFIG_USBHOST_INT_DISABLE
irqstate_t flags;
unsigned int interval;
unsigned int offset;
uintptr_t physed;
uintptr_t physhead;
uint32_t regval;
/* Disable periodic list processing. Does this take effect immediately?
* Or at the next SOF... need to check.
*/
flags = enter_critical_section();
regval = sam_getreg(SAM_USBHOST_CTRL);
regval &= ~OHCI_CTRL_PLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
/* Get the quanitized interval value associated with this ED and save it
* in the ED.
*/
interval = sam_getinterval(epdesc->interval);
ed->interval = interval;
usbhost_vtrace2(OHCI_VTRACE2_INTERVAL, epdesc->interval, interval);
/* Get the offset associated with the ED direction. IN EDs get the even
* entries, OUT EDs get the odd entries.
*
* Get the new, minimum interval. Add IN/OUT EDs are scheduled together
* at the minimum interval of all IN/OUT EDs.
*/
if (epdesc->in)
{
offset = 0;
if (g_ohci.ininterval > interval)
{
g_ohci.ininterval = interval;
}
else
{
interval = g_ohci.ininterval;
}
}
else
{
offset = 1;
if (g_ohci.outinterval > interval)
{
g_ohci.outinterval = interval;
}
else
{
interval = g_ohci.outinterval;
}
}
usbhost_vtrace2(OHCI_VTRACE2_MININTERVAL, interval, offset);
/* Get the (physical) head of the first of the duplicated entries. The
* first offset entry is always guaranteed to contain the common ED list
* head.
*/
physhead = g_hcca.inttbl[offset];
/* Clear all current entries in the interrupt table for this direction */
sam_setinttab(0, 2, offset);
/* Add the new ED before the old head of the periodic ED list and set the
* new ED as the head ED in all of the appropriate entries of the HCCA
* interrupt table.
*/
ed->hw.nexted = physhead;
up_clean_dcache((uintptr_t)ed, (uintptr_t)ed + sizeof(struct ohci_ed_s));
physed = sam_physramaddr((uintptr_t)ed);
sam_setinttab((uint32_t)physed, interval, offset);
usbhost_vtrace1(OHCI_VTRACE1_PHYSED, physed);
/* Re-enable periodic list processing */
regval = sam_getreg(SAM_USBHOST_CTRL);
regval |= OHCI_CTRL_PLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
leave_critical_section(flags);
return OK;
#else
return -ENOSYS;
#endif
}
/****************************************************************************
* Name: sam_reminted
*
* Description:
* Helper function to remove an ED from the HCCA interrupt table.
*
* To avoid reshuffling the table so much and to keep life simple in
* general, the following rules are applied:
*
* 1. IN EDs get the even entries, OUT EDs get the odd entries.
* 2. Add IN/OUT EDs are scheduled together at the minimum interval of
* all IN/OUT EDs.
*
* This has the following consequences:
*
* 1. The minimum support polling rate is 2MS, and
* 2. Some devices may get polled at a much higher rate than they
* request.
*
****************************************************************************/
static inline int sam_reminted(struct sam_ed_s *ed)
{
#ifndef CONFIG_USBHOST_INT_DISABLE
struct sam_ed_s *head;
struct sam_ed_s *curr;
struct sam_ed_s *prev;
irqstate_t flags;
uintptr_t physhead;
unsigned int interval;
unsigned int offset;
uint32_t regval;
/* Disable periodic list processing. Does this take effect immediately?
* Or at the next SOF... need to check.
*/
flags = enter_critical_section();
regval = sam_getreg(SAM_USBHOST_CTRL);
regval &= ~OHCI_CTRL_PLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
/* Get the offset associated with the ED direction. IN EDs get the even
* entries, OUT EDs get the odd entries.
*/
if ((ed->hw.ctrl & ED_CONTROL_D_MASK) == ED_CONTROL_D_IN)
{
offset = 0;
}
else
{
offset = 1;
}
/* Get the head of the first of the duplicated entries. The first offset
* entry is always guaranteed to contain the common ED list head.
*/
physhead = g_hcca.inttbl[offset];
head = (struct sam_ed_s *)sam_virtramaddr((uintptr_t)physhead);
#ifdef CONFIG_USBHOST_TRACE
usbhost_vtrace1(OHCI_VTRACE1_VIRTED, (uintptr_t)ed);
#else
uinfo("ed: %p head: %08" PRIxPTR " next: %08" PRIx32 " offset: %d\n",
ed, physhead, head ? head->hw.nexted : 0, offset);
#endif
/* Find the ED to be removed in the ED list */
for (curr = head, prev = NULL;
curr && curr != ed;
prev = curr, curr = (struct sam_ed_s *)curr->hw.nexted);
/* Hmmm.. It would be a bug if we do not find the ED in the bulk list. */
DEBUGASSERT(curr != NULL);
if (curr != NULL)
{
/* Clear all current entries in the interrupt table for this
* direction
*/
sam_setinttab(0, 2, offset);
/* Remove the ED from the list.. Is this ED the first on in the
* list?
*/
if (prev == NULL)
{
/* Yes... set the head of the bulk list to skip over this ED */
physhead = ed->hw.nexted;
head = (struct sam_ed_s *)sam_virtramaddr((uintptr_t)physhead);
}
else
{
/* No.. set the forward link of the previous ED in the list
* skip over this ED.
*/
prev->hw.nexted = ed->hw.nexted;
}
#ifdef CONFIG_USBHOST_TRACE
usbhost_vtrace1(OHCI_VTRACE1_VIRTED, (uintptr_t)ed);
#else
uinfo("ed: %p head: %08" PRIxPTR " next: %08" PRIx32 "\n",
ed, physhead, head ? head->hw.nexted : 0);
#endif
/* Calculate the new minimum interval for this list */
interval = MAX_PERINTERVAL;
for (curr = head; curr; curr = (struct sam_ed_s *)curr->hw.nexted)
{
if (curr->interval < interval)
{
interval = curr->interval;
}
}
usbhost_vtrace2(OHCI_VTRACE2_MININTERVAL, interval, offset);
/* Save the new minimum interval */
if ((ed->hw.ctrl & ED_CONTROL_D_MASK) == ED_CONTROL_D_IN)
{
g_ohci.ininterval = interval;
}
else
{
g_ohci.outinterval = interval;
}
/* Set the head ED in all of the appropriate entries of the HCCA
* interrupt table (head might be NULL).
*/
sam_setinttab((uint32_t)physhead, interval, offset);
}
/* Re-enabled periodic list processing */
if (head != NULL)
{
regval = sam_getreg(SAM_USBHOST_CTRL);
regval |= OHCI_CTRL_PLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
}
leave_critical_section(flags);
return OK;
#else
return -ENOSYS;
#endif
}
/****************************************************************************
* Name: sam_addisoced
*
* Description:
* Helper functions to add an ED to the periodic table.
*
****************************************************************************/
static inline int sam_addisoced(const struct usbhost_epdesc_s *epdesc,
struct sam_ed_s *ed)
{
#ifndef CONFIG_USBHOST_ISOC_DISABLE
# warning "Isochronous endpoints not yet supported"
#endif
return -ENOSYS;
}
/****************************************************************************
* Name: sam_remisoced
*
* Description:
* Helper functions to remove an ED from the periodic table.
*
****************************************************************************/
static inline int sam_remisoced(struct sam_ed_s *ed)
{
#ifndef CONFIG_USBHOST_ISOC_DISABLE
# warning "Isochronous endpoints not yet supported"
#endif
return -ENOSYS;
}
/****************************************************************************
* Name: sam_enqueuetd
*
* Description:
* Enqueue a transfer descriptor. Notice that this function only supports
* queue on TD per ED.
*
****************************************************************************/
static int sam_enqueuetd(struct sam_rhport_s *rhport,
struct sam_eplist_s *eplist, struct sam_ed_s *ed,
uint32_t dirpid, uint32_t toggle,
volatile uint8_t *buffer, size_t buflen)
{
struct sam_gtd_s *td;
struct sam_gtd_s *tdtail;
uintptr_t phytd;
uintptr_t phytail;
uintptr_t phybuf;
int ret = -ENOMEM;
/* Allocate a TD from the free list */
td = sam_tdalloc();
if (td != NULL)
{
/* Skip processing of this ED while we modify the TD list. */
ed->hw.ctrl |= ED_CONTROL_K;
up_clean_dcache((uintptr_t)ed,
(uintptr_t)ed + sizeof(struct ohci_ed_s));
/* Get the tail ED for this hub port */
tdtail = eplist->tail;
/* Get physical addresses to support the DMA */
phytd = sam_physramaddr((uintptr_t)td);
phytail = sam_physramaddr((uintptr_t)tdtail);
phybuf = sam_physramaddr((uintptr_t)buffer);
/* Initialize the allocated TD and link it before the common tail TD. */
td->hw.ctrl = (GTD_STATUS_R | dirpid | TD_DELAY(0) |
toggle | GTD_STATUS_CC_MASK);
tdtail->hw.ctrl = 0;
td->hw.cbp = (uint32_t)phybuf;
tdtail->hw.cbp = 0;
td->hw.nexttd = (uint32_t)phytail;
tdtail->hw.nexttd = 0;
td->hw.be = (uint32_t)(phybuf + (buflen - 1));
tdtail->hw.be = 0;
/* Configure driver-only fields in the extended TD structure */
td->ed = ed;
/* Link the td to the head of the ED's TD list */
ed->hw.headp = (uint32_t)phytd | ((ed->hw.headp) & ED_HEADP_C);
ed->hw.tailp = (uint32_t)phytail;
/* Flush the buffer (if there is one), the new TD, and the modified ED
* to RAM.
*/
if (buffer && buflen > 0)
{
up_clean_dcache((uintptr_t)buffer,
(uintptr_t)buffer + buflen);
}
up_clean_dcache((uintptr_t)tdtail,
(uintptr_t)tdtail + sizeof(struct ohci_gtd_s));
up_clean_dcache((uintptr_t)td,
(uintptr_t)td + sizeof(struct ohci_gtd_s));
/* Resume processing of this ED */
ed->hw.ctrl &= ~ED_CONTROL_K;
up_clean_dcache((uintptr_t)ed,
(uintptr_t)ed + sizeof(struct ohci_ed_s));
ret = OK;
}
return ret;
}
/****************************************************************************
* Name: sam_ep0enqueue
*
* Description:
* Initialize ED for a root hub EP0, add it to the control ED list, and
* enable control transfers.
*
* Input Parameters:
* rhpndx - Root hub port index.
*
* Returned Value:
* None
*
****************************************************************************/
static int sam_ep0enqueue(struct sam_rhport_s *rhport)
{
struct sam_ed_s *edctrl;
struct sam_gtd_s *tdtail;
irqstate_t flags;
uintptr_t physaddr;
int ret;
DEBUGASSERT(rhport && !rhport->ep0init && rhport->ep0.ed == NULL &&
rhport->ep0.tail == NULL);
/* Allocate a control ED and a tail TD */
flags = enter_critical_section();
edctrl = sam_edalloc();
if (!edctrl)
{
leave_critical_section(flags);
return -ENOMEM;
}
tdtail = sam_tdalloc();
if (!tdtail)
{
sam_edfree(edctrl);
leave_critical_section(flags);
return -ENOMEM;
}
rhport->ep0.ed = edctrl;
rhport->ep0.tail = tdtail;
/* Initialize the common tail TD for this port */
memset(tdtail, 0, sizeof(struct sam_gtd_s));
tdtail->ed = edctrl;
/* Initialize the control endpoint for this port.
* Set up some default values (like max packetsize = 8).
* NOTE that the SKIP bit is set until the first readl TD is added.
*/
memset(edctrl, 0, sizeof(struct sam_ed_s));
sam_ep0configure(&rhport->drvr, &rhport->ep0, 0,
rhport->hport.hport.speed, 8);
edctrl->hw.ctrl |= ED_CONTROL_K;
edctrl->eplist = &rhport->ep0;
edctrl->xfrtype = USB_EP_ATTR_XFER_CONTROL;
/* Link the common tail TD to the ED's TD list */
physaddr = sam_physramaddr((uintptr_t)tdtail);
edctrl->hw.headp = (uint32_t)physaddr;
edctrl->hw.tailp = (uint32_t)physaddr;
/* Flush the affected control ED and tail TD to RAM */
up_clean_dcache((uintptr_t)edctrl,
(uintptr_t)edctrl + sizeof(struct ohci_ed_s));
up_clean_dcache((uintptr_t)tdtail,
(uintptr_t)tdtail + sizeof(struct ohci_gtd_s));
/* Add the ED to the control list */
ret = sam_addctrled(edctrl);
leave_critical_section(flags);
return ret;
}
/****************************************************************************
* Name: sam_ep0dequeue
*
* Description:
* Remove the ED for EP0 from the control ED list and possibly disable
* control list processing.
*
* Input Parameters:
* ep0 - The control endpoint to be released. May be the control endpoint
* for an attached hub.
*
* Returned Value:
* None
*
****************************************************************************/
static void sam_ep0dequeue(struct sam_eplist_s *ep0)
{
struct sam_ed_s *edctrl;
struct sam_ed_s *curred;
struct sam_ed_s *preved;
struct sam_gtd_s *tdtail;
struct sam_gtd_s *currtd;
irqstate_t flags;
uintptr_t physcurr;
uint32_t regval;
DEBUGASSERT(ep0->ed != NULL && ep0->tail != NULL);
/* ControlListEnable. This bit is cleared to disable the processing of the
* Control list. We should never modify the control list while CLE is set.
*/
flags = enter_critical_section();
regval = sam_getreg(SAM_USBHOST_CTRL);
regval &= ~OHCI_CTRL_CLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
/* Search the control list to find the entry to be removed (and its
* predecessor).
*/
edctrl = ep0->ed;
physcurr = sam_getreg(SAM_USBHOST_CTRLHEADED);
for (curred = (struct sam_ed_s *)sam_virtramaddr(physcurr),
preved = NULL;
curred && curred != edctrl;
preved = curred,
curred = (struct sam_ed_s *)sam_virtramaddr(physcurr))
{
physcurr = curred->hw.nexted;
}
DEBUGASSERT(curred);
/* Remove the ED from the control list */
if (preved)
{
/* Unlink the ED from the previous ED in the list */
preved->hw.nexted = edctrl->hw.nexted;
/* Flush the modified ED to RAM */
up_clean_dcache((uintptr_t)preved,
(uintptr_t)preved + sizeof(struct ohci_ed_s));
}
else
{
/* Set the new control list head ED */
sam_putreg(edctrl->hw.nexted, SAM_USBHOST_CTRLHEADED);
/* If the control list head is still non-NULL, then (re-)enable
* processing of the Control list.
*/
if (edctrl->hw.nexted != 0)
{
regval = sam_getreg(SAM_USBHOST_CTRL);
regval |= OHCI_CTRL_CLE;
sam_putreg(regval, SAM_USBHOST_CTRL);
}
}
leave_critical_section(flags);
/* Release any TDs that may still be attached to the ED. */
tdtail = ep0->tail;
physcurr = edctrl->hw.headp;
for (currtd = (struct sam_gtd_s *)sam_virtramaddr(physcurr);
currtd && currtd != tdtail;
currtd = (struct sam_gtd_s *)sam_virtramaddr(physcurr))
{
physcurr = currtd->hw.nexttd;
sam_tdfree(currtd);
}
/* Free the tail TD and the control ED allocated for this port */
sam_tdfree(tdtail);
sam_edfree(edctrl);
ep0->ed = NULL;
ep0->tail = NULL;
}
/****************************************************************************
* Name: sam_wdhwait
*
* Description:
* Set the request for the Writeback Done Head event well BEFORE enabling
* the transfer (as soon as we are absolutely committed to perform the
* transfer). We do this to minimize race conditions. This logic would
* have to be expanded if we want to have more than one packet in flight
* at a time!
*
****************************************************************************/
static int sam_wdhwait(struct sam_rhport_s *rhport, struct sam_ed_s *ed,
uint8_t *buffer, uint16_t buflen)
{
struct sam_eplist_s *eplist;
irqstate_t flags = enter_critical_section();
int ret = -ENODEV;
/* Is the device still connected? */
if (rhport->connected)
{
/* Yes.. Get the endpoint list associated with the ED */
eplist = ed->eplist;
DEBUGASSERT(eplist);
/* Then set wdhwait to indicate that we expect to be informed when
* either (1) the device is disconnected, or (2) the transfer
* completed.
*/
eplist->wdhwait = true;
#ifdef CONFIG_USBHOST_ASYNCH
eplist->callback = NULL;
eplist->arg = NULL;
#endif
eplist->buffer = buffer;
eplist->buflen = buflen;
ret = OK;
}
leave_critical_section(flags);
return ret;
}
/****************************************************************************
* Name: sam_wdhasynch
*
* Description:
* Set the request for the Writeback Done Head callback well BEFORE
* enabling the transfer (as soon as we are absolutely committed to
* perform the transfer). We do this to minimize race conditions. This
* logic would have to be expanded if we want to have more than one packet
* in flight at a time!
*
****************************************************************************/
#ifdef CONFIG_USBHOST_ASYNCH
static int sam_wdhasynch(struct sam_rhport_s *rhport, struct sam_ed_s *ed,
usbhost_asynch_t callback, void *arg,
uint8_t *buffer, uint16_t buflen)
{
struct sam_eplist_s *eplist;
irqstate_t flags = enter_critical_section();
int ret = -ENODEV;
/* Is the device still connected? */
if (rhport->connected)
{
/* Yes.. Get the endpoint list associated with the ED */
eplist = ed->eplist;
DEBUGASSERT(eplist);
/* Then set wdhwait to indicate that we expect to be informed when
* either (1) the device is disconnected, or (2) the transfer
* completed.
*/
eplist->wdhwait = false;
eplist->callback = callback;
eplist->arg = arg;
eplist->buffer = buffer;
eplist->buflen = buflen;
ret = OK;
}
leave_critical_section(flags);
return ret;
}
#endif
/****************************************************************************
* Name: sam_ctrltd
*
* Description:
* Process a IN or OUT request on the control endpoint. This function
* will enqueue the request and wait for it to complete. Only one transfer
* may be queued; Neither these methods nor the transfer() method can be
* called again until the control transfer functions returns.
*
* These are blocking methods; these functions will not return until the
* control transfer has completed.
*
****************************************************************************/
static int sam_ctrltd(struct sam_rhport_s *rhport,
struct sam_eplist_s *eplist, uint32_t dirpid,
uint8_t *buffer, size_t buflen)
{
struct sam_ed_s *edctrl;
uint32_t toggle;
uint32_t regval;
int ret;
int ret2;
/* Set the request for the Writeback Done Head event well BEFORE enabling
* the transfer.
*/
edctrl = eplist->ed;
ret = sam_wdhwait(rhport, edctrl, buffer, buflen);
if (ret != OK)
{
usbhost_trace1(OHCI_TRACE1_DEVDISCONN, RHPORT(rhport));
return ret;
}
/* Configure the toggle field in the TD */
if (dirpid == GTD_STATUS_DP_SETUP)
{
toggle = GTD_STATUS_T_DATA0;
}
else
{
toggle = GTD_STATUS_T_DATA1;
}
/* Then enqueue the transfer */
edctrl->tdstatus = TD_CC_NOERROR;
ret = sam_enqueuetd(rhport, eplist, edctrl, dirpid, toggle, buffer,
buflen);
if (ret == OK)
{
/* Set ControlListFilled. This bit is used to indicate whether there
* are TDs on the Control list.
*/
regval = sam_getreg(SAM_USBHOST_CMDST);
regval |= OHCI_CMDST_CLF;
sam_putreg(regval, SAM_USBHOST_CMDST);
/* Release the OHCI semaphore while we wait. Other threads need the
* opportunity to access the OHCI resources while we wait.
*
* REVISIT: Is this safe? NO. This is a bug and needs rethinking.
* We need to lock all of the port-resources (not OHCI common) until
* the transfer is complete. But we can't use the common OHCI exclsem
* or we will deadlock while waiting (because the working thread that
* wakes this thread up needs the exclsem).
*/
#warning REVISIT
sam_givesem(&g_ohci.exclsem);
/* Wait for the Writeback Done Head interrupt Loop to handle any false
* alarm semaphore counts.
*/
while (eplist->wdhwait && ret >= 0)
{
ret = sam_takesem(&eplist->wdhsem);
}
/* Re-acquire the ECHI semaphore. The caller expects to be holding
* this upon return.
*/
ret2 = sam_takesem_noncancelable(&g_ohci.exclsem);
if (ret2 < 0)
{
ret = ret2;
}
if (ret < 0)
{
/* The thread was canceled */
}
/* Check the TD completion status bits */
else if (edctrl->tdstatus == TD_CC_NOERROR)
{
ret = OK;
}
else
{
usbhost_trace2(OHCI_TRACE2_BADTDSTATUS, RHPORT(rhport),
edctrl->tdstatus);
ret = edctrl->tdstatus == TD_CC_STALL ? -EPERM : -EIO;
}
}
/* Make sure that there is no outstanding request on this endpoint */
eplist->wdhwait = false;
return ret;
}
/****************************************************************************
* Name: sam_rhsc_bottomhalf
*
* Description:
* OHCI root hub status change interrupt handler
*
****************************************************************************/
static void sam_rhsc_bottomhalf(void)
{
struct sam_rhport_s *rhport;
uint32_t regaddr;
uint32_t rhportst;
int rhpndx;
/* Handle root hub status change on each root port */
for (rhpndx = 0; rhpndx < SAM_OHCI_NRHPORT; rhpndx++)
{
rhport = &g_ohci.rhport[rhpndx];
regaddr = SAM_USBHOST_RHPORTST(rhpndx + 1);
rhportst = sam_getreg(regaddr);
usbhost_vtrace2(OHCI_VTRACE2_RHPORTST, rhpndx + 1, (uint16_t)rhportst);
if ((rhportst & OHCI_RHPORTST_CSC) != 0)
{
uint32_t rhstatus = sam_getreg(SAM_USBHOST_RHSTATUS);
usbhost_vtrace1(OHCI_VTRACE1_CSC, rhstatus);
/* If DRWE is set, Connect Status Change indicates a remote
* wake-up event
*/
if (rhstatus & OHCI_RHSTATUS_DRWE)
{
usbhost_vtrace1(OHCI_VTRACE1_DRWE, rhstatus);
}
/* Otherwise... Not a remote wake-up event */
else
{
/* Check current connect status */
if ((rhportst & OHCI_RHPORTST_CCS) != 0)
{
/* Connected ... Did we just become connected? */
if (!rhport->connected)
{
/* Yes.. connected. */
rhport->connected = true;
usbhost_vtrace2(OHCI_VTRACE2_CONNECTED,
rhpndx + 1, g_ohci.pscwait);
/* Notify any waiters */
if (g_ohci.pscwait)
{
sam_givesem(&g_ohci.pscsem);
g_ohci.pscwait = false;
}
}
else
{
usbhost_vtrace1(OHCI_VTRACE1_ALREADYCONN, rhportst);
}
/* The LSDA (Low speed device attached) bit is valid
* when CCS == 1.
*/
if ((rhportst & OHCI_RHPORTST_LSDA) != 0)
{
rhport->hport.hport.speed = USB_SPEED_LOW;
}
else
{
rhport->hport.hport.speed = USB_SPEED_FULL;
}
usbhost_vtrace1(OHCI_VTRACE1_SPEED,
rhport->hport.hport.speed);
}
/* Check if we are now disconnected */
else if (rhport->connected)
{
/* Yes.. disconnect the device */
usbhost_vtrace2(OHCI_VTRACE2_DISCONNECTED,
rhpndx + 1, g_ohci.pscwait);
rhport->connected = false;
/* Set the port speed to the default (FULL). We cannot
* yet free the function address. That has to be done
* by the class when responds to the disconnection.
*/
rhport->hport.hport.speed = USB_SPEED_FULL;
/* Are we bound to a class instance? */
if (rhport->hport.hport.devclass)
{
/* Yes.. Disconnect the class */
CLASS_DISCONNECTED(rhport->hport.hport.devclass);
rhport->hport.hport.devclass = NULL;
}
/* Notify any waiters for the Root Hub Status change
* event.
*/
if (g_ohci.pscwait)
{
sam_givesem(&g_ohci.pscsem);
g_ohci.pscwait = false;
}
}
else
{
usbhost_vtrace1(OHCI_VTRACE1_ALREADYDISCONN, rhportst);
}
}
/* Clear the status change interrupt */
sam_putreg(OHCI_RHPORTST_CSC, regaddr);
}
/* Check for port reset status change */
if ((rhportst & OHCI_RHPORTST_PRSC) != 0)
{
/* Release the RH port from reset */
sam_putreg(OHCI_RHPORTST_PRSC, regaddr);
}
}
}
/****************************************************************************
* Name: sam_wdh_bottomhalf
*
* Description:
* OHCI write done head interrupt handler
*
****************************************************************************/
static void sam_wdh_bottomhalf(void)
{
struct sam_eplist_s *eplist;
struct sam_gtd_s *td;
struct sam_gtd_s *next;
struct sam_ed_s *ed;
uintptr_t paddr;
uintptr_t tmp;
/* The host controller just wrote the finished TDs into the HCCA done head.
* This may include multiple packets that were transferred in the preceding
* frame.
*
* Remove the TD from the Writeback Done Head in the HCCA and return
* it to the free list. Note that this is safe because the hardware
* will not modify the writeback done head again until the WDH bit is
* cleared in the interrupt status register.
*/
/* Invalidate D-cache to force re-reading of the Done Head */
#if 0 /* Apparently insufficient */
up_invalidate_dcache((uintptr_t)&g_hcca.donehead,
(uintptr_t)&g_hcca.donehead + sizeof(uint32_t));
#else
up_invalidate_dcache((uintptr_t)&g_hcca,
(uintptr_t)&g_hcca + sizeof(struct ohci_hcca_s));
#endif
/* Now read the done head. */
td = (struct sam_gtd_s *)
sam_virtramaddr(g_hcca.donehead & HCCA_DONEHEAD_MASK);
g_hcca.donehead = 0;
/* Process each TD in the write done list */
for (; td; td = next)
{
/* Invalidate the just-finished TD from D-cache to force it to be
* reloaded from memory.
*/
up_invalidate_dcache((uintptr_t)td,
(uintptr_t)td + sizeof(struct ohci_gtd_s));
/* Get the ED in which this TD was enqueued */
ed = td->ed;
DEBUGASSERT(ed != NULL);
/* Get the endpoint list that contains the ED */
eplist = ed->eplist;
DEBUGASSERT(eplist != NULL);
/* Do nothing if there is no transfer in progress. This situation may
* occur after cancellation of a transfer.
*/
#ifdef CONFIG_USBHOST_ASYNCH
if (eplist->wdhwait || eplist->callback)
#else
if (eplist->wdhwait)
#endif
{
/* Invalidate the control ED so that it two will be re-read from
* memory.
*/
up_invalidate_dcache((uintptr_t)ed,
(uintptr_t)ed + sizeof(struct ohci_ed_s));
/* Save the condition code from the (single) TD status/control
* word.
*/
ed->tdstatus = (td->hw.ctrl & GTD_STATUS_CC_MASK) >>
GTD_STATUS_CC_SHIFT;
#ifdef HAVE_USBHOST_TRACE
if (ed->tdstatus != TD_CC_NOERROR)
{
/* The transfer failed for some reason... dump some diagnostic
* info.
*/
usbhost_trace2(OHCI_TRACE2_WHDTDSTATUS, ed->tdstatus,
ed->xfrtype);
}
#endif
/* Determine the number of bytes actually transfer by* subtracting
* the buffer start address from the CBP. A value of zero means
* that all bytes were transferred.
*/
tmp = (uintptr_t)td->hw.cbp;
if (tmp == 0)
{
/* Set the (fake) CBP to the end of the buffer + 1 */
tmp = eplist->buflen;
}
else
{
paddr = sam_physramaddr((uintptr_t)eplist->buffer);
DEBUGASSERT(tmp >= paddr);
/* Determine the size of the transfer by subtracting the
* current buffer pointer (CBP) from the initial buffer
* pointer (on packet receipt only).
*/
tmp -= paddr;
DEBUGASSERT(tmp < UINT16_MAX);
}
eplist->xfrd = (uint16_t)tmp;
}
/* Return the TD to the free list */
next = (struct sam_gtd_s *)sam_virtramaddr(td->hw.nexttd);
sam_tdfree(td);
/* And wake up the thread waiting for the WDH event */
if (eplist->wdhwait)
{
sam_givesem(&eplist->wdhsem);
eplist->wdhwait = false;
}
#ifdef CONFIG_USBHOST_ASYNCH
/* No thread waiting. Is there a callback scheduled? */
else if (eplist->callback)
{
/* Yes.. perform the callback */
sam_asynch_completion(eplist);
}
#endif
}
}
/****************************************************************************
* Name: sam_ohci_bottomhalf
*
* Description:
* OHCI interrupt bottom half. This function runs on the high priority
* worker thread and was xcheduled when the last interrupt occurred. The
* set of pending interrupts is provided as the argument. OHCI interrupts
* were disabled when this function is scheduled so no further interrupts
* can occur until this work re-enables OHCI interrupts
*
****************************************************************************/
static void sam_ohci_bottomhalf(void *arg)
{
uint32_t pending = (uint32_t)arg;
/* We need to have exclusive access to the OHCI data structures. Waiting
* here is not a good thing to do on the worker thread, but there is no
* real option (other than to reschedule and delay).
*/
sam_takesem_noncancelable(&g_ohci.exclsem);
/* Root hub status change interrupt */
if ((pending & OHCI_INT_RHSC) != 0)
{
/* Handle root hub status change on each root port */
usbhost_vtrace1(OHCI_VTRACE1_RHSC, pending);
sam_rhsc_bottomhalf();
}
/* Writeback Done Head interrupt */
if ((pending & OHCI_INT_WDH) != 0)
{
/* The host controller just wrote the list of finished TDs into the
* HCCA done head. This may include multiple packets that were
* transferred in the preceding frame.
*/
usbhost_vtrace1(OHCI_VTRACE1_WDHINTR, pending);
sam_wdh_bottomhalf();
}
#ifdef CONFIG_DEBUG_USB
if ((pending & SAM_DEBUG_INTS) != 0)
{
if ((pending & OHCI_INT_UE) != 0)
{
/* An unrecoverable error occurred. Unrecoverable errors
* are usually the consequence of bad descriptor contents
* or DMA errors.
*
* Treat this like a normal write done head interrupt. We
* just want to see if there is any status information written
* to the descriptors (and the normal write done head
* interrupt will not be occurring).
*/
usbhost_trace1(OHCI_TRACE1_INTRUNRECOVERABLE, pending);
sam_wdh_bottomhalf();
}
else
{
usbhost_trace1(OHCI_TRACE1_INTRUNHANDLED, pending);
}
}
#endif
/* Now re-enable interrupts */
sam_putreg(OHCI_INT_MIE, SAM_USBHOST_INTEN);
sam_givesem(&g_ohci.exclsem);
}
/****************************************************************************
* Name: sam_wait
*
* Description:
* Wait for a device to be connected or disconnected to/from a hub port.
*
* Input Parameters:
* conn - The USB host connection instance obtained as a parameter from
* the call to the USB driver initialization logic.
* hport - The location to return the hub port descriptor that detected
* the connection related event.
*
* Returned Value:
* Zero (OK) is returned on success when a device is connected or
* disconnected. This function will not return until either (1) a device
* is connected or disconnect to/from any hub port or until (2) some
* failure occurs. On a failure, a negated errno value is returned
* indicating the nature of the failure
*
* Assumptions:
* - Called from a single thread so no mutual exclusion is required.
* - Never called from an interrupt handler.
*
****************************************************************************/
static int sam_wait(struct usbhost_connection_s *conn,
struct usbhost_hubport_s **hport)
{
irqstate_t flags;
int rhpndx;
int ret;
/* Loop until a change in the connection state changes on one of the root
* hub ports or until an error occurs.
*/
flags = enter_critical_section();
for (; ; )
{
/* Check for a change in the connection state on any root hub port */
for (rhpndx = 0; rhpndx < SAM_OHCI_NRHPORT; rhpndx++)
{
struct sam_rhport_s *rhport = &g_ohci.rhport[rhpndx];
struct usbhost_hubport_s *connport;
#if 0 /* #ifdef CONFIG_SAMA5_EHCI */
/* If a device is no longer connected, return the port to the EHCI
* controller. Zero is the reset value for all ports; one makes
* the corresponding port available to OHCI.
*/
if (!rhport->connected)
{
uint32_t regval = getreg32(SAM_SFR_OHCIICR);
regval &= ~SFR_OHCIICR_RES(rhpndx);
putreg32(regval, SAM_SFR_OHCIICR);
}
#endif
/* Has the connection state changed on the RH port? */
connport = &rhport->hport.hport;
if (rhport->connected != connport->connected)
{
/* Yes.. Return the RH port number to inform the caller which
* port has the connection change.
*/
leave_critical_section(flags);
usbhost_vtrace2(OHCI_VTRACE2_WAKEUP,
rhpndx + 1, g_ohci.rhport[rhpndx].connected);
connport->connected = rhport->connected;
*hport = connport;
return OK;
}
}
#ifdef CONFIG_USBHOST_HUB
/* Is a device connected to an external hub? */
if (g_ohci.hport)
{
struct usbhost_hubport_s *connport;
/* Yes.. return the external hub port */
connport = (struct usbhost_hubport_s *)g_ohci.hport;
g_ohci.hport = NULL;
*hport = connport;
leave_critical_section(flags);
usbhost_vtrace2(OHCI_VTRACE2_HUBWAKEUP,
HPORT(connport), connport->connected);
return OK;
}
#endif
/* No changes on any port. Wait for a connection/disconnection event
* and check again
*/
g_ohci.pscwait = true;
ret = sam_takesem(&g_ohci.pscsem);
if (ret < 0)
{
return ret;
}
}
}
/****************************************************************************
* Name: sam_enumerate
*
* Description:
* Enumerate the connected device. As part of this enumeration process,
* the driver will (1) get the device's configuration descriptor, (2)
* extract the class ID info from the configuration descriptor, (3) call
* usbhost_findclass() to find the class that supports this device, (4)
* call the create() method on the struct usbhost_registry_s interface
* to get a class instance, and finally (5) call the connect() method
* of the struct usbhost_class_s interface. After that, the class is in
* charge of the sequence of operations.
*
* Input Parameters:
* conn - The USB host connection instance obtained as a parameter from
* the call to the USB driver initialization logic.
* hport - The descriptor of the hub port that has the newly connected
* device.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int sam_rh_enumerate(struct usbhost_connection_s *conn,
struct usbhost_hubport_s *hport)
{
struct sam_rhport_s *rhport;
uint32_t regaddr;
int rhpndx;
int ret;
DEBUGASSERT(conn != NULL && hport != NULL);
rhpndx = hport->port;
DEBUGASSERT(rhpndx >= 0 && rhpndx < SAM_OHCI_NRHPORT);
rhport = &g_ohci.rhport[rhpndx];
/* Are we connected to a device? The caller should have called the wait()
* method first to be assured that a device is connected.
*/
while (!rhport->connected)
{
/* No, return an error */
usbhost_vtrace1(OHCI_VTRACE1_ENUMDISCONN, RHPORT(rhport));
return -ENODEV;
}
/* Add root hub EP0 to the control list */
if (!rhport->ep0init)
{
ret = sam_ep0enqueue(rhport);
if (ret < 0)
{
usbhost_trace2(OHCI_TRACE2_EP0ENQUEUE_FAILED, RHPORT(rhport),
-ret);
return ret;
}
/* Successfully initialized */
rhport->ep0init = true;
}
/* USB 2.0 spec says at least 50ms delay before port reset */
up_mdelay(100);
/* Put the root hub port in reset (the SAMA5 supports three downstream
* ports)
*/
regaddr = SAM_USBHOST_RHPORTST(rhpndx + 1);
sam_putreg(OHCI_RHPORTST_PRS, regaddr);
/* Wait for the port reset to complete */
while ((sam_getreg(regaddr) & OHCI_RHPORTST_PRS) != 0);
/* Release RH port 1 from reset and wait a bit */
sam_putreg(OHCI_RHPORTST_PRSC, regaddr);
up_mdelay(200);
return OK;
}
static int sam_enumerate(struct usbhost_connection_s *conn,
struct usbhost_hubport_s *hport)
{
int ret;
DEBUGASSERT(hport);
/* If this is a connection on the root hub, then we need to go to
* little more effort to get the device speed. If it is a connection
* on an external hub, then we already have that information.
*/
#ifdef CONFIG_USBHOST_HUB
if (ROOTHUB(hport))
#endif
{
ret = sam_rh_enumerate(conn, hport);
if (ret < 0)
{
return ret;
}
}
/* Then let the common usbhost_enumerate do the real enumeration. */
usbhost_vtrace1(OHCI_VTRACE1_CLASSENUM, HPORT(hport));
ret = usbhost_enumerate(hport, &hport->devclass);
if (ret < 0)
{
usbhost_trace2(OHCI_TRACE2_CLASSENUM_FAILED, HPORT(hport), -ret);
}
return ret;
}
/****************************************************************************
* Name: sam_ep0configure
*
* Description:
* Configure endpoint 0. This method is normally used internally by the
* enumerate() method but is made available at the interface to support
* an external implementation of the enumeration logic.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* funcaddr - The USB address of the function containing the endpoint that
* EP0 controls. A funcaddr of zero will be received if no address is
* yet assigned to the device.
* speed - The speed of the port USB_SPEED_LOW, _FULL, or _HIGH
* maxpacketsize - The maximum number of bytes that can be sent to or
* received from the endpoint in a single data packet
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int sam_ep0configure(struct usbhost_driver_s *drvr, usbhost_ep_t ep0,
uint8_t funcaddr, uint8_t speed,
uint16_t maxpacketsize)
{
struct sam_rhport_s *rhport = (struct sam_rhport_s *)drvr;
struct sam_eplist_s *ep0list = (struct sam_eplist_s *)ep0;
struct sam_ed_s *edctrl;
uint32_t hwctrl;
int ret;
usbhost_vtrace2(OHCI_VTRACE2_EP0CONFIG, speed, funcaddr);
DEBUGASSERT(rhport && maxpacketsize < 2048);
edctrl = ep0list->ed;
/* We must have exclusive access to EP0 and the control list */
ret = sam_takesem(&g_ohci.exclsem);
if (ret < 0)
{
return ret;
}
/* Set the EP0 ED control word (preserving only speed) */
hwctrl = (uint32_t)funcaddr << ED_CONTROL_FA_SHIFT |
(uint32_t)ED_CONTROL_D_TD1 |
(uint32_t)maxpacketsize << ED_CONTROL_MPS_SHIFT;
if (speed == USB_SPEED_LOW)
{
hwctrl |= ED_CONTROL_S;
}
edctrl->hw.ctrl = hwctrl;
/* Flush the modified control ED to RAM */
up_clean_dcache((uintptr_t)edctrl,
(uintptr_t)edctrl + sizeof(struct ohci_ed_s));
sam_givesem(&g_ohci.exclsem);
usbhost_vtrace2(OHCI_VTRACE2_EP0CTRLED, RHPORT(rhport),
(uint16_t)edctrl->hw.ctrl);
UNUSED(rhport);
return OK;
}
/****************************************************************************
* Name: sam_epalloc
*
* Description:
* Allocate and configure one endpoint.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* epdesc - Describes the endpoint to be allocated.
* ep - A memory location provided by the caller in which to receive the
* allocated endpoint descriptor.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int sam_epalloc(struct usbhost_driver_s *drvr,
const struct usbhost_epdesc_s *epdesc,
usbhost_ep_t *ep)
{
struct sam_rhport_s *rhport = (struct sam_rhport_s *)drvr;
struct sam_eplist_s *eplist;
struct usbhost_hubport_s *hport;
struct sam_ed_s *ed;
struct sam_gtd_s *td;
uintptr_t physaddr;
int ret = -ENOMEM;
/* Sanity check. NOTE that this method should only be called if a device
* is connected (because we need a valid low speed indication).
*/
DEBUGASSERT(rhport != NULL && epdesc != NULL && epdesc->hport != NULL);
DEBUGASSERT(ep != NULL && rhport->connected);
UNUSED(rhport);
hport = epdesc->hport;
/* Allocate a container for the endpoint data */
eplist = (struct sam_eplist_s *)kmm_zalloc(sizeof(struct sam_eplist_s));
if (!eplist)
{
usbhost_trace1(OHCI_TRACE1_EPLISTALLOC_FAILED, 0);
goto errout;
}
/* Initialize the endpoint container */
nxsem_init(&eplist->wdhsem, 0, 0);
/* The wdhsem semaphore is used for signaling and, hence, should not have
* priority inheritance enabled.
*/
nxsem_set_protocol(&eplist->wdhsem, SEM_PRIO_NONE);
/* We must have exclusive access to the ED pool, the bulk list, the
* periodic list, and the interrupt table.
*/
ret = sam_takesem(&g_ohci.exclsem);
if (ret < 0)
{
goto errout_with_eplist;
}
/* Allocate an ED and a tail TD for the new endpoint */
ed = sam_edalloc();
if (!ed)
{
usbhost_trace1(OHCI_TRACE1_EDALLOC_FAILED, 0);
goto errout_with_semaphore;
}
td = sam_tdalloc();
if (!td)
{
usbhost_trace1(OHCI_TRACE1_TDALLOC_FAILED, 0);
goto errout_with_ed;
}
/* Save the descriptors in the endpoint container */
eplist->ed = ed;
eplist->tail = td;
/* Configure the endpoint descriptor. */
memset((void *)ed, 0, sizeof(struct sam_ed_s));
ed->hw.ctrl = (uint32_t)(hport->funcaddr) << ED_CONTROL_FA_SHIFT |
(uint32_t)(epdesc->addr) << ED_CONTROL_EN_SHIFT |
(uint32_t)(epdesc->mxpacketsize) << ED_CONTROL_MPS_SHIFT;
/* Get the direction of the endpoint. For control endpoints, the
* direction is in the TD.
*/
if (epdesc->xfrtype == USB_EP_ATTR_XFER_CONTROL)
{
ed->hw.ctrl |= ED_CONTROL_D_TD1;
}
else if (epdesc->in)
{
ed->hw.ctrl |= ED_CONTROL_D_IN;
}
else
{
ed->hw.ctrl |= ED_CONTROL_D_OUT;
}
/* Check for a low-speed device */
if (hport->speed == USB_SPEED_LOW)
{
ed->hw.ctrl |= ED_CONTROL_S;
}
/* Set the transfer type */
ed->xfrtype = epdesc->xfrtype;
/* Special Case isochronous transfer types */
#if 0 /* Isochronous transfers not yet supported */
if (ed->xfrtype == USB_EP_ATTR_XFER_ISOC)
{
ed->hw.ctrl |= ED_CONTROL_F;
}
#endif
ed->eplist = eplist;
usbhost_vtrace2(OHCI_VTRACE2_EPALLOC, epdesc->addr, (uint16_t)ed->hw.ctrl);
/* Configure the tail descriptor. */
memset(td, 0, sizeof(struct sam_gtd_s));
td->ed = ed;
/* Link the tail TD to the ED's TD list */
physaddr = (uintptr_t)sam_physramaddr((uintptr_t)td);
ed->hw.headp = physaddr;
ed->hw.tailp = physaddr;
/* Make sure these settings are flushed to RAM */
up_clean_dcache((uintptr_t)ed,
(uintptr_t)ed + sizeof(struct ohci_ed_s));
up_clean_dcache((uintptr_t)td,
(uintptr_t)td + sizeof(struct ohci_gtd_s));
/* Now add the endpoint descriptor to the appropriate list */
switch (ed->xfrtype)
{
case USB_EP_ATTR_XFER_CONTROL:
ret = sam_addctrled(ed);
break;
case USB_EP_ATTR_XFER_BULK:
ret = sam_addbulked(ed);
break;
case USB_EP_ATTR_XFER_INT:
ret = sam_addinted(epdesc, ed);
break;
case USB_EP_ATTR_XFER_ISOC:
ret = sam_addisoced(epdesc, ed);
break;
default:
ret = -EINVAL;
break;
}
/* Was the ED successfully added? */
if (ret != OK)
{
/* No.. destroy it and report the error */
usbhost_trace2(OHCI_TRACE2_EDENQUEUE_FAILED, ed->xfrtype, -ret);
goto errout_with_td;
}
/* Success.. return an opaque reference to the endpoint list container */
*ep = (usbhost_ep_t)eplist;
sam_givesem(&g_ohci.exclsem);
return OK;
errout_with_td:
sam_tdfree(td);
errout_with_ed:
sam_edfree(ed);
errout_with_semaphore:
sam_givesem(&g_ohci.exclsem);
errout_with_eplist:
kmm_free(eplist);
errout:
return ret;
}
/****************************************************************************
* Name: sam_epfree
*
* Description:
* Free and endpoint previously allocated by DRVR_EPALLOC.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* ep - The endpoint to be freed.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int sam_epfree(struct usbhost_driver_s *drvr, usbhost_ep_t ep)
{
#ifdef CONFIG_DEBUG_ASSERTIONS
struct sam_rhport_s *rhport = (struct sam_rhport_s *)drvr;
#endif
struct sam_eplist_s *eplist = (struct sam_eplist_s *)ep;
struct sam_ed_s *ed;
int ret;
int ret2;
DEBUGASSERT(rhport != NULL && eplist != NULL &&
eplist->ed != NULL && eplist->tail != NULL);
/* There should not be any pending, real TDs linked to this ED */
ed = eplist->ed;
DEBUGASSERT((ed->hw.headp & ED_HEADP_ADDR_MASK) == ed->hw.tailp);
/* We must have exclusive access to the ED pool, the bulk list, the
* periodic list and the interrupt table.
*/
ret2 = sam_takesem_noncancelable(&g_ohci.exclsem);
/* Remove the ED to the correct list depending on the transfer type */
switch (ed->xfrtype)
{
case USB_EP_ATTR_XFER_CONTROL:
ret = sam_remctrled(eplist->ed);
break;
case USB_EP_ATTR_XFER_BULK:
ret = sam_rembulked(eplist->ed);
break;
case USB_EP_ATTR_XFER_INT:
ret = sam_reminted(eplist->ed);
break;
case USB_EP_ATTR_XFER_ISOC:
ret = sam_remisoced(eplist->ed);
break;
default:
ret = -EINVAL;
break;
}
/* Put the ED and tail TDs back into the free list */
sam_edfree(eplist->ed);
sam_tdfree(eplist->tail);
/* And free the container */
nxsem_destroy(&eplist->wdhsem);
kmm_free(eplist);
sam_givesem(&g_ohci.exclsem);
return ret < 0 ? ret : ret2;
}
/****************************************************************************
* Name: sam_alloc
*
* Description:
* Some hardware supports special memory in which request and descriptor
* data can be accessed more efficiently. This method provides a
* mechanism to allocate the request/descriptor memory. If the underlying
* hardware does not support such "special" memory, this functions may
* simply map to kmm_malloc.
*
* This interface was optimized under a particular assumption. It was
* assumed that the driver maintains a pool of small, pre-allocated
* buffers for descriptor traffic. NOTE that size is not an input, but
* an output: The size of the pre-allocated buffer is returned.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* buffer - The address of a memory location provided by the caller in
* which to return the allocated buffer memory address.
* maxlen - The address of a memory location provided by the caller in
* which to return the maximum size of the allocated buffer memory.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* - Called from a single thread so no mutual exclusion is required.
* - Never called from an interrupt handler.
*
****************************************************************************/
static int sam_alloc(struct usbhost_driver_s *drvr,
uint8_t **buffer, size_t *maxlen)
{
int ret;
DEBUGASSERT(drvr && buffer && maxlen);
/* We must have exclusive access to the transfer buffer pool */
ret = sam_takesem(&g_ohci.exclsem);
if (ret < 0)
{
return ret;
}
ret = -ENOMEM;
*buffer = sam_tballoc();
if (*buffer)
{
*maxlen = CONFIG_SAMA5_OHCI_TDBUFSIZE;
ret = OK;
}
sam_givesem(&g_ohci.exclsem);
return ret;
}
/****************************************************************************
* Name: sam_free
*
* Description:
* Some hardware supports special memory in which request and descriptor
* data can be accessed more efficiently. This method provides a
* mechanism to free that request/descriptor memory. If the underlying
* hardware does not support such "special" memory, this functions may
* simply map to kmm_free().
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* buffer - The address of the allocated buffer memory to be freed.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* - Never called from an interrupt handler.
*
****************************************************************************/
static int sam_free(struct usbhost_driver_s *drvr, uint8_t *buffer)
{
int ret;
DEBUGASSERT(drvr && buffer);
/* We must have exclusive access to the transfer buffer pool */
ret = sam_takesem_noncancelable(&g_ohci.exclsem);
sam_tbfree(buffer);
sam_givesem(&g_ohci.exclsem);
return ret;
}
/****************************************************************************
* Name: sam_ioalloc
*
* Description:
* Some hardware supports special memory in which larger IO buffers can
* be accessed more efficiently. This method provides a mechanism to
* allocate the request/descriptor memory. If the underlying hardware
* does not support such "special" memory, this functions may simply map
* to kumm_malloc.
*
* This interface differs from DRVR_ALLOC in that the buffers are
* variable-sized.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* buffer - The address of a memory location provided by the caller in
* which to return the allocated buffer memory address.
* buflen - The size of the buffer required.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int sam_ioalloc(struct usbhost_driver_s *drvr, uint8_t **buffer,
size_t buflen)
{
DEBUGASSERT(drvr && buffer);
/* kumm_malloc() should return user accessible, DMA-able memory */
*buffer = kumm_malloc(buflen);
return *buffer ? OK : -ENOMEM;
}
/****************************************************************************
* Name: sam_iofree
*
* Description:
* Some hardware supports special memory in which IO data can be accessed
* more efficiently. This method provides a mechanism to free that IO
* buffer memory. If the underlying hardware does not support such
* "special" memory, this functions may simply map to kumm_free().
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* buffer - The address of the allocated buffer memory to be freed.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int sam_iofree(struct usbhost_driver_s *drvr, uint8_t *buffer)
{
DEBUGASSERT(drvr && buffer);
/* kumm_free is all that is required */
kumm_free(buffer);
return OK;
}
/****************************************************************************
* Name: sam_ctrlin and sam_ctrlout
*
* Description:
* Process a IN or OUT request on the control endpoint. These methods
* will enqueue the request and wait for it to complete. Only one
* transfer may be queued; Neither these methods nor the transfer() method
* can be called again until the control transfer functions returns.
*
* These are blocking methods; these functions will not return until the
* control transfer has completed.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* ep0 - The control endpoint to send/receive the control request.
* req - Describes the request to be sent. This request must lie in
* memory created by DRVR_ALLOC.
* buffer - A buffer used for sending the request and for returning any
* responses. This buffer must be large enough to hold the length value
* in the request description. buffer must have been allocated using
* DRVR_ALLOC.
*
* NOTE: On an IN transaction, req and buffer may refer to the same
* allocated memory.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* - Called from a single thread so no mutual exclusion is required.
* - Never called from an interrupt handler.
*
****************************************************************************/
static int sam_ctrlin(struct usbhost_driver_s *drvr, usbhost_ep_t ep0,
const struct usb_ctrlreq_s *req,
uint8_t *buffer)
{
struct sam_rhport_s *rhport = (struct sam_rhport_s *)drvr;
struct sam_eplist_s *eplist = (struct sam_eplist_s *)ep0;
uint16_t len;
int ret;
DEBUGASSERT(rhport != NULL && eplist != NULL && req != NULL);
#ifdef CONFIG_USBHOST_TRACE
usbhost_vtrace2(OHCI_VTRACE2_CTRLIN, RHPORT(rhport), req->req);
#else
uinfo("RHPort%d type: %02x req: %02x value: %02x%02x index: %02x%02x "
"len: %02x%02x\n",
RHPORT(rhport), req->type, req->req, req->value[1],
req->value[0], req->index[1], req->index[0], req->len[1],
req->len[0]);
#endif
/* We must have exclusive access to EP0 and the control list */
ret = sam_takesem(&g_ohci.exclsem);
if (ret < 0)
{
return ret;
}
len = sam_getle16(req->len);
ret = sam_ctrltd(rhport, eplist, GTD_STATUS_DP_SETUP, (uint8_t *)req,
USB_SIZEOF_CTRLREQ);
if (ret == OK)
{
if (len)
{
ret = sam_ctrltd(rhport, eplist, GTD_STATUS_DP_IN, buffer, len);
}
if (ret == OK)
{
ret = sam_ctrltd(rhport, eplist, GTD_STATUS_DP_OUT, NULL, 0);
}
}
/* On an IN transaction, we need to invalidate the buffer contents to force
* it to be reloaded from RAM after the DMA.
*/
sam_givesem(&g_ohci.exclsem);
up_invalidate_dcache((uintptr_t)buffer, (uintptr_t)buffer + len);
return ret;
}
static int sam_ctrlout(struct usbhost_driver_s *drvr, usbhost_ep_t ep0,
const struct usb_ctrlreq_s *req,
const uint8_t *buffer)
{
struct sam_rhport_s *rhport = (struct sam_rhport_s *)drvr;
struct sam_eplist_s *eplist = (struct sam_eplist_s *)ep0;
uint16_t len;
int ret;
DEBUGASSERT(rhport != NULL && eplist != NULL && req != NULL);
#ifdef CONFIG_USBHOST_TRACE
usbhost_vtrace2(OHCI_VTRACE2_CTRLOUT, RHPORT(rhport), req->req);
#else
uinfo("RHPort%d type: %02x req: %02x value: %02x%02x index: %02x%02x "
"len: %02x%02x\n",
RHPORT(rhport), req->type, req->req, req->value[1],
req->value[0], req->index[1], req->index[0], req->len[1],
req->len[0]);
#endif
/* We must have exclusive access to EP0 and the control list */
ret = sam_takesem(&g_ohci.exclsem);
if (ret < 0)
{
return ret;
}
len = sam_getle16(req->len);
ret = sam_ctrltd(rhport, eplist, GTD_STATUS_DP_SETUP, (uint8_t *)req,
USB_SIZEOF_CTRLREQ);
if (ret == OK)
{
if (len)
{
ret = sam_ctrltd(rhport, eplist, GTD_STATUS_DP_OUT,
(uint8_t *)buffer, len);
}
if (ret == OK)
{
ret = sam_ctrltd(rhport, eplist, GTD_STATUS_DP_IN, NULL, 0);
}
}
sam_givesem(&g_ohci.exclsem);
return ret;
}
/****************************************************************************
* Name: sam_transfer_common
*
* Description:
* Initiate a request to handle a transfer descriptor. This method will
* enqueue the transfer request and return immediately
*
* Input Parameters:
* rhport - Internal driver root hub port state structure.
* eplist - The internal representation of the device endpoint on which
* to perform the transfer.
* buffer - A buffer containing the data to be sent (OUT endpoint) or
* received (IN endpoint). buffer must have been allocated using
* DRVR_ALLOC
* buflen - The length of the data to be sent or received.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* - Called from a single thread so no mutual exclusion is required.
* - Never called from an interrupt handler.
*
****************************************************************************/
static int sam_transfer_common(struct sam_rhport_s *rhport,
struct sam_eplist_s *eplist,
uint8_t *buffer, size_t buflen)
{
struct sam_ed_s *ed;
uint32_t dirpid;
uint32_t regval;
bool in;
int ret;
ed = eplist->ed;
in = (ed->hw.ctrl & ED_CONTROL_D_MASK) == ED_CONTROL_D_IN;
#ifdef CONFIG_USBHOST_TRACE
usbhost_vtrace2(OHCI_VTRACE2_TRANSFER,
(ed->hw.ctrl & ED_CONTROL_EN_MASK) >> ED_CONTROL_EN_SHIFT,
(uint16_t)buflen);
#else
uinfo("EP%" PRId32 " %s toggle: %d maxpacket: %" PRId32 " buflen: %zd\n",
(ed->hw.ctrl & ED_CONTROL_EN_MASK) >> ED_CONTROL_EN_SHIFT,
in ? "IN" : "OUT",
(ed->hw.headp & ED_HEADP_C) != 0 ? 1 : 0,
(ed->hw.ctrl & ED_CONTROL_MPS_MASK) >> ED_CONTROL_MPS_SHIFT,
buflen);
#endif
/* Get the direction of the endpoint */
if (in)
{
dirpid = GTD_STATUS_DP_IN;
}
else
{
dirpid = GTD_STATUS_DP_OUT;
}
/* Then enqueue the transfer */
ed->tdstatus = TD_CC_NOERROR;
ret = sam_enqueuetd(rhport, eplist, ed, dirpid, GTD_STATUS_T_TOGGLE,
buffer, buflen);
if (ret == OK)
{
/* BulkListFilled. This bit is used to indicate whether there are any
* TDs on the Bulk list.
*/
if (ed->xfrtype == USB_EP_ATTR_XFER_BULK)
{
regval = sam_getreg(SAM_USBHOST_CMDST);
regval |= OHCI_CMDST_BLF;
sam_putreg(regval, SAM_USBHOST_CMDST);
}
}
return ret;
}
/****************************************************************************
* Name: sam_transfer
*
* Description:
* Process a request to handle a transfer descriptor. This method will
* enqueue the transfer request, blocking until the transfer completes.
* Only one transfer may be queued; Neither this method nor the ctrlin or
* ctrlout methods can be called again until this function returns.
*
* This is a blocking method; this functions will not return until the
* transfer has completed.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* ep - The IN or OUT endpoint descriptor for the device endpoint on
* which to perform the transfer.
* buffer - A buffer containing the data to be sent (OUT endpoint) or
* received (IN endpoint). buffer must have been allocated using
* DRVR_ALLOC
* buflen - The length of the data to be sent or received.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure:
*
* EAGAIN - If devices NAKs the transfer (or NYET or other error where
* it may be appropriate to restart the entire transaction).
* EPERM - If the endpoint stalls
* EIO - On a TX or data toggle error
* EPIPE - Overrun errors
*
* Assumptions:
* - Called from a single thread so no mutual exclusion is required.
* - Never called from an interrupt handler.
*
****************************************************************************/
static ssize_t sam_transfer(struct usbhost_driver_s *drvr, usbhost_ep_t ep,
uint8_t *buffer, size_t buflen)
{
struct sam_rhport_s *rhport = (struct sam_rhport_s *)drvr;
struct sam_eplist_s *eplist = (struct sam_eplist_s *)ep;
struct sam_ed_s *ed;
ssize_t nbytes;
bool in;
int ret;
int ret2;
DEBUGASSERT(rhport && eplist && eplist->ed && eplist->tail &&
buffer && buflen > 0);
ed = eplist->ed;
in = (ed->hw.ctrl & ED_CONTROL_D_MASK) == ED_CONTROL_D_IN;
/* We must have exclusive access to the endpoint, the TD pool, the I/O
* buffer pool, the bulk and interrupt lists, and the HCCA interrupt
* table.
*/
ret = sam_takesem(&g_ohci.exclsem);
if (ret < 0)
{
return (ssize_t)ret;
}
/* Set the request for the Writeback Done Head event well BEFORE enabling
* the transfer.
*/
ret = sam_wdhwait(rhport, ed, buffer, buflen);
if (ret != OK)
{
usbhost_trace1(OHCI_TRACE1_DEVDISCONN, RHPORT(rhport));
goto errout;
}
/* Set up the transfer */
ret = sam_transfer_common(rhport, eplist, buffer, buflen);
if (ret < 0)
{
uerr("ERROR: sam_transfer_common failed: %d\n", ret);
goto errout;
}
/* Release the OHCI semaphore while we wait. Other threads need the
* opportunity to access the OHCI resources while we wait.
*
* REVISIT: Is this safe? NO. This is a bug and needs rethinking.
* We need to lock all of the port-resources (not OHCI common) until
* the transfer is complete. But we can't use the common OHCI exclsem
* or we will deadlock while waiting (because the working thread that
* wakes this thread up needs the exclsem).
*/
#warning REVISIT
sam_givesem(&g_ohci.exclsem);
/* Wait for the Writeback Done Head interrupt Loop to handle any false
* alarm semaphore counts.
*/
while (eplist->wdhwait && ret >= 0)
{
ret = sam_takesem(&eplist->wdhsem);
}
/* Re-acquire the OCHI semaphore. The caller expects to be holding
* this upon return.
*/
ret2 = sam_takesem(&g_ohci.exclsem);
if (ret2 < 0)
{
ret = ret2;
}
if (ret < 0)
{
return ret;
}
/* Invalidate the D cache to force the ED to be reloaded from RAM */
up_invalidate_dcache((uintptr_t)ed,
(uintptr_t)ed + sizeof(struct ohci_ed_s));
/* Check the TD completion status bits */
if (ed->tdstatus == TD_CC_NOERROR)
{
/* On an IN transaction, we also need to invalidate the buffer
* contents to force it to be reloaded from RAM.
*/
if (in)
{
up_invalidate_dcache((uintptr_t)buffer,
(uintptr_t)buffer + buflen);
}
nbytes = eplist->xfrd;
DEBUGASSERT(nbytes >= 0 && nbytes <= buflen);
sam_givesem(&g_ohci.exclsem);
return nbytes;
}
/* A transfer error occurred */
usbhost_trace2(OHCI_TRACE2_BADTDSTATUS, RHPORT(rhport), ed->tdstatus);
switch (ed->tdstatus)
{
case TD_CC_STALL:
ret = -EPERM;
break;
case TD_CC_USER:
ret = -ESHUTDOWN;
break;
default:
ret = -EIO;
break;
}
errout:
/* Make sure that there is no outstanding request on this endpoint */
eplist->wdhwait = false;
sam_givesem(&g_ohci.exclsem);
return (ssize_t)ret;
}
/****************************************************************************
* Name: sam_asynch_completion
*
* Description:
* This function is called at the interrupt level when an asynchronous
* transfer completes. It performs the pending callback.
*
* Input Parameters:
* rhport - Internal driver root hub port state structure.
* eplist - The internal representation of the device endpoint on which
* to perform the transfer.
*
* Returned Value:
* None
*
* Assumptions:
* - Called from the interrupt level
*
****************************************************************************/
#ifdef CONFIG_USBHOST_ASYNCH
static void sam_asynch_completion(struct sam_eplist_s *eplist)
{
struct sam_ed_s *ed;
usbhost_asynch_t callback;
void *arg;
ssize_t nbytes;
DEBUGASSERT(eplist->ed && eplist->tail && eplist->callback != NULL &&
eplist->buffer != NULL && eplist->buflen > 0);
ed = eplist->ed;
/* Invalidate the D cache to force the ED to be reloaded from RAM */
up_invalidate_dcache((uintptr_t)ed,
(uintptr_t)ed + sizeof(struct ohci_ed_s));
/* Check the TD completion status bits */
if (ed->tdstatus == TD_CC_NOERROR)
{
/* On an IN transaction, we also need to invalidate the buffer
* contents to force it to be reloaded from RAM.
*/
if ((ed->hw.ctrl & ED_CONTROL_D_MASK) == ED_CONTROL_D_IN)
{
uintptr_t buffaddr = (uintptr_t)eplist->buffer;
up_invalidate_dcache(buffaddr, buffaddr + eplist->buflen);
}
nbytes = eplist->xfrd;
DEBUGASSERT(nbytes >= 0 && nbytes <= eplist->buflen);
}
else
{
/* Map the bad completion status to something that a class driver
* might understand.
*/
usbhost_trace1(OHCI_TRACE1_BADTDSTATUS, ed->tdstatus);
switch (ed->tdstatus)
{
case TD_CC_STALL:
nbytes = -EPERM;
break;
case TD_CC_USER:
nbytes = -ESHUTDOWN;
break;
default:
nbytes = -EIO;
break;
}
}
/* Extract the callback information before freeing the buffer */
callback = eplist->callback;
arg = eplist->arg;
/* Clear any pending transfer indicators */
eplist->wdhwait = false;
eplist->callback = NULL;
eplist->arg = NULL;
eplist->buffer = NULL;
eplist->buflen = 0;
/* Then perform the callback */
callback(arg, nbytes);
}
#endif
/****************************************************************************
* Name: sam_asynch
*
* Description:
* Process a request to handle a transfer descriptor. This method will
* enqueue the transfer request and return immediately. When the transfer
* completes, the callback will be invoked with the provided transfer.
* This method is useful for receiving interrupt transfers which may come
* infrequently.
*
* Only one transfer may be queued; Neither this method nor the ctrlin or
* ctrlout methods can be called again until the transfer completes.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* ep - The IN or OUT endpoint descriptor for the device endpoint on
* which to perform the transfer.
* buffer - A buffer containing the data to be sent (OUT endpoint) or
* received (IN endpoint). buffer must have been allocated using
* DRVR_ALLOC
* buflen - The length of the data to be sent or received.
* callback - This function will be called when the transfer completes.
* arg - The arbitrary parameter that will be passed to the callback
* function when the transfer completes.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* - Called from a single thread so no mutual exclusion is required.
* - Never called from an interrupt handler.
*
****************************************************************************/
#ifdef CONFIG_USBHOST_ASYNCH
static int sam_asynch(struct usbhost_driver_s *drvr, usbhost_ep_t ep,
uint8_t *buffer, size_t buflen,
usbhost_asynch_t callback, void *arg)
{
struct sam_rhport_s *rhport = (struct sam_rhport_s *)drvr;
struct sam_eplist_s *eplist = (struct sam_eplist_s *)ep;
struct sam_ed_s *ed;
int ret;
DEBUGASSERT(rhport && eplist && eplist->ed && eplist->tail &&
buffer && buflen > 0 && buflen <= UINT16_MAX);
ed = eplist->ed;
/* We must have exclusive access to the endpoint, the TD pool, the I/O
* buffer pool, the bulk and interrupt lists, and the HCCA interrupt
* table.
*/
ret = sam_takesem(&g_ohci.exclsem);
if (ret < 0)
{
return ret;
}
/* Set the request for the Writeback Done Head callback well BEFORE
* enabling the transfer.
*/
ret = sam_wdhasynch(rhport, ed, callback, arg, buffer, buflen);
if (ret != OK)
{
usbhost_trace1(OHCI_TRACE1_DEVDISCONN, RHPORT(rhport));
goto errout;
}
/* Set up the transfer */
ret = sam_transfer_common(rhport, eplist, buffer, buflen);
if (ret < 0)
{
uerr("ERROR: sam_transfer_common failed: %d\n", ret);
goto errout;
}
/* Then just return. The callback will be performed asynchronously
* when the transfer completes.
*/
sam_givesem(&g_ohci.exclsem);
return OK;
errout:
/* Make sure that there is no outstanding request on this endpoint */
eplist->callback = NULL;
eplist->arg = NULL;
sam_givesem(&g_ohci.exclsem);
return ret;
}
#endif /* CONFIG_USBHOST_ASYNCH */
/****************************************************************************
* Name: sam_cancel
*
* Description:
* Cancel a pending transfer on an endpoint. Cancelled synchronous or
* asynchronous transfer will complete normally with the error -ESHUTDOWN.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* ep - The IN or OUT endpoint descriptor for the device endpoint on which
* an asynchronous transfer should be transferred.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
****************************************************************************/
static int sam_cancel(struct usbhost_driver_s *drvr, usbhost_ep_t ep)
{
struct sam_eplist_s *eplist = (struct sam_eplist_s *)ep;
struct sam_ed_s *ed;
struct sam_gtd_s *td;
struct sam_gtd_s *next;
irqstate_t flags;
uintptr_t paddr;
uint32_t ctrl;
DEBUGASSERT(eplist && eplist->ed && eplist->tail);
ed = eplist->ed;
/* These first steps must be atomic as possible */
flags = enter_critical_section();
/* It might be possible for no transfer to be in progress (callback == NULL
* and wdhwait == false)
*/
#ifdef CONFIG_USBHOST_ASYNCH
if (eplist->callback || eplist->wdhwait)
#else
if (eplist->wdhwait)
#endif
{
/* Control endpoints should not come through this path and
* isochronous endpoints are not yet implemented. So we only have
* to distinguish bulk and interrupt endpoints.
*/
if (ed->xfrtype == USB_EP_ATTR_XFER_BULK)
{
/* Disable bulk list processing while we modify the list */
ctrl = sam_getreg(SAM_USBHOST_CTRL);
sam_putreg(ctrl & ~OHCI_CTRL_BLE, SAM_USBHOST_CTRL);
/* Remove the TDs attached to the ED, keeping the ED in the list */
paddr = ed->hw.headp & ED_HEADP_ADDR_MASK;
td = (struct sam_gtd_s *)sam_virtramaddr(paddr);
paddr = sam_physramaddr((uintptr_t)eplist->tail);
ed->hw.headp = paddr;
up_clean_dcache((uintptr_t)ed,
(uintptr_t)ed + sizeof(struct ohci_ed_s));
/* Re-enable bulk list processing, if it was enabled before */
sam_putreg(0, SAM_USBHOST_BULKED);
sam_putreg(ctrl, SAM_USBHOST_CTRL);
}
else
{
/* Remove the TDs attached to the ED, keeping the Ed in the list */
paddr = ed->hw.headp & ED_HEADP_ADDR_MASK;
td = (struct sam_gtd_s *)sam_virtramaddr(paddr);
paddr = sam_physramaddr((uintptr_t)eplist->tail);
ed->hw.headp = paddr;
up_clean_dcache((uintptr_t)ed,
(uintptr_t)ed + sizeof(struct ohci_ed_s));
}
/* Free all transfer descriptors that were connected to the ED. In
* some race conditions with the hardware, this might be none.
*/
while (td != (struct sam_gtd_s *)eplist->tail)
{
paddr = (uintptr_t)td->hw.nexttd;
next = (struct sam_gtd_s *)sam_virtramaddr(paddr);
sam_tdfree(td);
td = next;
}
ed->tdstatus = TD_CC_USER;
/* If there is a thread waiting for the transfer to complete, then
* wake up the thread.
*/
if (eplist->wdhwait)
{
#ifdef CONFIG_USBHOST_ASYNCH
/* Yes.. there should not also be a callback scheduled */
DEBUGASSERT(eplist->callback == NULL);
#endif
/* Wake up the waiting thread */
sam_givesem(&eplist->wdhsem);
eplist->wdhwait = false;
}
#ifdef CONFIG_USBHOST_ASYNCH
else
{
/* Otherwise, perform the callback */
sam_asynch_completion(eplist);
}
#endif
}
/* Reset any pending activity indications */
eplist->wdhwait = false;
#ifdef CONFIG_USBHOST_ASYNCH
eplist->callback = NULL;
eplist->arg = NULL;
#endif
eplist->buffer = NULL;
eplist->buflen = 0;
leave_critical_section(flags);
return OK;
}
/****************************************************************************
* Name: sam_connect
*
* Description:
* New connections may be detected by an attached hub. This method is the
* mechanism that is used by the hub class to introduce a new connection
* and port description to the system.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* hport - The descriptor of the hub port that detected the connection
* related event
* connected - True: device connected; false: device disconnected
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
****************************************************************************/
#ifdef CONFIG_USBHOST_HUB
static int sam_connect(struct usbhost_driver_s *drvr,
struct usbhost_hubport_s *hport,
bool connected)
{
irqstate_t flags;
/* Set the connected/disconnected flag */
hport->connected = connected;
uinfo("Hub port %d connected: %s\n",
hport->port, connected ? "YES" : "NO");
/* Report the connection event */
flags = enter_critical_section();
DEBUGASSERT(g_ohci.hport == NULL); /* REVISIT */
g_ohci.hport = hport;
if (g_ohci.pscwait)
{
g_ohci.pscwait = false;
sam_givesem(&g_ohci.pscsem);
}
leave_critical_section(flags);
return OK;
}
#endif
/****************************************************************************
* Name: sam_disconnect
*
* Description:
* Called by the class when an error occurs and driver has been
* disconnected. The USB host driver should discard the handle to the
* class instance (it is stale) and not attempt any further interaction
* with the class driver instance (until a new instance is received from
* the create() method). The driver should not called the class'
* disconnected() method.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* hport - The port from which the device is being disconnected. Might be
* a port on a hub.
*
* Returned Value:
* None
*
* Assumptions:
* - Only a single class bound to a single device is supported.
* - Never called from an interrupt handler.
*
****************************************************************************/
static void sam_disconnect(struct usbhost_driver_s *drvr,
struct usbhost_hubport_s *hport)
{
struct sam_rhport_s *rhport = (struct sam_rhport_s *)drvr;
struct sam_eplist_s *ep0;
DEBUGASSERT(rhport != NULL && hport != NULL && hport->ep0);
ep0 = (struct sam_eplist_s *)hport->ep0;
/* Remove the disconnected port from the control list */
sam_ep0dequeue(ep0);
/* Did we just dequeue EP0 from a hoot hub port? */
if (ROOTHUB(hport))
{
rhport->ep0init = false;
}
/* Unbind the class from the port */
hport->ep0 = NULL;
hport->devclass = NULL;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: sam_ohci_initialize
*
* Description:
* Initialize USB OHCI host controller hardware.
*
* Input Parameters:
* controller -- If the device supports more than one OHCI interface, then
* this identifies which controller is being initialized. Normally, this
* is just zero.
*
* Returned Value:
* And instance of the USB host interface. The controlling task should
* use this interface to (1) call the wait() method to wait for a device
* to be connected, and (2) call the enumerate() method to bind the device
* to a class driver.
*
* Assumptions:
* - This function should called in the initialization sequence in order
* to initialize the USB device functionality.
* - Class drivers should be initialized prior to calling this function.
* Otherwise, there is a race condition if the device is already connected.
*
****************************************************************************/
struct usbhost_connection_s *sam_ohci_initialize(int controller)
{
struct usbhost_hubport_s *hport;
uintptr_t physaddr;
uint32_t regval;
uint8_t *buffer;
irqstate_t flags;
int i;
/* One time sanity checks */
DEBUGASSERT(controller == 0);
DEBUGASSERT(sizeof(struct sam_ed_s) == SIZEOF_SAM_ED_S);
DEBUGASSERT(sizeof(struct sam_gtd_s) == SIZEOF_SAM_TD_S);
/* Initialize the state data structure */
nxsem_init(&g_ohci.pscsem, 0, 0);
nxsem_init(&g_ohci.exclsem, 0, 1);
/* The pscsem semaphore is used for signaling and, hence, should not have
* priority inheritance enabled.
*/
nxsem_set_protocol(&g_ohci.pscsem, SEM_PRIO_NONE);
#ifndef CONFIG_USBHOST_INT_DISABLE
g_ohci.ininterval = MAX_PERINTERVAL;
g_ohci.outinterval = MAX_PERINTERVAL;
#endif
/* For OHCI Full-speed operations only, the user has to perform the
* following:
*
* 1) Enable UHP peripheral clock, bit (1 << AT91C_ID_UHPHS) in PMC_PCER
* register.
* 2) Select PLLACK as Input clock of OHCI part, USBS bit in PMC_USB
* register.
* 3) Program the OHCI clocks (UHP48M and UHP12M) with USBDIV field in
* PMC_USB register. USBDIV value is calculated regarding the PLLACK
* value and USB Full-speed accuracy.
* 4) Enable the OHCI clocks, UHP bit in PMC_SCER register.
*
* Steps 1 and 4 are done here. 2 and 3 are already performed by
* sam_clockconfig().
*/
/* Enable UHP peripheral clocking */
flags = enter_critical_section();
sam_uhphs_enableclk();
/* Enable OHCI clocks */
regval = getreg32(SAM_PMC_SCER);
regval |= PMC_UHP;
putreg32(regval, SAM_PMC_SCER);
/* "One transceiver is shared with the USB High Speed Device (port A). The
* selection between Host Port A and USB Device is controlled by the UDPHS
* enable bit (EN_UDPHS) located in the UDPHS_CTRL control register."
*/
#ifndef CONFIG_SAMA5_EHCI
/* Make all three ports usable for OHCI unless the high speed device is
* enabled; then let the device manage port zero. Zero is the reset
* value for all ports; one makes the corresponding port available to OHCI.
*/
regval = getreg32(SAM_SFR_OHCIICR);
#ifdef CONFIG_SAMA5_UHPHS_RHPORT1
regval |= SFR_OHCIICR_RES0;
#endif
#ifdef CONFIG_SAMA5_UHPHS_RHPORT2
regval |= SFR_OHCIICR_RES1;
#endif
#ifdef CONFIG_SAMA5_UHPHS_RHPORT3
regval |= SFR_OHCIICR_RES2;
#endif
putreg32(regval, SAM_SFR_OHCIICR);
#endif
leave_critical_section(flags);
/* Note that no pin configuration is required. All USB HS pins have
* dedicated function
*/
usbhost_vtrace1(OHCI_VTRACE1_INITIALIZING, 0);
/* Initialize all the HCCA to 0 */
memset((void *)&g_hcca, 0, sizeof(struct ohci_hcca_s));
up_clean_dcache((uint32_t)&g_hcca,
(uint32_t)&g_hcca + sizeof(struct ohci_hcca_s));
/* Initialize user-configurable EDs */
for (i = 0; i < SAMA5_OHCI_NEDS; i++)
{
/* Put the ED in a free list */
sam_edfree(&g_edalloc[i]);
}
/* Initialize user-configurable TDs */
for (i = 0; i < SAMA5_OHCI_NTDS; i++)
{
/* Put the TD in a free list */
sam_tdfree(&g_tdalloc[i]);
}
/* Initialize user-configurable request/descriptor transfer buffers */
buffer = g_bufalloc;
for (i = 0; i < CONFIG_SAMA5_OHCI_TDBUFFERS; i++)
{
/* Put the TD buffer in a free list */
sam_tbfree(buffer);
buffer += CONFIG_SAMA5_OHCI_TDBUFSIZE;
}
/* Initialize the root hub port structures */
for (i = 0; i < SAM_OHCI_NRHPORT; i++)
{
struct sam_rhport_s *rhport = &g_ohci.rhport[i];
/* Initialize the device operations */
rhport->drvr.ep0configure = sam_ep0configure;
rhport->drvr.epalloc = sam_epalloc;
rhport->drvr.epfree = sam_epfree;
rhport->drvr.alloc = sam_alloc;
rhport->drvr.free = sam_free;
rhport->drvr.ioalloc = sam_ioalloc;
rhport->drvr.iofree = sam_iofree;
rhport->drvr.ctrlin = sam_ctrlin;
rhport->drvr.ctrlout = sam_ctrlout;
rhport->drvr.transfer = sam_transfer;
#ifdef CONFIG_USBHOST_ASYNCH
rhport->drvr.asynch = sam_asynch;
#endif
rhport->drvr.cancel = sam_cancel;
#ifdef CONFIG_USBHOST_HUB
rhport->drvr.connect = sam_connect;
#endif
rhport->drvr.disconnect = sam_disconnect;
/* Initialize the public port representation */
hport = &rhport->hport.hport;
hport->drvr = &rhport->drvr;
#ifdef CONFIG_USBHOST_HUB
hport->parent = NULL;
#endif
hport->ep0 = &rhport->ep0;
hport->port = i;
hport->speed = USB_SPEED_FULL;
hport->funcaddr = 0;
/* Initialize function address generation logic */
usbhost_devaddr_initialize(&rhport->hport);
}
/* Wait 50MS then perform hardware reset */
up_mdelay(50);
sam_putreg(0, SAM_USBHOST_CTRL); /* Hardware reset */
sam_putreg(0, SAM_USBHOST_CTRLHEADED); /* Initialize control list head to Zero */
sam_putreg(0, SAM_USBHOST_BULKHEADED); /* Initialize bulk list head to Zero */
/* Software reset */
sam_putreg(OHCI_CMDST_HCR, SAM_USBHOST_CMDST);
/* Write Fm interval (FI), largest data packet counter (FSMPS), and
* periodic start.
*/
sam_putreg(DEFAULT_FMINTERVAL, SAM_USBHOST_FMINT);
sam_putreg(DEFAULT_PERSTART, SAM_USBHOST_PERSTART);
/* Put HC in operational state */
regval = sam_getreg(SAM_USBHOST_CTRL);
regval &= ~OHCI_CTRL_HCFS_MASK;
regval |= OHCI_CTRL_HCFS_OPER;
sam_putreg(regval, SAM_USBHOST_CTRL);
/* Set global power in HcRhStatus */
sam_putreg(OHCI_RHSTATUS_SGP, SAM_USBHOST_RHSTATUS);
/* Set HCCA base address */
physaddr = sam_physramaddr((uintptr_t)&g_hcca);
sam_putreg(physaddr, SAM_USBHOST_HCCA);
/* Clear pending interrupts */
regval = sam_getreg(SAM_USBHOST_INTST);
sam_putreg(regval, SAM_USBHOST_INTST);
/* Enable OHCI interrupts */
sam_putreg((SAM_ALL_INTS | OHCI_INT_MIE), SAM_USBHOST_INTEN);
#ifndef CONFIG_SAMA5_EHCI
/* Attach USB host controller interrupt handler. If ECHI is enabled,
* then it will manage the shared interrupt.
*/
if (irq_attach(SAM_IRQ_UHPHS, sam_ohci_tophalf, NULL) != 0)
{
usbhost_trace1(OHCI_TRACE1_IRQATTACH, SAM_IRQ_UHPHS);
return NULL;
}
/* Drive Vbus +5V (the smoke test).
*
* REVISIT:
* - Should be done elsewhere in OTG mode.
* - Can we postpone enabling VBUS to save power? I think it can be
* done in sam_enumerate() and can probably be disabled when the
* port is disconnected.
*/
#ifdef CONFIG_SAMA5_UHPHS_RHPORT1
sam_usbhost_vbusdrive(SAM_RHPORT1, true);
#endif
#ifdef CONFIG_SAMA5_UHPHS_RHPORT2
sam_usbhost_vbusdrive(SAM_RHPORT2, true);
#endif
#ifdef CONFIG_SAMA5_UHPHS_RHPORT3
sam_usbhost_vbusdrive(SAM_RHPORT3, true);
#endif
up_mdelay(50);
/* If there is a USB device in the slot at power up, then we will not
* get the status change interrupt to signal us that the device is
* connected. We need to set the initial connected state accordingly.
*/
for (i = 0; i < SAM_OHCI_NRHPORT; i++)
{
regval = sam_getreg(SAM_USBHOST_RHPORTST(i));
g_ohci.rhport[i].connected = ((regval & OHCI_RHPORTST_CCS) != 0);
usbhost_vtrace2(OHCI_VTRACE2_INITCONNECTED,
i + 1, g_ohci.rhport[i].connected);
}
/* Enable interrupts at the interrupt controller. If ECHI is enabled,
* then it will manage the shared interrupt.
*/
up_enable_irq(SAM_IRQ_UHPHS); /* enable USB interrupt */
#endif /* CONFIG_SAMA5_EHCI */
usbhost_vtrace1(OHCI_VTRACE1_INITIALIZED, 0);
/* Initialize and return the connection interface */
g_ohciconn.wait = sam_wait;
g_ohciconn.enumerate = sam_enumerate;
return &g_ohciconn;
}
/****************************************************************************
* Name: sam_ohci_tophalf
*
* Description:
* OHCI "Top Half" interrupt handler. If both EHCI and OHCI are enabled,
* then EHCI will manage the common UHPHS interrupt and will forward the
* interrupt event to this function.
*
****************************************************************************/
int sam_ohci_tophalf(int irq, void *context, FAR void *arg)
{
uint32_t intst;
uint32_t inten;
uint32_t pending;
/* Read Interrupt Status and mask out interrupts that are not enabled. */
intst = sam_getreg(SAM_USBHOST_INTST);
inten = sam_getreg(SAM_USBHOST_INTEN);
usbhost_vtrace1(OHCI_VTRACE1_INTRPENDING, intst & inten);
#ifdef CONFIG_SAMA5_EHCI
/* Check the Master Interrupt Enable bit (MIE). It this function is
* called from the common UHPHS interrupt handler, there might be pending
* interrupts but with the overall interstate disabled. This could never
* happen if only OHCI were enabled because we would never get here.
*/
if ((inten & OHCI_INT_MIE) != 0)
#endif
{
/* Mask out the interrupts that are not enabled */
pending = intst & inten;
if (pending != 0)
{
/* Schedule interrupt handling work for the high priority worker
* thread so that we are not pressed for time and so that we can
* interrupt with other USB threads gracefully.
*
* The worker should be available now because we implement a
* handshake by controlling the OHCI interrupts.
*/
DEBUGASSERT(work_available(&g_ohci.work));
DEBUGVERIFY(work_queue(HPWORK, &g_ohci.work, sam_ohci_bottomhalf,
(void *)pending, 0));
/* Disable further OHCI interrupts so that we do not overrun the
* work queue.
*/
sam_putreg(OHCI_INT_MIE, SAM_USBHOST_INTDIS);
/* Clear all pending status bits by writing the value of the
* pending interrupt bits back to the status register.
*/
sam_putreg(intst, SAM_USBHOST_INTST);
}
}
return OK;
}
#endif /* CONFIG_SAMA5_OHCI */