nuttx/drivers/mtd/sst25xx.c
Gregory Nutt 936df1bcb5 Adds new OS internal functions nxsig_sleep() and nxsig_usleep. These differ from the standard sleep() and usleep() in that (1) they don't cause cancellation points, and (2) don't set the errno variable (if applicable). All calls to sleep() and usleep() changed to calls to nxsig_sleep() and nxsig_usleep().
Squashed commit of the following:

    Change all calls to usleep() in the OS proper to calls to nxsig_usleep()

    sched/signal:  Add a new OS internal function nxsig_usleep() that is functionally equivalent to usleep() but does not cause a cancellaption point and does not modify the errno variable.

    sched/signal:  Add a new OS internal function nxsig_sleep() that is functionally equivalent to sleep() but does not cause a cancellaption point.
2017-10-06 10:15:01 -06:00

990 lines
32 KiB
C

/************************************************************************************
* drivers/mtd/sst25xx.c
* Driver for SPI-based SST25VF parts 64MBit and larger.
*
* For smaller SST25 parts, use the sst25.c driver instead as support
* a different program mechanism (byte or word writing vs page writing
* supported in this driver).
*
* Copyright (C) 2009-2011, 2013 Gregory Nutt. All rights reserved.
* Author: Ken Pettit <pettitkd@gmail.com>
*
* Copied from / based on m25px.c and sst25.c drivers written by
* Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/spi/spi.h>
#include <nuttx/mtd/mtd.h>
/************************************************************************************
* Pre-processor Definitions
************************************************************************************/
/* Configuration ********************************************************************/
/* Per the data sheet, SST25 parts can be driven with either SPI mode 0 (CPOL=0 and
* CPHA=0) or mode 3 (CPOL=1 and CPHA=1). So you may need to specify
* CONFIG_SST25XX_SPIMODE to select the best mode for your device. If
* CONFIG_SST25XX_SPIMODE is not defined, mode 0 will be used.
*/
#ifndef CONFIG_SST25XX_SPIMODE
# define CONFIG_SST25XX_SPIMODE SPIDEV_MODE0
#endif
/* SPI Frequency. May be up to 25MHz. */
#ifndef CONFIG_SST25XX_SPIFREQUENCY
# define CONFIG_SST25XX_SPIFREQUENCY 20000000
#endif
/* Various manufacturers may have produced the parts. 0xBF is the manufacturer ID
* for the SST serial FLASH.
*/
#ifndef CONFIG_SST25XX_MANUFACTURER
# define CONFIG_SST25XX_MANUFACTURER 0xBF
#endif
#ifndef CONFIG_SST25XX_MEMORY_TYPE
# define CONFIG_SST25XX_MEMORY_TYPE 0x25
#endif
/* SST25 Registers *******************************************************************/
/* Indentification register values */
#define SST25_MANUFACTURER CONFIG_SST25XX_MANUFACTURER
#define SST25_MEMORY_TYPE CONFIG_SST25XX_MEMORY_TYPE
#define SST25_SST25064_CAPACITY 0x4b /* 64 M-bit */
/* SST25064 capacity is 8,388,608 bytes:
* (2,0548 sectors) * (4,096 bytes per sector)
* (32,768 pages) * (256 bytes per page)
*/
#define SST25_SST25064_SECTOR_SHIFT 12 /* Sector size 1 << 15 = 65,536 */
#define SST25_SST25064_NSECTORS 2048
#define SST25_SST25064_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define SST25_SST25064_NPAGES 32768
/* Instructions */
/* Command Value N Description Addr Dummy Data */
#define SST25_WREN 0x06 /* 1 Write Enable 0 0 0 */
#define SST25_WRDI 0x04 /* 1 Write Disable 0 0 0 */
#define SST25_RDID 0x9f /* 1 Read Identification 0 0 1-3 */
#define SST25_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */
#define SST25_EWSR 0x50 /* 1 Write enable status 0 0 0 */
#define SST25_WRSR 0x01 /* 1 Write Status Register 0 0 1 */
#define SST25_READ 0x03 /* 1 Read Data Bytes 3 0 >=1 */
#define SST25_FAST_READ 0x0b /* 1 Higher speed read 3 1 >=1 */
#define SST25_PP 0x02 /* 1 Page Program 3 0 1-256 */
#define SST25_SE 0x20 /* 1 Sector Erase 3 0 0 */
#define SST25_BE32 0x52 /* 2 32K Block Erase 3 0 0 */
#define SST25_BE64 0xD8 /* 2 64K Block Erase 3 0 0 */
#define SST25_BE 0xc7 /* 1 Bulk Erase 0 0 0 */
#define SST25_RES 0xab /* 1 Read Electronic Signature 0 3 >=1 */
/* NOTE 1: All parts.
* NOTE 2: In SST25064 terminology, 0x52 and 0xd8 are block erase and 0x20
* is a sector erase. Block erase provides a faster way to erase
* multiple 4K sectors at once.
*/
/* Status register bit definitions */
#define SST25_SR_WIP (1 << 0) /* Bit 0: Write in progress bit */
#define SST25_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */
#define SST25_SR_BP_SHIFT (2) /* Bits 2-5: Block protect bits */
#define SST25_SR_BP_MASK (15 << SST25_SR_BP_SHIFT)
# define SST25_SR_BP_NONE (0 << SST25_SR_BP_SHIFT) /* Unprotected */
# define SST25_SR_BP_UPPER128th (1 << SST25_SR_BP_SHIFT) /* Upper 128th */
# define SST25_SR_BP_UPPER64th (2 << SST25_SR_BP_SHIFT) /* Upper 64th */
# define SST25_SR_BP_UPPER32nd (3 << SST25_SR_BP_SHIFT) /* Upper 32nd */
# define SST25_SR_BP_UPPER16th (4 << SST25_SR_BP_SHIFT) /* Upper 16th */
# define SST25_SR_BP_UPPER8th (5 << SST25_SR_BP_SHIFT) /* Upper 8th */
# define SST25_SR_BP_UPPERQTR (6 << SST25_SR_BP_SHIFT) /* Upper quarter */
# define SST25_SR_BP_UPPERHALF (7 << SST25_SR_BP_SHIFT) /* Upper half */
# define SST25_SR_BP_ALL (8 << SST25_SR_BP_SHIFT) /* All sectors */
#define SST_SR_SEC (1 << 6) /* Security ID status */
#define SST25_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */
#define SST25_DUMMY 0xa5
/************************************************************************************
* Private Types
************************************************************************************/
/* This type represents the state of the MTD device. The struct mtd_dev_s
* must appear at the beginning of the definition so that you can freely
* cast between pointers to struct mtd_dev_s and struct sst25xx_dev_s.
*/
struct sst25xx_dev_s
{
struct mtd_dev_s mtd; /* MTD interface */
FAR struct spi_dev_s *dev; /* Saved SPI interface instance */
uint8_t sectorshift; /* 16 or 18 */
uint8_t pageshift; /* 8 */
uint16_t nsectors; /* 128 or 64 */
uint32_t npages; /* 32,768 or 65,536 */
uint8_t lastwaswrite; /* Indicates if last operation was write */
};
/************************************************************************************
* Private Function Prototypes
************************************************************************************/
/* Helpers */
static void sst25xx_lock(FAR struct spi_dev_s *dev);
static inline void sst25xx_unlock(FAR struct spi_dev_s *dev);
static inline int sst25xx_readid(struct sst25xx_dev_s *priv);
static void sst25xx_waitwritecomplete(struct sst25xx_dev_s *priv);
static void sst25xx_writeenable(struct sst25xx_dev_s *priv);
static inline void sst25xx_sectorerase(struct sst25xx_dev_s *priv, off_t offset, uint8_t type);
static inline int sst25xx_bulkerase(struct sst25xx_dev_s *priv);
static inline void sst25xx_pagewrite(struct sst25xx_dev_s *priv, FAR const uint8_t *buffer,
off_t offset);
/* MTD driver methods */
static int sst25xx_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks);
static ssize_t sst25xx_bread(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR uint8_t *buf);
static ssize_t sst25xx_bwrite(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR const uint8_t *buf);
static ssize_t sst25xx_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR uint8_t *buffer);
#ifdef CONFIG_MTD_BYTE_WRITE
static ssize_t sst25xx_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR const uint8_t *buffer);
#endif
static int sst25xx_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg);
/************************************************************************************
* Private Data
************************************************************************************/
/************************************************************************************
* Private Functions
************************************************************************************/
/************************************************************************************
* Name: sst25xx_lock
************************************************************************************/
static void sst25xx_lock(FAR struct spi_dev_s *dev)
{
/* On SPI busses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the busses for a sequence of
* transfers. The bus should be locked before the chip is selected.
*
* This is a blocking call and will not return until we have exclusiv access to
* the SPI buss. We will retain that exclusive access until the bus is unlocked.
*/
(void)SPI_LOCK(dev, true);
/* After locking the SPI bus, the we also need call the setfrequency, setbits, and
* setmode methods to make sure that the SPI is properly configured for the device.
* If the SPI buss is being shared, then it may have been left in an incompatible
* state.
*/
SPI_SETMODE(dev, CONFIG_SST25XX_SPIMODE);
SPI_SETBITS(dev, 8);
(void)SPI_HWFEATURES(dev, 0);
(void)SPI_SETFREQUENCY(dev, CONFIG_SST25XX_SPIFREQUENCY);
}
/************************************************************************************
* Name: sst25xx_unlock
************************************************************************************/
static inline void sst25xx_unlock(FAR struct spi_dev_s *dev)
{
(void)SPI_LOCK(dev, false);
}
/************************************************************************************
* Name: sst25xx_readid
************************************************************************************/
static inline int sst25xx_readid(struct sst25xx_dev_s *priv)
{
uint16_t manufacturer;
uint16_t memory;
uint16_t capacity;
finfo("priv: %p\n", priv);
/* Lock the SPI bus, configure the bus, and select this FLASH part. */
sst25xx_lock(priv->dev);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Read ID (RDID)" command and read the first three ID bytes */
(void)SPI_SEND(priv->dev, SST25_RDID);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
manufacturer = SPI_SEND(priv->dev, SST25_DUMMY);
memory = SPI_SEND(priv->dev, SST25_DUMMY);
capacity = SPI_SEND(priv->dev, SST25_DUMMY);
/* Deselect the FLASH and unlock the bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sst25xx_unlock(priv->dev);
finfo("manufacturer: %02x memory: %02x capacity: %02x\n",
manufacturer, memory, capacity);
/* Check for a valid manufacturer and memory type */
if (manufacturer == SST25_MANUFACTURER && memory == SST25_MEMORY_TYPE)
{
/* Okay.. is it a FLASH capacity that we understand? */
if (capacity == SST25_SST25064_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = SST25_SST25064_SECTOR_SHIFT;
priv->nsectors = SST25_SST25064_NSECTORS;
priv->pageshift = SST25_SST25064_PAGE_SHIFT;
priv->npages = SST25_SST25064_NPAGES;
return OK;
}
}
return -ENODEV;
}
/************************************************************************************
* Name: sst25xx_waitwritecomplete
************************************************************************************/
static void sst25xx_waitwritecomplete(struct sst25xx_dev_s *priv)
{
uint8_t status;
/* No need to check if no write / erase was done */
#if 0
if (!priv->lastwaswrite)
{
return;
}
#endif
/* Loop as long as the memory is busy with a write cycle */
do
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Read Status Register (RDSR)" command */
(void)SPI_SEND(priv->dev, SST25_RDSR);
/* Send a dummy byte to generate the clock needed to shift out the status */
status = SPI_SEND(priv->dev, SST25_DUMMY);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
/* Given that writing could take up to few tens of milliseconds, and erasing
* could take more. The following short delay in the "busy" case will allow
* other peripherals to access the SPI bus.
*/
if ((status & SST25_SR_WIP) != 0)
{
sst25xx_unlock(priv->dev);
nxsig_usleep(1000);
sst25xx_lock(priv->dev);
}
}
while ((status & SST25_SR_WIP) != 0);
priv->lastwaswrite = false;
finfo("Complete\n");
}
/************************************************************************************
* Name: sst25xx_writeenable
************************************************************************************/
static void sst25xx_writeenable(struct sst25xx_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Write Enable (WREN)" command */
(void)SPI_SEND(priv->dev, SST25_WREN);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
finfo("Enabled\n");
}
/************************************************************************************
* Name: sst25xx_unprotect
************************************************************************************/
static void sst25xx_unprotect(struct sst25xx_dev_s *priv)
{
/* Send "Write enable status (EWSR)" */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
(void)SPI_SEND(priv->dev, SST25_EWSR);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
/* Send "Write status (WRSR)" */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
SPI_SEND(priv->dev, SST25_WRSR);
/* Followed by the new status value */
SPI_SEND(priv->dev, 0);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/************************************************************************************
* Name: sst25xx_sectorerase
************************************************************************************/
static void sst25xx_sectorerase(struct sst25xx_dev_s *priv, off_t sector, uint8_t type)
{
off_t offset;
offset = sector << priv->sectorshift;
finfo("sector: %08lx\n", (long)sector);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
sst25xx_waitwritecomplete(priv);
/* Send write enable instruction */
sst25xx_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Sector Erase (SE)" or Sub-Sector Erase (SSE) instruction
* that was passed in as the erase type.
*/
(void)SPI_SEND(priv->dev, type);
/* Send the sector offset high byte first. For all of the supported
* parts, the sector number is completely contained in the first byte
* and the values used in the following two bytes don't really matter.
*/
(void)SPI_SEND(priv->dev, (offset >> 16) & 0xff);
(void)SPI_SEND(priv->dev, (offset >> 8) & 0xff);
(void)SPI_SEND(priv->dev, offset & 0xff);
priv->lastwaswrite = true;
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
finfo("Erased\n");
}
/************************************************************************************
* Name: sst25xx_bulkerase
************************************************************************************/
static inline int sst25xx_bulkerase(struct sst25xx_dev_s *priv)
{
finfo("priv: %p\n", priv);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
sst25xx_waitwritecomplete(priv);
/* Send write enable instruction */
sst25xx_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Bulk Erase (BE)" instruction */
(void)SPI_SEND(priv->dev, SST25_BE);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sst25xx_waitwritecomplete(priv);
finfo("Return: OK\n");
return OK;
}
/************************************************************************************
* Name: sst25xx_pagewrite
************************************************************************************/
static inline void sst25xx_pagewrite(struct sst25xx_dev_s *priv, FAR const uint8_t *buffer,
off_t page)
{
off_t offset = page << priv->pageshift;
finfo("page: %08lx offset: %08lx\n", (long)page, (long)offset);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
sst25xx_waitwritecomplete(priv);
/* Enable the write access to the FLASH */
sst25xx_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Page Program (PP)" command */
(void)SPI_SEND(priv->dev, SST25_PP);
/* Send the page offset high byte first. */
(void)SPI_SEND(priv->dev, (offset >> 16) & 0xff);
(void)SPI_SEND(priv->dev, (offset >> 8) & 0xff);
(void)SPI_SEND(priv->dev, offset & 0xff);
/* Then write the specified number of bytes */
SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift);
priv->lastwaswrite = true;
/* Deselect the FLASH: Chip Select high */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
finfo("Written\n");
}
/************************************************************************************
* Name: sst25xx_bytewrite
************************************************************************************/
#ifdef CONFIG_MTD_BYTE_WRITE
static inline void sst25xx_bytewrite(struct sst25xx_dev_s *priv,
FAR const uint8_t *buffer, off_t offset,
uint16_t count)
{
finfo("offset: %08lx count:%d\n", (long)offset, count);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
sst25xx_waitwritecomplete(priv);
/* Enable the write access to the FLASH */
sst25xx_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Page Program (PP)" command */
(void)SPI_SEND(priv->dev, SST25_PP);
/* Send the page offset high byte first. */
(void)SPI_SEND(priv->dev, (offset >> 16) & 0xff);
(void)SPI_SEND(priv->dev, (offset >> 8) & 0xff);
(void)SPI_SEND(priv->dev, offset & 0xff);
/* Then write the specified number of bytes */
SPI_SNDBLOCK(priv->dev, buffer, count);
priv->lastwaswrite = true;
/* Deselect the FLASH: Chip Select high */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
finfo("Written\n");
}
#endif
/************************************************************************************
* Name: sst25xx_erase
************************************************************************************/
static int sst25xx_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks)
{
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
size_t blocksleft = nblocks;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock access to the SPI bus until we complete the erase */
sst25xx_lock(priv->dev);
while (blocksleft > 0)
{
size_t sectorboundry;
size_t blkper;
/* We will erase in either 4K sectors or 32K or 64K blocks depending
* on the largest unit we can use given the startblock and nblocks.
* This will reduce erase time (in the event we have partitions
* enabled and are doing a bulk erase which is translated into
* a block erase operation).
*/
/* Test for 64K alignment */
blkper = 64 / 4;
sectorboundry = (startblock + blkper - 1) / blkper;
sectorboundry *= blkper;
/* If we are on a sector boundry and have at least a full sector
* of blocks left to erase, then we can do a full sector erase.
*/
if (startblock == sectorboundry && blocksleft >= blkper)
{
/* Do a 64k block erase */
sst25xx_sectorerase(priv, startblock, SST25_BE64);
startblock += blkper;
blocksleft -= blkper;
continue;
}
/* Test for 32K block alignment */
blkper = 32 / 4;
sectorboundry = (startblock + blkper - 1) / blkper;
sectorboundry *= blkper;
if (startblock == sectorboundry && blocksleft >= blkper)
{
/* Do a 32k block erase */
sst25xx_sectorerase(priv, startblock, SST25_BE32);
startblock += blkper;
blocksleft -= blkper;
continue;
}
else
{
/* Just do a sector erase */
sst25xx_sectorerase(priv, startblock, SST25_SE);
startblock++;
blocksleft--;
continue;
}
}
sst25xx_unlock(priv->dev);
return (int)nblocks;
}
/************************************************************************************
* Name: sst25xx_bread
************************************************************************************/
static ssize_t sst25xx_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks,
FAR uint8_t *buffer)
{
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
ssize_t nbytes;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* On this device, we can handle the block read just like the byte-oriented read */
nbytes = sst25xx_read(dev, startblock << priv->pageshift,
nblocks << priv->pageshift, buffer);
if (nbytes > 0)
{
return nbytes >> priv->pageshift;
}
return (int)nbytes;
}
/************************************************************************************
* Name: sst25xx_bwrite
************************************************************************************/
static ssize_t sst25xx_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks,
FAR const uint8_t *buffer)
{
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
size_t blocksleft = nblocks;
size_t pagesize = 1 << priv->pageshift;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock the SPI bus and write each page to FLASH */
sst25xx_lock(priv->dev);
while (blocksleft-- > 0)
{
sst25xx_pagewrite(priv, buffer, startblock);
buffer += pagesize;
startblock++;
}
sst25xx_unlock(priv->dev);
return nblocks;
}
/************************************************************************************
* Name: sst25xx_read
************************************************************************************/
static ssize_t sst25xx_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR uint8_t *buffer)
{
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* Lock the SPI bus NOW because the following conditional call to
* sst25xx_waitwritecomplete must be executed with the bus locked.
*/
sst25xx_lock(priv->dev);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
if (priv->lastwaswrite)
{
sst25xx_waitwritecomplete(priv);
}
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Read from Memory " instruction */
(void)SPI_SEND(priv->dev, SST25_READ);
/* Send the page offset high byte first. */
(void)SPI_SEND(priv->dev, (offset >> 16) & 0xff);
(void)SPI_SEND(priv->dev, (offset >> 8) & 0xff);
(void)SPI_SEND(priv->dev, offset & 0xff);
/* Then read all of the requested bytes */
SPI_RECVBLOCK(priv->dev, buffer, nbytes);
/* Deselect the FLASH and unlock the SPI bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
sst25xx_unlock(priv->dev);
finfo("return nbytes: %d\n", (int)nbytes);
return nbytes;
}
/************************************************************************************
* Name: sst25xx_write
************************************************************************************/
#ifdef CONFIG_MTD_BYTE_WRITE
static ssize_t sst25xx_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR const uint8_t *buffer)
{
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
int startpage;
int endpage;
int count;
int index;
int pagesize;
int bytestowrite;
finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* We must test if the offset + count crosses one or more pages
* and perform individual writes. The devices can only write in
* page increments.
*/
startpage = offset / (1 << priv->pageshift);
endpage = (offset + nbytes) / (1 << priv->pageshift);
sst25xx_lock(priv->dev);
if (startpage == endpage)
{
/* All bytes within one programmable page. Just do the write. */
sst25xx_bytewrite(priv, buffer, offset, nbytes);
}
else
{
/* Write the 1st partial-page */
count = nbytes;
pagesize = (1 << priv->pageshift);
bytestowrite = pagesize - (offset & (pagesize-1));
sst25xx_bytewrite(priv, buffer, offset, bytestowrite);
/* Update offset and count */
offset += bytestowrite;
count -= bytestowrite;
index = bytestowrite;
/* Write full pages */
while (count >= pagesize)
{
sst25xx_bytewrite(priv, &buffer[index], offset, pagesize);
/* Update offset and count */
offset += pagesize;
count -= pagesize;
index += pagesize;
}
/* Now write any partial page at the end */
if (count > 0)
{
sst25xx_bytewrite(priv, &buffer[index], offset, count);
}
priv->lastwaswrite = true;
}
sst25xx_unlock(priv->dev);
return nbytes;
}
#endif /* CONFIG_MTD_BYTE_WRITE */
/************************************************************************************
* Name: sst25xx_ioctl
************************************************************************************/
static int sst25xx_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg)
{
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
int ret = -EINVAL; /* Assume good command with bad parameters */
finfo("cmd: %d \n", cmd);
switch (cmd)
{
case MTDIOC_GEOMETRY:
{
FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg);
if (geo)
{
/* Populate the geometry structure with information need to know
* the capacity and how to access the device.
*
* NOTE: that the device is treated as though it where just an array
* of fixed size blocks. That is most likely not true, but the client
* will expect the device logic to do whatever is necessary to make it
* appear so.
*/
geo->blocksize = (1 << priv->pageshift);
geo->erasesize = (1 << priv->sectorshift);
geo->neraseblocks = priv->nsectors;
ret = OK;
finfo("blocksize: %d erasesize: %d neraseblocks: %d\n",
geo->blocksize, geo->erasesize, geo->neraseblocks);
}
}
break;
case MTDIOC_BULKERASE:
{
/* Erase the entire device */
sst25xx_lock(priv->dev);
ret = sst25xx_bulkerase(priv);
sst25xx_unlock(priv->dev);
}
break;
case MTDIOC_XIPBASE:
default:
ret = -ENOTTY; /* Bad command */
break;
}
finfo("return %d\n", ret);
return ret;
}
/************************************************************************************
* Public Functions
************************************************************************************/
/************************************************************************************
* Name: sst25xx_initialize
*
* Description:
* Create an initialize MTD device instance. MTD devices are not registered
* in the file system, but are created as instances that can be bound to
* other functions (such as a block or character driver front end).
*
************************************************************************************/
FAR struct mtd_dev_s *sst25xx_initialize(FAR struct spi_dev_s *dev)
{
FAR struct sst25xx_dev_s *priv;
int ret;
finfo("dev: %p\n", dev);
/* Allocate a state structure (we allocate the structure instead of using
* a fixed, static allocation so that we can handle multiple FLASH devices.
* The current implementation would handle only one FLASH part per SPI
* device (only because of the SPIDEV_FLASH(0) definition) and so would have
* to be extended to handle multiple FLASH parts on the same SPI bus.
*/
priv = (FAR struct sst25xx_dev_s *)kmm_zalloc(sizeof(struct sst25xx_dev_s));
if (priv)
{
/* Initialize the allocated structure. (unsupported methods were
* nullified by kmm_zalloc).
*/
priv->mtd.erase = sst25xx_erase;
priv->mtd.bread = sst25xx_bread;
priv->mtd.bwrite = sst25xx_bwrite;
priv->mtd.read = sst25xx_read;
#ifdef CONFIG_MTD_BYTE_WRITE
priv->mtd.write = sst25xx_write;
#endif
priv->mtd.ioctl = sst25xx_ioctl;
priv->dev = dev;
priv->lastwaswrite = false;
/* Deselect the FLASH */
SPI_SELECT(dev, SPIDEV_FLASH(0), false);
/* Identify the FLASH chip and get its capacity */
ret = sst25xx_readid(priv);
if (ret != OK)
{
/* Unrecognized! Discard all of that work we just did and return NULL */
ferr("ERROR: Unrecognized\n");
kmm_free(priv);
return NULL;
}
else
{
/* Make sure that the FLASH is unprotected so that we can write into it */
sst25xx_unprotect(priv);
}
}
/* Register the MTD with the procfs system if enabled */
#ifdef CONFIG_MTD_REGISTRATION
mtd_register(&priv->mtd, "sst25xx");
#endif
/* Return the implementation-specific state structure as the MTD device */
finfo("Return %p\n", priv);
return (FAR struct mtd_dev_s *)priv;
}