dfc08a0b66
the logical may choose the head of g_readytorun(the greatest priority) task as the next while ignoring the cpu affinity of it. Signed-off-by: chenhonglin <chenhonglin@xiaomi.com>
281 lines
9.4 KiB
C
281 lines
9.4 KiB
C
/****************************************************************************
|
|
* sched/sched/sched_removereadytorun.c
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed with
|
|
* this work for additional information regarding copyright ownership. The
|
|
* ASF licenses this file to you under the Apache License, Version 2.0 (the
|
|
* "License"); you may not use this file except in compliance with the
|
|
* License. You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
|
|
#include <stdbool.h>
|
|
#include <queue.h>
|
|
#include <assert.h>
|
|
#include <nuttx/sched_note.h>
|
|
|
|
#include "irq/irq.h"
|
|
#include "sched/sched.h"
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: nxsched_remove_readytorun
|
|
*
|
|
* Description:
|
|
* This function removes a TCB from the ready to run list.
|
|
*
|
|
* Input Parameters:
|
|
* rtcb - Points to the TCB that is ready-to-run
|
|
*
|
|
* Returned Value:
|
|
* true if the currently active task (the head of the ready-to-run list)
|
|
* has changed.
|
|
*
|
|
* Assumptions:
|
|
* - The caller has established a critical section before calling this
|
|
* function (calling sched_lock() first is NOT a good idea -- use
|
|
* enter_critical_section()).
|
|
* - The caller handles the condition that occurs if the head of the
|
|
* ready-to-run list is changed.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#ifndef CONFIG_SMP
|
|
bool nxsched_remove_readytorun(FAR struct tcb_s *rtcb)
|
|
{
|
|
bool doswitch = false;
|
|
|
|
/* Check if the TCB to be removed is at the head of the ready to run list.
|
|
* There is only one list, g_readytorun, and it always contains the
|
|
* currently running task. If we are removing the head of this list,
|
|
* then we are removing the currently active task.
|
|
*/
|
|
|
|
if (rtcb->blink == NULL)
|
|
{
|
|
/* There must always be at least one task in the list (the IDLE task)
|
|
* after the TCB being removed.
|
|
*/
|
|
|
|
FAR struct tcb_s *nxttcb = (FAR struct tcb_s *)rtcb->flink;
|
|
DEBUGASSERT(nxttcb != NULL);
|
|
|
|
nxttcb->task_state = TSTATE_TASK_RUNNING;
|
|
doswitch = true;
|
|
}
|
|
|
|
/* Remove the TCB from the ready-to-run list. In the non-SMP case, this
|
|
* is always the g_readytorun list.
|
|
*/
|
|
|
|
dq_rem((FAR dq_entry_t *)rtcb, (FAR dq_queue_t *)&g_readytorun);
|
|
|
|
/* Since the TCB is not in any list, it is now invalid */
|
|
|
|
rtcb->task_state = TSTATE_TASK_INVALID;
|
|
return doswitch;
|
|
}
|
|
#endif /* !CONFIG_SMP */
|
|
|
|
/****************************************************************************
|
|
* Name: nxsched_remove_readytorun
|
|
*
|
|
* Description:
|
|
* This function removes a TCB from the ready to run list.
|
|
*
|
|
* Input Parameters:
|
|
* rtcb - Points to the TCB that is ready-to-run
|
|
*
|
|
* Returned Value:
|
|
* true if the currently active task (the head of the ready-to-run list)
|
|
* has changed.
|
|
*
|
|
* Assumptions:
|
|
* - The caller has established a critical section before calling this
|
|
* function (calling sched_lock() first is NOT a good idea -- use
|
|
* enter_critical_section()).
|
|
* - The caller handles the condition that occurs if the head of the
|
|
* ready-to-run list is changed.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#ifdef CONFIG_SMP
|
|
bool nxsched_remove_readytorun(FAR struct tcb_s *rtcb)
|
|
{
|
|
FAR dq_queue_t *tasklist;
|
|
bool doswitch = false;
|
|
int cpu;
|
|
|
|
/* Which CPU (if any) is the task running on? Which task list holds the
|
|
* TCB?
|
|
*/
|
|
|
|
cpu = rtcb->cpu;
|
|
tasklist = TLIST_HEAD(rtcb->task_state, cpu);
|
|
|
|
/* Check if the TCB to be removed is at the head of a ready-to-run list.
|
|
* For the case of SMP, there are two lists involved: (1) the
|
|
* g_readytorun list that holds non-running tasks that have not been
|
|
* assigned to a CPU, and (2) and the g_assignedtasks[] lists which hold
|
|
* tasks assigned a CPU, including the task that is currently running on
|
|
* that CPU. Only this latter list contains the currently active task
|
|
* only only removing the head of that list can result in a context
|
|
* switch.
|
|
*
|
|
* rtcb->blink == NULL will tell us if the TCB is at the head of the
|
|
* ready-to-run list and, hence, a candidate for the new running task.
|
|
*
|
|
* If so, then the tasklist RUNNABLE attribute will inform us if the list
|
|
* holds the currently executing task and, hence, if a context switch
|
|
* should occur.
|
|
*/
|
|
|
|
if (rtcb->blink == NULL && TLIST_ISRUNNABLE(rtcb->task_state))
|
|
{
|
|
FAR struct tcb_s *nxttcb;
|
|
FAR struct tcb_s *rtrtcb = NULL;
|
|
int me;
|
|
|
|
/* There must always be at least one task in the list (the IDLE task)
|
|
* after the TCB being removed.
|
|
*/
|
|
|
|
nxttcb = (FAR struct tcb_s *)rtcb->flink;
|
|
DEBUGASSERT(nxttcb != NULL);
|
|
|
|
/* If we are modifying the head of some assigned task list other than
|
|
* our own, we will need to stop that CPU.
|
|
*/
|
|
|
|
me = this_cpu();
|
|
if (cpu != me)
|
|
{
|
|
DEBUGVERIFY(up_cpu_pause(cpu));
|
|
}
|
|
|
|
/* The task is running but the CPU that it was running on has been
|
|
* paused. We can now safely remove its TCB from the ready-to-run
|
|
* task list. In the SMP case this may be either the g_readytorun()
|
|
* or the g_assignedtasks[cpu] list.
|
|
*/
|
|
|
|
dq_rem((FAR dq_entry_t *)rtcb, tasklist);
|
|
|
|
/* Which task will go at the head of the list? It will be either the
|
|
* next tcb in the assigned task list (nxttcb) or a TCB in the
|
|
* g_readytorun list. We can only select a task from that list if
|
|
* the affinity mask includes the current CPU.
|
|
*
|
|
* If pre-emption is locked or another CPU is in a critical section,
|
|
* then use the 'nxttcb' which will probably be the IDLE thread.
|
|
* REVISIT: What if it is not the IDLE thread?
|
|
*/
|
|
|
|
if (!nxsched_islocked_global() && !irq_cpu_locked(me))
|
|
{
|
|
/* Search for the highest priority task that can run on this
|
|
* CPU.
|
|
*/
|
|
|
|
for (rtrtcb = (FAR struct tcb_s *)g_readytorun.head;
|
|
rtrtcb != NULL && !CPU_ISSET(cpu, &rtrtcb->affinity);
|
|
rtrtcb = (FAR struct tcb_s *)rtrtcb->flink);
|
|
}
|
|
|
|
/* Did we find a task in the g_readytorun list? Which task should
|
|
* we use? We decide strictly by the priority of the two tasks:
|
|
* Either (1) the task currently at the head of the
|
|
* g_assignedtasks[cpu] list (nexttcb) or (2) the highest priority
|
|
* task from the g_readytorun list with matching affinity (rtrtcb).
|
|
*/
|
|
|
|
if (rtrtcb != NULL && rtrtcb->sched_priority >= nxttcb->sched_priority)
|
|
{
|
|
/* The TCB rtrtcb has the higher priority and it can be run on
|
|
* target CPU. Remove that task (rtrtcb) from the g_readytorun
|
|
* list and add to the head of the g_assignedtasks[cpu] list.
|
|
*/
|
|
|
|
dq_rem((FAR dq_entry_t *)rtrtcb, (FAR dq_queue_t *)&g_readytorun);
|
|
dq_addfirst((FAR dq_entry_t *)rtrtcb, tasklist);
|
|
|
|
rtrtcb->cpu = cpu;
|
|
nxttcb = rtrtcb;
|
|
}
|
|
|
|
/* Will pre-emption be disabled after the switch? If the lockcount is
|
|
* greater than zero, then this task/this CPU holds the scheduler lock.
|
|
*/
|
|
|
|
if (nxttcb->lockcount > 0)
|
|
{
|
|
/* Yes... make sure that scheduling logic knows about this */
|
|
|
|
spin_setbit(&g_cpu_lockset, cpu, &g_cpu_locksetlock,
|
|
&g_cpu_schedlock);
|
|
}
|
|
else
|
|
{
|
|
/* No.. we may need to perform release our hold on the lock. */
|
|
|
|
spin_clrbit(&g_cpu_lockset, cpu, &g_cpu_locksetlock,
|
|
&g_cpu_schedlock);
|
|
}
|
|
|
|
/* NOTE: If the task runs on another CPU(cpu), adjusting global IRQ
|
|
* controls will be done in the pause handler on the new CPU(cpu).
|
|
* If the task is scheduled on this CPU(me), do nothing because
|
|
* this CPU already has a critical section
|
|
*/
|
|
|
|
nxttcb->task_state = TSTATE_TASK_RUNNING;
|
|
|
|
/* All done, restart the other CPU (if it was paused). */
|
|
|
|
doswitch = true;
|
|
if (cpu != me)
|
|
{
|
|
/* In this we will not want to report a context switch to this
|
|
* CPU. Only the other CPU is affected.
|
|
*/
|
|
|
|
DEBUGVERIFY(up_cpu_resume(cpu));
|
|
doswitch = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* The task is not running. Just remove its TCB from the ready-to-run
|
|
* list. In the SMP case this may be either the g_readytorun() or the
|
|
* g_assignedtasks[cpu] list.
|
|
*/
|
|
|
|
dq_rem((FAR dq_entry_t *)rtcb, tasklist);
|
|
}
|
|
|
|
/* Since the TCB is no longer in any list, it is now invalid */
|
|
|
|
rtcb->task_state = TSTATE_TASK_INVALID;
|
|
|
|
return doswitch;
|
|
}
|
|
#endif /* CONFIG_SMP */
|