nuttx/drivers/usbdev/cdcacm.c

3250 lines
93 KiB
C

/****************************************************************************
* drivers/usbdev/cdcacm.c
*
* Copyright (C) 2011-2013, 2016-2017 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <semaphore.h>
#include <string.h>
#include <errno.h>
#include <queue.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/kmalloc.h>
#include <nuttx/wdog.h>
#include <nuttx/arch.h>
#include <nuttx/serial/serial.h>
#include <nuttx/usb/usb.h>
#include <nuttx/usb/cdc.h>
#include <nuttx/usb/usbdev.h>
#include <nuttx/usb/cdcacm.h>
#include <nuttx/usb/usbdev_trace.h>
#include "cdcacm.h"
#ifdef CONFIG_CDCACM_COMPOSITE
# include <nuttx/usb/composite.h>
# include "composite.h"
#endif
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* RX poll delay = 200 milliseconds. CLK_TCK is the number of clock ticks per
* second
*/
#define CDCACM_RXDELAY (CLK_TCK / 5)
/****************************************************************************
* Private Types
****************************************************************************/
/* Container to support a list of requests */
struct cdcacm_wrreq_s
{
FAR struct cdcacm_wrreq_s *flink; /* Implements a singly linked list */
FAR struct usbdev_req_s *req; /* The contained request */
};
struct cdcacm_rdreq_s
{
FAR struct cdcacm_rdreq_s *flink; /* Implements a singly linked list */
FAR struct usbdev_req_s *req; /* The contained request */
uint16_t offset; /* Offset to valid data in the RX request */
};
/* This structure describes the internal state of the driver */
struct cdcacm_dev_s
{
FAR struct uart_dev_s serdev; /* Serial device structure */
FAR struct usbdev_s *usbdev; /* usbdev driver pointer */
uint8_t config; /* Configuration number */
uint8_t nwrq; /* Number of queue write requests (in txfree) */
uint8_t nrdq; /* Number of queue read requests (in epbulkout) */
uint8_t minor; /* The device minor number */
uint8_t ctrlline; /* Buffered control line state */
#ifdef CONFIG_CDCACM_IFLOWCONTROL
uint8_t serialstate; /* State of the DSR/DCD */
bool iflow; /* True: input flow control is enabled */
bool iactive; /* True: input flow control is active */
bool upper; /* True: RX buffer is (nearly) full */
#endif
bool rxenabled; /* true: UART RX "interrupts" enabled */
struct cdc_linecoding_s linecoding; /* Buffered line status */
cdcacm_callback_t callback; /* Serial event callback function */
FAR struct usbdev_ep_s *epintin; /* Interrupt IN endpoint structure */
FAR struct usbdev_ep_s *epbulkin; /* Bulk IN endpoint structure */
FAR struct usbdev_ep_s *epbulkout; /* Bulk OUT endpoint structure */
FAR struct usbdev_req_s *ctrlreq; /* Allocated control request */
WDOG_ID rxfailsafe; /* Failsafe timer to prevent RX stalls */
struct sq_queue_s txfree; /* Available write request containers */
struct sq_queue_s rxpending; /* Pending read request containers */
struct usbdev_devinfo_s devinfo;
/* Pre-allocated write request containers. The write requests will
* be linked in a free list (txfree), and used to send requests to
* EPBULKIN; Read requests will be queued in the EBULKOUT.
*/
struct cdcacm_wrreq_s wrreqs[CONFIG_CDCACM_NWRREQS];
struct cdcacm_rdreq_s rdreqs[CONFIG_CDCACM_NRDREQS];
/* Serial I/O buffers */
char rxbuffer[CONFIG_CDCACM_RXBUFSIZE];
char txbuffer[CONFIG_CDCACM_TXBUFSIZE];
};
/* The internal version of the class driver */
struct cdcacm_driver_s
{
struct usbdevclass_driver_s drvr;
FAR struct cdcacm_dev_s *dev;
};
/* This is what is allocated */
struct cdcacm_alloc_s
{
struct cdcacm_dev_s dev;
struct cdcacm_driver_s drvr;
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Transfer helpers *********************************************************/
static uint16_t cdcacm_fillrequest(FAR struct cdcacm_dev_s *priv,
uint8_t *reqbuf, uint16_t reqlen);
static int cdcacm_sndpacket(FAR struct cdcacm_dev_s *priv);
static int cdcacm_recvpacket(FAR struct cdcacm_dev_s *priv,
FAR struct cdcacm_rdreq_s *rdcontainer);
static int cdcacm_requeue_rdrequest(FAR struct cdcacm_dev_s *priv,
FAR struct cdcacm_rdreq_s *rdcontainer);
static int cdcacm_release_rxpending(FAR struct cdcacm_dev_s *priv);
static void cdcacm_rxtimeout(int argc, wdparm_t arg1, ...);
/* Request helpers *********************************************************/
static struct usbdev_req_s *cdcacm_allocreq(FAR struct usbdev_ep_s *ep,
uint16_t len);
static void cdcacm_freereq(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req);
/* Flow Control ************************************************************/
#ifdef CONFIG_CDCACM_IFLOWCONTROL
static int cdcacm_serialstate(FAR struct cdcacm_dev_s *priv);
#endif
/* Configuration ***********************************************************/
static void cdcacm_resetconfig(FAR struct cdcacm_dev_s *priv);
static int cdcacm_epconfigure(FAR struct usbdev_ep_s *ep,
enum cdcacm_epdesc_e epid, bool last,
FAR struct usbdev_devinfo_s *devinfo,
bool hispeed);
static int cdcacm_setconfig(FAR struct cdcacm_dev_s *priv,
uint8_t config);
/* Completion event handlers ***********************************************/
static void cdcacm_ep0incomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req);
static void cdcacm_rdcomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req);
static void cdcacm_wrcomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req);
/* USB class device ********************************************************/
static int cdcacm_bind(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev);
static void cdcacm_unbind(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev);
static int cdcacm_setup(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev,
FAR const struct usb_ctrlreq_s *ctrl, FAR uint8_t *dataout,
size_t outlen);
static void cdcacm_disconnect(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev);
#ifdef CONFIG_SERIAL_REMOVABLE
static void cdcacm_suspend(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev);
static void cdcacm_resume(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev);
#endif
/* UART Operations **********************************************************/
static int cdcuart_setup(FAR struct uart_dev_s *dev);
static void cdcuart_shutdown(FAR struct uart_dev_s *dev);
static int cdcuart_attach(FAR struct uart_dev_s *dev);
static void cdcuart_detach(FAR struct uart_dev_s *dev);
static int cdcuart_ioctl(FAR struct file *filep, int cmd,
unsigned long arg);
static void cdcuart_rxint(FAR struct uart_dev_s *dev, bool enable);
#ifdef CONFIG_SERIAL_IFLOWCONTROL
static bool cdcuart_rxflowcontrol(FAR struct uart_dev_s *dev,
unsigned int nbuffered, bool upper);
#endif
static void cdcuart_txint(FAR struct uart_dev_s *dev, bool enable);
static bool cdcuart_txempty(FAR struct uart_dev_s *dev);
/****************************************************************************
* Private Data
****************************************************************************/
/* USB class device *********************************************************/
static const struct usbdevclass_driverops_s g_driverops =
{
cdcacm_bind, /* bind */
cdcacm_unbind, /* unbind */
cdcacm_setup, /* setup */
cdcacm_disconnect, /* disconnect */
#ifdef CONFIG_SERIAL_REMOVABLE
cdcacm_suspend, /* suspend */
cdcacm_resume, /* resume */
#else
NULL, /* suspend */
NULL, /* resume */
#endif
};
/* Serial port **************************************************************/
static const struct uart_ops_s g_uartops =
{
cdcuart_setup, /* setup */
cdcuart_shutdown, /* shutdown */
cdcuart_attach, /* attach */
cdcuart_detach, /* detach */
cdcuart_ioctl, /* ioctl */
NULL, /* receive */
cdcuart_rxint, /* rxinit */
NULL, /* rxavailable */
#ifdef CONFIG_SERIAL_IFLOWCONTROL
cdcuart_rxflowcontrol, /* rxflowcontrol */
#endif
#ifdef CONFIG_SERIAL_TXDMA
NULL, /* dmasend */
#endif
#ifdef CONFIG_SERIAL_RXDMA
NULL, /* dmareceive */
NULL, /* dmarxfree */
#endif
#ifdef CONFIG_SERIAL_TXDMA
NULL, /* dmatxavail */
#endif
NULL, /* send */
cdcuart_txint, /* txinit */
NULL, /* txready */
cdcuart_txempty /* txempty */
};
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: cdcacm_fillrequest
*
* Description:
* If there is data to send it is copied to the given buffer. Called
* either to initiate the first write operation, or from the completion
* interrupt handler service consecutive write operations.
*
* NOTE: The USB serial driver does not use the serial drivers
* uart_xmitchars() API. That logic is essentially duplicated here because
* unlike UART hardware, we need to be able to handle writes not byte-by-
* byte, but packet-by-packet. Unfortunately, that decision also exposes
* some internals of the serial driver in the following.
*
****************************************************************************/
static uint16_t cdcacm_fillrequest(FAR struct cdcacm_dev_s *priv,
FAR uint8_t *reqbuf,
uint16_t reqlen)
{
FAR uart_dev_t *serdev = &priv->serdev;
FAR struct uart_buffer_s *xmit = &serdev->xmit;
irqstate_t flags;
uint16_t nbytes = 0;
/* Disable interrupts */
flags = enter_critical_section();
/* Transfer bytes while we have bytes available and there is room in the
* request.
*/
while (xmit->head != xmit->tail && nbytes < reqlen)
{
*reqbuf++ = xmit->buffer[xmit->tail];
nbytes++;
/* Increment the tail pointer */
if (++(xmit->tail) >= xmit->size)
{
xmit->tail = 0;
}
}
/* When all of the characters have been sent from the buffer disable the
* "TX interrupt".
*/
if (xmit->head == xmit->tail)
{
uart_disabletxint(serdev);
}
/* If any bytes were removed from the buffer, inform any waiters that
* there is space available.
*/
if (nbytes)
{
uart_datasent(serdev);
}
leave_critical_section(flags);
return nbytes;
}
/****************************************************************************
* Name: cdcacm_sndpacket
*
* Description:
* This function obtains write requests, transfers the TX data into the
* request, and submits the requests to the USB controller. This
* continues until either (1) there are no further packets available, or
* (2) there is no further data to send.
*
****************************************************************************/
static int cdcacm_sndpacket(FAR struct cdcacm_dev_s *priv)
{
FAR struct usbdev_ep_s *ep;
FAR struct usbdev_req_s *req;
FAR struct cdcacm_wrreq_s *wrcontainer;
uint16_t reqlen;
irqstate_t flags;
int len;
int ret = OK;
#ifdef CONFIG_DEBUG_FEATURES
if (priv == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return -EINVAL;
}
#endif
flags = enter_critical_section();
/* Use our bulk IN endpoint for the transfer */
ep = priv->epbulkin;
/* Loop until either (1) we run out or write requests, or (2)
* cdcacm_fillrequest() is unable to fill the request with data (i.e.,
* until there is no more data to be sent).
*/
uinfo("head=%d tail=%d nwrq=%d empty=%d\n",
priv->serdev.xmit.head, priv->serdev.xmit.tail,
priv->nwrq, sq_empty(&priv->txfree));
/* Get the maximum number of bytes that will fit into one bulk IN request */
reqlen = MAX(CONFIG_CDCACM_BULKIN_REQLEN, ep->maxpacket);
while (!sq_empty(&priv->txfree))
{
/* Peek at the request in the container at the head of the list */
wrcontainer = (FAR struct cdcacm_wrreq_s *)sq_peek(&priv->txfree);
req = wrcontainer->req;
/* Fill the request with serial TX data */
len = cdcacm_fillrequest(priv, req->buf, reqlen);
if (len > 0)
{
/* Remove the empty container from the request list */
(void)sq_remfirst(&priv->txfree);
priv->nwrq--;
/* Then submit the request to the endpoint */
req->len = len;
req->priv = wrcontainer;
req->flags = USBDEV_REQFLAGS_NULLPKT;
ret = EP_SUBMIT(ep, req);
if (ret != OK)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_SUBMITFAIL),
(uint16_t)-ret);
break;
}
}
else
{
break;
}
}
leave_critical_section(flags);
return ret;
}
/****************************************************************************
* Name: cdcacm_recvpacket
*
* Description:
* A normal completion event was received by the read completion handler
* at the interrupt level (with interrupts disabled). This function handles
* the USB packet and provides the received data to the uart RX buffer.
*
* Assumptions:
* Called from the USB interrupt handler with interrupts disabled.
*
****************************************************************************/
static int cdcacm_recvpacket(FAR struct cdcacm_dev_s *priv,
FAR struct cdcacm_rdreq_s *rdcontainer)
{
FAR uart_dev_t *serdev;
FAR struct uart_buffer_s *recv;
FAR struct usbdev_req_s *req;
FAR uint8_t *reqbuf;
#ifdef CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS
unsigned int watermark;
#endif
uint16_t reqlen;
uint16_t nexthead;
uint16_t nbytes = 0;
DEBUGASSERT(priv != NULL && rdcontainer != NULL);
uinfo("head=%d tail=%d nrdq=%d reqlen=%d\n",
priv->serdev.recv.head, priv->serdev.recv.tail, priv->nrdq, reqlen);
#ifdef CONFIG_CDCACM_IFLOWCONTROL
DEBUGASSERT(priv->rxenabled && !priv->iactive);
#else
DEBUGASSERT(priv->rxenabled);
#endif
req = rdcontainer->req;
DEBUGASSERT(req != NULL);
reqbuf = &req->buf[rdcontainer->offset];
reqlen = req->xfrd - rdcontainer->offset;
serdev = &priv->serdev;
recv = &serdev->recv;
/* Pre-calculate the head index and check for wrap around. We need to do
* this so that we can determine if the circular buffer will overrun
* BEFORE we overrun the buffer!
*/
nexthead = recv->head + 1;
if (nexthead >= recv->size)
{
nexthead = 0;
}
#ifdef CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS
/* Pre-calcuate the watermark level that we will need to test against.
* Note that the range of the the upper watermark is from 1 to 99 percent
* and that the actual capacity of the RX buffer is (recv->size - 1).
*/
watermark = (CONFIG_SERIAL_IFLOWCONTROL_UPPER_WATERMARK * recv->size) / 100;
DEBUGASSERT(watermark > 0 && watermark < (recv->size - 1));
#endif
/* Then copy data into the RX buffer until either: (1) all of the data has
* been copied, or (2) the RX buffer is full.
*
* NOTE: If the RX buffer becomes full, then we have overrun the serial
* driver and data will be lost. This is the correct behavior for a
* proper emulation of a serial link. It should not NAK, it should drop
* data like a physical serial port.
*
* If you don't like that behavior. DO NOT change it here. Instead, you
* should finish the implementation of RX flow control which is the only
* proper way to throttle a serial device.
*/
while (nexthead != recv->tail && nbytes < reqlen)
{
#if defined(CONFIG_SERIAL_IFLOWCONTROL) && \
defined(CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS)
unsigned int nbuffered;
/* How many bytes are buffered */
if (recv->head >= recv->tail)
{
nbuffered = recv->head - recv->tail;
}
else
{
nbuffered = recv->size - recv->tail + recv->head;
}
/* Is the level now above the watermark level that we need to report? */
if (nbuffered >= watermark)
{
/* Let the lower level driver know that the watermark level has been
* crossed. It will probably activate RX flow control.
*/
if (cdcuart_rxflowcontrol(&priv->serdev, nbuffered, true))
{
/* Low-level driver activated RX flow control, exit loop now. */
break;
}
}
#endif
/* Copy one byte to the head of the circular RX buffer */
recv->buffer[recv->head] = *reqbuf++;
nbytes++;
/* Increment the head index and check for wrap around */
recv->head = nexthead;
if (++nexthead >= recv->size)
{
nexthead = 0;
}
}
#if defined(CONFIG_SERIAL_IFLOWCONTROL) && \
!defined(CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS)
/* Check if RX buffer became full and allow serial low-level driver to
* pause processing. This allows proper utilization of hardware flow
* control when there are no watermarks.
*/
if (nexthead == recv->tail)
{
(void)cdcuart_rxflowcontrol(&priv->serdev, recv->size - 1, true);
}
#endif
/* If data was added to the incoming serial buffer, then wake up any
* threads is waiting for incoming data. If we are running in an interrupt
* handler, then the serial driver will not run until the interrupt
* handler returns.
*/
if (nbytes > 0)
{
uart_datareceived(serdev);
}
/* Return an overrun error if the entire packet could not be transferred. */
if (nbytes < reqlen)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RXOVERRUN), 0);
rdcontainer->offset += nbytes;
return -ENOSPC;
}
return OK;
}
/****************************************************************************
* Name: cdcacm_requeue_rdrequest
*
* Description:
* Add any pending RX packets to the upper half serial drivers RX buffer.
*
****************************************************************************/
static int cdcacm_requeue_rdrequest(FAR struct cdcacm_dev_s *priv,
FAR struct cdcacm_rdreq_s *rdcontainer)
{
FAR struct usbdev_req_s *req;
FAR struct usbdev_ep_s *ep;
int ret;
DEBUGASSERT(priv != NULL && rdcontainer != NULL);
rdcontainer->offset = 0;
req = rdcontainer->req;
DEBUGASSERT(req != NULL);
/* Requeue the read request */
ep = priv->epbulkout;
req->len = ep->maxpacket;
ret = EP_SUBMIT(ep, req);
if (ret != OK)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RDSUBMIT),
(uint16_t)-req->result);
}
return ret;
}
/****************************************************************************
* Name: cdcacm_release_rxpending
*
* Description:
* Add any pending RX packets to the upper half serial drivers RX buffer.
*
****************************************************************************/
static int cdcacm_release_rxpending(FAR struct cdcacm_dev_s *priv)
{
FAR struct cdcacm_rdreq_s *rdcontainer;
irqstate_t flags;
int ret = -EBUSY;
/* Note that the priv->rxpending queue, priv->rxenabled, priv->iactive
* may be modified by interrupt level processing and, hence, interrupts
* must be disabled throughout the following.
*/
flags = enter_critical_section();
/* Cancel any pending failsafe timer */
wd_cancel(priv->rxfailsafe);
/* If RX "interrupts" are enabled and if input flow control is not in
* effect, then pass the packet at the head of the pending RX packet list
* to the upper serial layer. Otherwise, let the packet continue to pend
* the priv->rxpending list until the upper serial layer is able to buffer
* it.
*/
#ifdef CONFIG_CDCACM_IFLOWCONTROL
if (priv->rxenabled && !priv->iactive)
#else
if (priv->rxenabled)
#endif
{
/* Process pending RX packets while the queue is not empty and while
* no errors occur. NOTE that the priv->rxpending queue is accessed
* from interrupt level processing and, hence, interrupts must be
* disabled throughout the following.
*/
ret = OK;
while (!sq_empty(&priv->rxpending))
{
/* Process each packet in the priv->rxpending list */
rdcontainer = (FAR struct cdcacm_rdreq_s *)
sq_peek(&priv->rxpending);
DEBUGASSERT(rdcontainer != NULL);
/* cdcacm_recvpacket() will return OK if the entire packet was
* successful buffered. In the case of RX buffer overrun,
* cdcacm_recvpacket() will return a failure (-ENOSPC) and will
* set the req->offset field
*/
ret = cdcacm_recvpacket(priv, rdcontainer);
if (ret < 0)
{
uwarn("WARNING: RX buffer full\n");
break;
}
/* The entire packet was processed and may be removed from the
* pending RX list and returned to the DCD.
*/
(void)sq_remfirst(&priv->rxpending);
ret = cdcacm_requeue_rdrequest(priv, rdcontainer);
}
}
/* Restart the RX failsafe timer if there are RX packets in
* priv->rxpending. This could happen if either RX "interrupts" are
* disable, RX flow control is in effect of if the upper serial drivers
* RX buffer is full and cannot accept additional data.
*
* If/when the timer expires, cdcacm_release_rxpending() will be called
* the timer handler (at interrupt level).
*
* The timer may not be necessary, but it is a failsafe to be certain
* that data cannot stall in priv->rxpending.
*/
if (!sq_empty(&priv->rxpending))
{
(void)wd_start(priv->rxfailsafe, CDCACM_RXDELAY, cdcacm_rxtimeout,
1, priv);
}
leave_critical_section(flags);
return ret;
}
/****************************************************************************
* Name: cdcacm_rxtimeout
*
* Description:
* Timer expiration handler. Whenever cdcacm_release_rxpending()
* terminates with pending RX data in priv->rxpending, it will set a
* timer to recheck the queued RX data can be processed later. This
* failsafe timer may not be necessary, but this reduces my paranoia
* about stalls in the RX pending FIFO .
*
****************************************************************************/
static void cdcacm_rxtimeout(int argc, wdparm_t arg1, ...)
{
FAR struct cdcacm_dev_s *priv = (FAR struct cdcacm_dev_s *)arg1;
DEBUGASSERT(priv != NULL);
(void)cdcacm_release_rxpending(priv);
}
/****************************************************************************
* Name: cdcacm_allocreq
*
* Description:
* Allocate a request instance along with its buffer
*
****************************************************************************/
static struct usbdev_req_s *cdcacm_allocreq(FAR struct usbdev_ep_s *ep,
uint16_t len)
{
FAR struct usbdev_req_s *req;
req = EP_ALLOCREQ(ep);
if (req != NULL)
{
req->len = len;
req->buf = EP_ALLOCBUFFER(ep, len);
if (req->buf == NULL)
{
EP_FREEREQ(ep, req);
req = NULL;
}
}
return req;
}
/****************************************************************************
* Name: cdcacm_freereq
*
* Description:
* Free a request instance along with its buffer
*
****************************************************************************/
static void cdcacm_freereq(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req)
{
if (ep != NULL && req != NULL)
{
if (req->buf != NULL)
{
EP_FREEBUFFER(ep, req->buf);
}
EP_FREEREQ(ep, req);
}
}
/****************************************************************************
* Name: cdcacm_serialstate
*
* Description:
* Send the serial state message.
*
* 1. Format and send a request header with:
*
* bmRequestType:
* USB_REQ_DIR_IN | USB_REQ_TYPE_CLASS |
* USB_REQ_RECIPIENT_INTERFACE
* bRequest: ACM_SERIAL_STATE
* wValue: 0
* wIndex: 0
* wLength: Length of data = 2
*
* 2. Followed by the notification data
*
****************************************************************************/
#ifdef CONFIG_CDCACM_IFLOWCONTROL
static int cdcacm_serialstate(FAR struct cdcacm_dev_s *priv)
{
FAR struct usbdev_ep_s *ep;
FAR struct usbdev_req_s *req;
FAR struct cdcacm_wrreq_s *wrcontainer;
FAR struct cdc_notification_s *notify;
irqstate_t flags;
int ret;
DEBUGASSERT(priv != NULL && priv->epintin != NULL);
#ifdef CONFIG_DEBUG_FEATURES
if (priv == NULL || priv->epintin == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return -EINVAL;
}
#endif
usbtrace(CDCACM_CLASSAPI_FLOWCONTROL, (uint16_t)priv->serialstate);
flags = enter_critical_section();
/* Use our interrupt IN endpoint for the transfer */
ep = priv->epintin;
/* Remove the next container from the request list */
wrcontainer = (FAR struct cdcacm_wrreq_s *)sq_remfirst(&priv->txfree);
if (wrcontainer == NULL)
{
ret = -ENOMEM;
goto errout_with_flags;
}
/* Decrement the count of write requests */
priv->nwrq--;
/* Format the SerialState notification */
DEBUGASSERT(wrcontainer->req != NULL);
req = wrcontainer->req;
DEBUGASSERT(req->buf != NULL);
notify = (FAR struct cdc_notification_s *)req->buf;
notify->type = (USB_REQ_DIR_IN | USB_REQ_TYPE_CLASS |
USB_REQ_RECIPIENT_INTERFACE);
notify->notification = ACM_SERIAL_STATE;
notify->value[0] = 0;
notify->value[1] = 0;
notify->index[0] = 0;
notify->index[1] = 0;
notify->len[0] = 2;
notify->len[1] = 0;
notify->data[0] = priv->serialstate;
notify->data[1] = 0;
/* Then submit the request to the endpoint */
req->len = SIZEOF_NOTIFICATION_S(2);
req->priv = wrcontainer;
req->flags = USBDEV_REQFLAGS_NULLPKT;
ret = EP_SUBMIT(ep, req);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_SUBMITFAIL), (uint16_t)-ret);
}
errout_with_flags:
/* Reset all of the "irregular" notification */
priv->serialstate &= CDC_UART_CONSISTENT;
leave_critical_section(flags);
return ret;
}
#endif
/****************************************************************************
* Name: cdcacm_resetconfig
*
* Description:
* Mark the device as not configured and disable all endpoints.
*
****************************************************************************/
static void cdcacm_resetconfig(FAR struct cdcacm_dev_s *priv)
{
/* Are we configured? */
if (priv->config != CDCACM_CONFIGIDNONE)
{
/* Yes.. but not anymore */
priv->config = CDCACM_CONFIGIDNONE;
/* Inform the "upper half" driver that there is no (functional) USB
* connection.
*/
#ifdef CONFIG_SERIAL_REMOVABLE
uart_connected(&priv->serdev, false);
#endif
/* Disable endpoints. This should force completion of all pending
* transfers.
*/
EP_DISABLE(priv->epintin);
EP_DISABLE(priv->epbulkin);
EP_DISABLE(priv->epbulkout);
}
}
/****************************************************************************
* Name: cdcacm_epconfigure
*
* Description:
* Configure one endpoint.
*
****************************************************************************/
static int cdcacm_epconfigure(FAR struct usbdev_ep_s *ep,
enum cdcacm_epdesc_e epid, bool last,
FAR struct usbdev_devinfo_s *devinfo,
bool hispeed)
{
struct usb_epdesc_s epdesc;
cdcacm_copy_epdesc(epid, &epdesc, devinfo, hispeed);
return EP_CONFIGURE(ep, &epdesc, last);
}
/****************************************************************************
* Name: cdcacm_setconfig
*
* Description:
* Set the device configuration by allocating and configuring endpoints and
* by allocating and queue read and write requests.
*
****************************************************************************/
static int cdcacm_setconfig(FAR struct cdcacm_dev_s *priv, uint8_t config)
{
FAR struct usbdev_req_s *req;
int i;
int ret = 0;
#ifdef CONFIG_DEBUG_FEATURES
if (priv == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return -EINVAL;
}
#endif
if (config == priv->config)
{
/* Already configured -- Do nothing */
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_ALREADYCONFIGURED), 0);
return 0;
}
/* Discard the previous configuration data */
cdcacm_resetconfig(priv);
/* Was this a request to simply discard the current configuration? */
if (config == CDCACM_CONFIGIDNONE)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_CONFIGNONE), 0);
return 0;
}
/* We only accept one configuration */
if (config != CDCACM_CONFIGID)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_CONFIGIDBAD), 0);
return -EINVAL;
}
/* Configure the IN interrupt endpoint */
#ifdef CONFIG_USBDEV_DUALSPEED
if (priv->usbdev->speed == USB_SPEED_HIGH)
{
ret = cdcacm_epconfigure(priv->epintin, CDCACM_EPINTIN, false,
&priv->devinfo, true);
}
else
#endif
{
ret = cdcacm_epconfigure(priv->epintin, CDCACM_EPINTIN, false,
&priv->devinfo, false);
}
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPINTINCONFIGFAIL), 0);
goto errout;
}
priv->epintin->priv = priv;
/* Configure the IN bulk endpoint */
#ifdef CONFIG_USBDEV_DUALSPEED
if (priv->usbdev->speed == USB_SPEED_HIGH)
{
ret = cdcacm_epconfigure(priv->epbulkin, CDCACM_EPBULKIN, false,
&priv->devinfo, true);
}
else
#endif
{
ret = cdcacm_epconfigure(priv->epbulkin, CDCACM_EPBULKIN, false,
&priv->devinfo, false);
}
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPBULKINCONFIGFAIL), 0);
goto errout;
}
priv->epbulkin->priv = priv;
/* Configure the OUT bulk endpoint */
#ifdef CONFIG_USBDEV_DUALSPEED
if (priv->usbdev->speed == USB_SPEED_HIGH)
{
ret = cdcacm_epconfigure(priv->epbulkout, CDCACM_EPBULKOUT, true,
&priv->devinfo, true);
}
else
#endif
{
ret = cdcacm_epconfigure(priv->epbulkout, CDCACM_EPBULKOUT, true,
&priv->devinfo, false);
}
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPBULKOUTCONFIGFAIL), 0);
goto errout;
}
priv->epbulkout->priv = priv;
/* Queue read requests in the bulk OUT endpoint */
DEBUGASSERT(priv->nrdq == 0);
for (i = 0; i < CONFIG_CDCACM_NRDREQS; i++)
{
req = priv->rdreqs[i].req;
req->callback = cdcacm_rdcomplete;
ret = EP_SUBMIT(priv->epbulkout, req);
if (ret != OK)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RDSUBMIT),
(uint16_t)-ret);
goto errout;
}
priv->nrdq++;
}
/* We are successfully configured */
priv->config = config;
/* Inform the "upper half" driver that we are "open for business" */
#ifdef CONFIG_SERIAL_REMOVABLE
uart_connected(&priv->serdev, true);
#endif
return OK;
errout:
cdcacm_resetconfig(priv);
return ret;
}
/****************************************************************************
* Name: cdcacm_ep0incomplete
*
* Description:
* Handle completion of EP0 control operations
*
****************************************************************************/
static void cdcacm_ep0incomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req)
{
if (req->result || req->xfrd != req->len)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_REQRESULT),
(uint16_t)-req->result);
}
}
/****************************************************************************
* Name: cdcacm_rdcomplete
*
* Description:
* Handle completion of read request on the bulk OUT endpoint. This
* is handled like the receipt of serial data on the "UART"
*
****************************************************************************/
static void cdcacm_rdcomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req)
{
FAR struct cdcacm_rdreq_s *rdcontainer;
FAR struct cdcacm_dev_s *priv;
irqstate_t flags;
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (!ep || !ep->priv || !req)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract references to private data */
priv = (FAR struct cdcacm_dev_s *)ep->priv;
/* Get the container of the read request */
rdcontainer = (FAR struct cdcacm_rdreq_s *)req->priv;
DEBUGASSERT(rdcontainer != NULL);
/* Process the received data unless this is some unusual condition */
flags = enter_critical_section();
switch (req->result)
{
case 0: /* Normal completion */
{
usbtrace(TRACE_CLASSRDCOMPLETE, priv->nrdq);
/* Place the incoming packet at the end of pending RX packet list. */
rdcontainer->offset = 0;
sq_addlast((FAR sq_entry_t *)rdcontainer, &priv->rxpending);
/* Then process all pending RX packet starting at the head of the
* list
*/
(void)cdcacm_release_rxpending(priv);
}
break;
case -ESHUTDOWN: /* Disconnection */
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RDSHUTDOWN), 0);
priv->nrdq--;
}
break;
default: /* Some other error occurred */
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RDUNEXPECTED),
(uint16_t)-req->result);
cdcacm_requeue_rdrequest(priv, rdcontainer);
break;
}
}
leave_critical_section(flags);
}
/****************************************************************************
* Name: cdcacm_wrcomplete
*
* Description:
* Handle completion of write request. This function probably executes
* in the context of an interrupt handler.
*
****************************************************************************/
static void cdcacm_wrcomplete(FAR struct usbdev_ep_s *ep,
FAR struct usbdev_req_s *req)
{
FAR struct cdcacm_dev_s *priv;
FAR struct cdcacm_wrreq_s *wrcontainer;
irqstate_t flags;
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (!ep || !ep->priv || !req || !req->priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract references to our private data */
priv = (FAR struct cdcacm_dev_s *)ep->priv;
wrcontainer = (FAR struct cdcacm_wrreq_s *)req->priv;
/* Return the write request to the free list */
flags = enter_critical_section();
sq_addlast((FAR sq_entry_t *)wrcontainer, &priv->txfree);
priv->nwrq++;
leave_critical_section(flags);
/* Send the next packet unless this was some unusual termination
* condition
*/
switch (req->result)
{
case OK: /* Normal completion */
{
usbtrace(TRACE_CLASSWRCOMPLETE, priv->nwrq);
cdcacm_sndpacket(priv);
}
break;
case -ESHUTDOWN: /* Disconnection */
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_WRSHUTDOWN), priv->nwrq);
}
break;
default: /* Some other error occurred */
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_WRUNEXPECTED),
(uint16_t)-req->result);
}
break;
}
}
/****************************************************************************
* USB Class Driver Methods
****************************************************************************/
/****************************************************************************
* Name: cdcacm_bind
*
* Description:
* Invoked when the driver is bound to a USB device driver
*
****************************************************************************/
static int cdcacm_bind(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev)
{
FAR struct cdcacm_dev_s *priv = ((FAR struct cdcacm_driver_s *)driver)->dev;
FAR struct cdcacm_wrreq_s *wrcontainer;
FAR struct cdcacm_rdreq_s *rdcontainer;
irqstate_t flags;
uint16_t reqlen;
int ret;
int i;
usbtrace(TRACE_CLASSBIND, 0);
/* Bind the structures */
priv->usbdev = dev;
/* Save the reference to our private data structure in EP0 so that it
* can be recovered in ep0 completion events (Unless we are part of
* a composite device and, in that case, the composite device owns
* EP0).
*/
#ifndef CONFIG_CDCACM_COMPOSITE
dev->ep0->priv = priv;
#endif
/* Preallocate control request */
priv->ctrlreq = cdcacm_allocreq(dev->ep0, CDCACM_MXDESCLEN);
if (priv->ctrlreq == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_ALLOCCTRLREQ), 0);
ret = -ENOMEM;
goto errout;
}
priv->ctrlreq->callback = cdcacm_ep0incomplete;
/* Pre-allocate all endpoints... the endpoints will not be functional
* until the SET CONFIGURATION request is processed in cdcacm_setconfig.
* This is done here because there may be calls to kmm_malloc and the SET
* CONFIGURATION processing probably occurrs within interrupt handling
* logic where kmm_malloc calls will fail.
*/
/* Pre-allocate the IN interrupt endpoint */
priv->epintin = DEV_ALLOCEP(dev, CDCACM_MKEPINTIN(&priv->devinfo),
true, USB_EP_ATTR_XFER_INT);
if (!priv->epintin)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPINTINALLOCFAIL), 0);
ret = -ENODEV;
goto errout;
}
priv->epintin->priv = priv;
/* Pre-allocate the IN bulk endpoint */
priv->epbulkin = DEV_ALLOCEP(dev, CDCACM_MKEPBULKIN(&priv->devinfo),
true, USB_EP_ATTR_XFER_BULK);
if (!priv->epbulkin)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPBULKINALLOCFAIL), 0);
ret = -ENODEV;
goto errout;
}
priv->epbulkin->priv = priv;
/* Pre-allocate the OUT bulk endpoint */
priv->epbulkout = DEV_ALLOCEP(dev, CDCACM_MKEPBULKOUT(&priv->devinfo),
false, USB_EP_ATTR_XFER_BULK);
if (!priv->epbulkout)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPBULKOUTALLOCFAIL), 0);
ret = -ENODEV;
goto errout;
}
priv->epbulkout->priv = priv;
/* Pre-allocate read requests. The buffer size is one full packet. */
#ifdef CONFIG_USBDEV_DUALSPEED
reqlen = CONFIG_CDCACM_EPBULKOUT_HSSIZE;
#else
reqlen = CONFIG_CDCACM_EPBULKOUT_FSSIZE;
#endif
for (i = 0; i < CONFIG_CDCACM_NRDREQS; i++)
{
rdcontainer = &priv->rdreqs[i];
rdcontainer->req = cdcacm_allocreq(priv->epbulkout, reqlen);
if (rdcontainer->req == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_RDALLOCREQ), -ENOMEM);
ret = -ENOMEM;
goto errout;
}
rdcontainer->offset = 0;
rdcontainer->req->priv = rdcontainer;
rdcontainer->req->callback = cdcacm_rdcomplete;
}
/* Pre-allocate write request containers and put in a free list. The
* buffer size should be larger than a full build IN packet. Otherwise,
* we will send a bogus null packet at the end of each packet.
*
* Pick the larger of the max packet size and the configured request size.
*
* NOTE: These write requests are sized for the bulk IN endpoint but are
* shared with interrupt IN endpoint which does not need a large buffer.
*/
#ifdef CONFIG_USBDEV_DUALSPEED
reqlen = CONFIG_CDCACM_EPBULKIN_HSSIZE;
#else
reqlen = CONFIG_CDCACM_EPBULKIN_FSSIZE;
#endif
if (CONFIG_CDCACM_BULKIN_REQLEN > reqlen)
{
reqlen = CONFIG_CDCACM_BULKIN_REQLEN;
}
for (i = 0; i < CONFIG_CDCACM_NWRREQS; i++)
{
wrcontainer = &priv->wrreqs[i];
wrcontainer->req = cdcacm_allocreq(priv->epbulkin, reqlen);
if (wrcontainer->req == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_WRALLOCREQ), -ENOMEM);
ret = -ENOMEM;
goto errout;
}
wrcontainer->req->priv = wrcontainer;
wrcontainer->req->callback = cdcacm_wrcomplete;
flags = enter_critical_section();
sq_addlast((FAR sq_entry_t *)wrcontainer, &priv->txfree);
priv->nwrq++; /* Count of write requests available */
leave_critical_section(flags);
}
/* Report if we are selfpowered (unless we are part of a composite device) */
#ifndef CONFIG_CDCACM_COMPOSITE
#ifdef CONFIG_USBDEV_SELFPOWERED
DEV_SETSELFPOWERED(dev);
#endif
/* And pull-up the data line for the soft connect function (unless we are
* part of a composite device)
*/
DEV_CONNECT(dev);
#endif
return OK;
errout:
cdcacm_unbind(driver, dev);
return ret;
}
/****************************************************************************
* Name: cdcacm_unbind
*
* Description:
* Invoked when the driver is unbound from a USB device driver
*
****************************************************************************/
static void cdcacm_unbind(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev)
{
FAR struct cdcacm_dev_s *priv;
FAR struct cdcacm_wrreq_s *wrcontainer;
FAR struct cdcacm_rdreq_s *rdcontainer;
irqstate_t flags;
int i;
usbtrace(TRACE_CLASSUNBIND, 0);
#ifdef CONFIG_DEBUG_FEATURES
if (!driver || !dev)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract reference to private data */
priv = ((FAR struct cdcacm_driver_s *)driver)->dev;
#ifdef CONFIG_DEBUG_FEATURES
if (!priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EP0NOTBOUND), 0);
return;
}
#endif
/* Make sure that we are not already unbound */
if (priv != NULL)
{
/* Make sure that the endpoints have been unconfigured. If
* we were terminated gracefully, then the configuration should
* already have been reset. If not, then calling cdcacm_resetconfig
* should cause the endpoints to immediately terminate all
* transfers and return the requests to us (with result == -ESHUTDOWN)
*/
cdcacm_resetconfig(priv);
up_mdelay(50);
/* Free the interrupt IN endpoint */
if (priv->epintin)
{
DEV_FREEEP(dev, priv->epintin);
priv->epintin = NULL;
}
/* Free the pre-allocated control request */
if (priv->ctrlreq != NULL)
{
cdcacm_freereq(dev->ep0, priv->ctrlreq);
priv->ctrlreq = NULL;
}
/* Free pre-allocated read requests (which should all have
* been returned to the free list at this time -- we don't check)
*/
DEBUGASSERT(priv->nrdq == 0);
for (i = 0; i < CONFIG_CDCACM_NRDREQS; i++)
{
rdcontainer = &priv->rdreqs[i];
if (rdcontainer->req)
{
cdcacm_freereq(priv->epbulkout, rdcontainer->req);
rdcontainer->req = NULL;
}
}
/* Free the bulk OUT endpoint */
if (priv->epbulkout)
{
DEV_FREEEP(dev, priv->epbulkout);
priv->epbulkout = NULL;
}
/* Free write requests that are not in use (which should be all
* of them)
*/
flags = enter_critical_section();
DEBUGASSERT(priv->nwrq == CONFIG_CDCACM_NWRREQS);
while (!sq_empty(&priv->txfree))
{
wrcontainer = (struct cdcacm_wrreq_s *)sq_remfirst(&priv->txfree);
if (wrcontainer->req != NULL)
{
cdcacm_freereq(priv->epbulkin, wrcontainer->req);
priv->nwrq--; /* Number of write requests queued */
}
}
DEBUGASSERT(priv->nwrq == 0);
leave_critical_section(flags);
/* Free the bulk IN endpoint */
if (priv->epbulkin)
{
DEV_FREEEP(dev, priv->epbulkin);
priv->epbulkin = NULL;
}
/* Clear out all data in the circular buffer */
priv->serdev.xmit.head = 0;
priv->serdev.xmit.tail = 0;
}
}
/****************************************************************************
* Name: cdcacm_setup
*
* Description:
* Invoked for ep0 control requests. This function probably executes
* in the context of an interrupt handler.
*
****************************************************************************/
static int cdcacm_setup(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev,
FAR const struct usb_ctrlreq_s *ctrl,
FAR uint8_t *dataout, size_t outlen)
{
FAR struct cdcacm_dev_s *priv;
FAR struct usbdev_req_s *ctrlreq;
uint16_t value;
uint16_t index;
uint16_t len;
int ret = -EOPNOTSUPP;
#ifdef CONFIG_DEBUG_FEATURES
if (!driver || !dev || !ctrl)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return -EINVAL;
}
#endif
/* Extract reference to private data */
usbtrace(TRACE_CLASSSETUP, ctrl->req);
priv = ((FAR struct cdcacm_driver_s *)driver)->dev;
#ifdef CONFIG_DEBUG_FEATURES
if (!priv || !priv->ctrlreq)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EP0NOTBOUND), 0);
return -ENODEV;
}
#endif
ctrlreq = priv->ctrlreq;
/* Extract the little-endian 16-bit values to host order */
value = GETUINT16(ctrl->value);
index = GETUINT16(ctrl->index);
len = GETUINT16(ctrl->len);
uinfo("type=%02x req=%02x value=%04x index=%04x len=%04x\n",
ctrl->type, ctrl->req, value, index, len);
if ((ctrl->type & USB_REQ_TYPE_MASK) == USB_REQ_TYPE_STANDARD)
{
/**********************************************************************
* Standard Requests
**********************************************************************/
switch (ctrl->req)
{
case USB_REQ_GETDESCRIPTOR:
{
/* The value field specifies the descriptor type in the MS byte
* and the descriptor index in the LS byte (order is little
* endian)
*/
switch (ctrl->value[1])
{
/* If the serial device is used in as part of a composite
* device, then the device descriptor is provided by logic in
* the composite device implementation.
*/
#ifndef CONFIG_CDCACM_COMPOSITE
case USB_DESC_TYPE_DEVICE:
{
ret = USB_SIZEOF_DEVDESC;
memcpy(ctrlreq->buf, cdcacm_getdevdesc(), ret);
}
break;
#endif
/* If the serial device is used in as part of a composite
* device, then the device qualifier descriptor is provided by
* logic in the composite device implementation.
*/
#if !defined(CONFIG_CDCACM_COMPOSITE) && defined(CONFIG_USBDEV_DUALSPEED)
case USB_DESC_TYPE_DEVICEQUALIFIER:
{
ret = USB_SIZEOF_QUALDESC;
memcpy(ctrlreq->buf, cdcacm_getqualdesc(), ret);
}
break;
case USB_DESC_TYPE_OTHERSPEEDCONFIG:
#endif
/* If the serial device is used in as part of a composite
* device, then the configuration descriptor is provided by
* logic in the composite device implementation.
*/
#ifndef CONFIG_CDCACM_COMPOSITE
case USB_DESC_TYPE_CONFIG:
{
#ifdef CONFIG_USBDEV_DUALSPEED
ret = cdcacm_mkcfgdesc(ctrlreq->buf, &priv->devinfo,
dev->speed, ctrl->req);
#else
ret = cdcacm_mkcfgdesc(ctrlreq->buf, &priv->devinfo);
#endif
}
break;
#endif
/* If the serial device is used in as part of a composite
* device, then the language string descriptor is provided by
* logic in the composite device implementation.
*/
#ifndef CONFIG_CDCACM_COMPOSITE
case USB_DESC_TYPE_STRING:
{
/* index == language code. */
ret =
cdcacm_mkstrdesc(ctrl->value[0],
(FAR struct usb_strdesc_s *)
ctrlreq->buf);
}
break;
#endif
default:
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_GETUNKNOWNDESC),
value);
}
break;
}
}
break;
case USB_REQ_SETCONFIGURATION:
{
if (ctrl->type == 0)
{
ret = cdcacm_setconfig(priv, value);
}
}
break;
/* If the serial device is used in as part of a composite device,
* then the overall composite class configuration is managed by logic
* in the composite device implementation.
*/
#ifndef CONFIG_CDCACM_COMPOSITE
case USB_REQ_GETCONFIGURATION:
{
if (ctrl->type == USB_DIR_IN)
{
*(FAR uint8_t *)ctrlreq->buf = priv->config;
ret = 1;
}
}
break;
#endif
case USB_REQ_SETINTERFACE:
{
if (ctrl->type == USB_REQ_RECIPIENT_INTERFACE &&
priv->config == CDCACM_CONFIGID)
{
if ((index == priv->devinfo.ifnobase &&
value == CDCACM_NOTALTIFID) ||
(index == (priv->devinfo.ifnobase + 1) &&
value == CDCACM_DATAALTIFID))
{
cdcacm_resetconfig(priv);
cdcacm_setconfig(priv, priv->config);
ret = 0;
}
}
}
break;
case USB_REQ_GETINTERFACE:
{
if (ctrl->type == (USB_DIR_IN | USB_REQ_RECIPIENT_INTERFACE) &&
priv->config == CDCACM_CONFIGIDNONE)
{
if ((index == priv->devinfo.ifnobase &&
value == CDCACM_NOTALTIFID) ||
(index == (priv->devinfo.ifnobase + 1) &&
value == CDCACM_DATAALTIFID))
{
*(FAR uint8_t *) ctrlreq->buf = value;
ret = 1;
}
else
{
ret = -EDOM;
}
}
}
break;
default:
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDSTDREQ),
ctrl->req);
break;
}
}
else if ((ctrl->type & USB_REQ_TYPE_MASK) == USB_REQ_TYPE_CLASS)
{
/**********************************************************************
* CDC ACM-Specific Requests
**********************************************************************/
switch (ctrl->req)
{
/* ACM_GET_LINE_CODING requests current DTE rate, stop-bits, parity,
* and number-of-character bits. (Optional)
*/
case ACM_GET_LINE_CODING:
{
if (ctrl->type == (USB_DIR_IN | USB_REQ_TYPE_CLASS |
USB_REQ_RECIPIENT_INTERFACE) &&
index == priv->devinfo.ifnobase)
{
/* Return the current line status from the private data
* structure.
*/
memcpy(ctrlreq->buf, &priv->linecoding,
SIZEOF_CDC_LINECODING);
ret = SIZEOF_CDC_LINECODING;
}
else
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDCLASSREQ),
ctrl->type);
}
}
break;
/* ACM_SET_LINE_CODING configures DTE rate, stop-bits, parity, and
* number-of-character bits. (Optional)
*/
case ACM_SET_LINE_CODING:
{
if (ctrl->type == (USB_DIR_OUT | USB_REQ_TYPE_CLASS |
USB_REQ_RECIPIENT_INTERFACE) &&
len == SIZEOF_CDC_LINECODING && /* dataout && len == outlen && */
index == priv->devinfo.ifnobase)
{
/* Save the new line coding in the private data structure.
* NOTE: that this is conditional now because not all device
* controller drivers supported provision of EP0 OUT data
* with the setup command.
*/
if (dataout && len <= SIZEOF_CDC_LINECODING) /* REVISIT */
{
memcpy(&priv->linecoding, dataout, SIZEOF_CDC_LINECODING);
}
/* Respond with a zero length packet */
ret = 0;
/* If there is a registered callback to receive line status
* info, then callout now.
*/
if (priv->callback)
{
priv->callback(CDCACM_EVENT_LINECODING);
}
}
else
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDCLASSREQ),
ctrl->type);
}
}
break;
/* ACM_SET_CTRL_LINE_STATE: RS-232 signal used to tell the DCE
* device the DTE device is now present. (Optional)
*/
case ACM_SET_CTRL_LINE_STATE:
{
if (ctrl->type == (USB_DIR_OUT | USB_REQ_TYPE_CLASS |
USB_REQ_RECIPIENT_INTERFACE) &&
index == priv->devinfo.ifnobase)
{
/* Save the control line state in the private data
* structure. Only bits 0 and 1 have meaning. Respond with
* a zero length packet.
*/
priv->ctrlline = value & 3;
ret = 0;
/* If there is a registered callback to receive control line
* status info, then call out now.
*/
if (priv->callback)
{
priv->callback(CDCACM_EVENT_CTRLLINE);
}
}
else
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDCLASSREQ),
ctrl->type);
}
}
break;
/* Sends special carrier */
case ACM_SEND_BREAK:
{
if (ctrl->type == (USB_DIR_OUT | USB_REQ_TYPE_CLASS |
USB_REQ_RECIPIENT_INTERFACE) &&
index == priv->devinfo.ifnobase)
{
/* If there is a registered callback to handle the SendBreak
* request, then call out now. Respond with a zero length
* packet.
*/
ret = 0;
if (priv->callback)
{
priv->callback(CDCACM_EVENT_SENDBREAK);
}
}
else
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDCLASSREQ),
ctrl->type);
}
}
break;
default:
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDCLASSREQ),
ctrl->req);
break;
}
}
else
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UNSUPPORTEDTYPE), ctrl->type);
}
/* Respond to the setup command if data was returned. On an error return
* value (ret < 0), the USB driver will stall.
*/
if (ret >= 0)
{
/* Configure the response */
ctrlreq->len = MIN(len, ret);
ctrlreq->flags = USBDEV_REQFLAGS_NULLPKT;
/* Send the response -- either directly to the USB controller or
* indirectly in the case where this class is a member of a composite
* device.
*/
#ifndef CONFIG_CDCACM_COMPOSITE
ret = EP_SUBMIT(dev->ep0, ctrlreq);
#else
ret = composite_ep0submit(driver, dev, ctrlreq);
#endif
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EPRESPQ), (uint16_t)-ret);
ctrlreq->result = OK;
cdcacm_ep0incomplete(dev->ep0, ctrlreq);
}
}
/* Returning a negative value will cause a STALL */
return ret;
}
/****************************************************************************
* Name: cdcacm_disconnect
*
* Description:
* Invoked after all transfers have been stopped, when the host is
* disconnected. This function is probably called from the context of an
* interrupt handler.
*
****************************************************************************/
static void cdcacm_disconnect(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev)
{
FAR struct cdcacm_dev_s *priv;
irqstate_t flags;
usbtrace(TRACE_CLASSDISCONNECT, 0);
#ifdef CONFIG_DEBUG_FEATURES
if (!driver || !dev || !dev->ep0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract reference to private data */
priv = ((FAR struct cdcacm_driver_s *)driver)->dev;
#ifdef CONFIG_DEBUG_FEATURES
if (!priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_EP0NOTBOUND), 0);
return;
}
#endif
/* Inform the "upper half serial driver that we have lost the USB serial
* connection.
*/
flags = enter_critical_section();
#ifdef CONFIG_SERIAL_REMOVABLE
uart_connected(&priv->serdev, false);
#endif
/* Reset the configuration */
cdcacm_resetconfig(priv);
/* Clear out all outgoing data in the circular buffer */
priv->serdev.xmit.head = 0;
priv->serdev.xmit.tail = 0;
leave_critical_section(flags);
/* Perform the soft connect function so that we will we can be
* re-enumerated (unless we are part of a composite device)
*/
#ifndef CONFIG_CDCACM_COMPOSITE
DEV_CONNECT(dev);
#endif
}
/****************************************************************************
* Name: cdcacm_suspend
*
* Description:
* Handle the USB suspend event.
*
****************************************************************************/
#ifdef CONFIG_SERIAL_REMOVABLE
static void cdcacm_suspend(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev)
{
FAR struct cdcacm_dev_s *priv;
usbtrace(TRACE_CLASSSUSPEND, 0);
#ifdef CONFIG_DEBUG_FEATURES
if (!driver || !dev)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract reference to private data */
priv = ((FAR struct cdcacm_driver_s *)driver)->dev;
/* And let the "upper half" driver now that we are suspended */
uart_connected(&priv->serdev, false);
}
#endif
/****************************************************************************
* Name: cdcacm_resume
*
* Description:
* Handle the USB resume event.
*
****************************************************************************/
#ifdef CONFIG_SERIAL_REMOVABLE
static void cdcacm_resume(FAR struct usbdevclass_driver_s *driver,
FAR struct usbdev_s *dev)
{
FAR struct cdcacm_dev_s *priv;
usbtrace(TRACE_CLASSRESUME, 0);
#ifdef CONFIG_DEBUG_FEATURES
if (!driver || !dev)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract reference to private data */
priv = ((FAR struct cdcacm_driver_s *)driver)->dev;
/* Are we still configured? */
if (priv->config != CDCACM_CONFIGIDNONE)
{
/* Yes.. let the "upper half" know that have resumed */
uart_connected(&priv->serdev, true);
}
}
#endif
/****************************************************************************
* Serial Device Methods
****************************************************************************/
/****************************************************************************
* Name: cdcuart_setup
*
* Description:
* This method is called the first time that the serial port is opened.
*
****************************************************************************/
static int cdcuart_setup(FAR struct uart_dev_s *dev)
{
FAR struct cdcacm_dev_s *priv;
usbtrace(CDCACM_CLASSAPI_SETUP, 0);
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (!dev || !dev->priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return -EINVAL;
}
#endif
/* Extract reference to private data */
priv = (FAR struct cdcacm_dev_s *)dev->priv;
/* Check if we have been configured */
if (priv->config == CDCACM_CONFIGIDNONE)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_SETUPNOTCONNECTED), 0);
return -ENOTCONN;
}
return OK;
}
/****************************************************************************
* Name: cdcuart_shutdown
*
* Description:
* This method is called when the serial port is closed. This operation
* is very simple for the USB serial back-end because the serial driver
* has already assured that the TX data has full drained -- it calls
* cdcuart_txempty() until that function returns true before calling this
* function.
*
****************************************************************************/
static void cdcuart_shutdown(FAR struct uart_dev_s *dev)
{
usbtrace(CDCACM_CLASSAPI_SHUTDOWN, 0);
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (!dev || !dev->priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
}
#endif
}
/****************************************************************************
* Name: cdcuart_attach
*
* Description:
* Does not apply to the USB serial class device
*
****************************************************************************/
static int cdcuart_attach(FAR struct uart_dev_s *dev)
{
usbtrace(CDCACM_CLASSAPI_ATTACH, 0);
return OK;
}
/****************************************************************************
* Name: cdcuart_detach
*
* Description:
* Does not apply to the USB serial class device
*
****************************************************************************/
static void cdcuart_detach(FAR struct uart_dev_s *dev)
{
usbtrace(CDCACM_CLASSAPI_DETACH, 0);
}
/****************************************************************************
* Name: cdcuart_ioctl
*
* Description:
* All ioctl calls will be routed through this method
*
****************************************************************************/
static int cdcuart_ioctl(FAR struct file *filep, int cmd, unsigned long arg)
{
struct inode *inode = filep->f_inode;
struct cdcacm_dev_s *priv = inode->i_private;
FAR uart_dev_t *serdev = &priv->serdev;
int ret = OK;
switch (cmd)
{
/* CAICO_REGISTERCB
* Register a callback for serial event notification. Argument:
* cdcacm_callback_t. See cdcacm_callback_t type definition below.
* NOTE: The callback will most likely invoked at the interrupt level.
* The called back function should, therefore, limit its operations to
* invoking some kind of IPC to handle the serial event in some normal
* task environment.
*/
case CAIOC_REGISTERCB:
{
/* Save the new callback function */
priv->callback = (cdcacm_callback_t)((uintptr_t)arg);
}
break;
/* CAIOC_GETLINECODING
* Get current line coding. Argument: struct cdc_linecoding_s*.
* See include/nuttx/usb/cdc.h for structure definition. This IOCTL
* should be called to get the data associated with the
* CDCACM_EVENT_LINECODING event).
*/
case CAIOC_GETLINECODING:
{
FAR struct cdc_linecoding_s *ptr =
(FAR struct cdc_linecoding_s *)((uintptr_t)arg);
if (ptr != NULL)
{
memcpy(ptr, &priv->linecoding, sizeof(struct cdc_linecoding_s));
}
else
{
ret = -EINVAL;
}
}
break;
/* CAIOC_GETCTRLLINE
* Get control line status bits. Argument FAR int*. See
* include/nuttx/usb/cdc.h for bit definitions. This IOCTL should be
* called to get the data associated CDCACM_EVENT_CTRLLINE event.
*/
case CAIOC_GETCTRLLINE:
{
FAR int *ptr = (FAR int *)((uintptr_t)arg);
if (ptr != NULL)
{
*ptr = priv->ctrlline;
}
else
{
ret = -EINVAL;
}
}
break;
#ifdef CONFIG_CDCACM_IFLOWCONTROL
/* CAIOC_NOTIFY
* Send a serial state to the host via the Interrupt IN endpoint.
* Argument: int. This includes the current state of the carrier
* detect, DSR, break, and ring signal. See "Table 69: UART State
* Bitmap Values" and CDC_UART_definitions in include/nuttx/usb/cdc.h.
*/
case CAIOC_NOTIFY:
{
DEBUGASSERT(arg < UINT8_MAX);
priv->serialstate = (uint8_t)arg;
ret = cdcacm_serialstate(priv);
}
break;
#endif
#ifdef CONFIG_SERIAL_TERMIOS
case TCGETS:
{
struct termios *termiosp = (FAR struct termios *)arg;
if (!termiosp)
{
ret = -EINVAL;
break;
}
/* And update with flags from this layer */
termiosp->c_iflag = serdev->tc_iflag;
termiosp->c_oflag = serdev->tc_oflag;
termiosp->c_lflag = serdev->tc_lflag;
termiosp->c_cflag = CS8;
#ifdef CONFIG_CDCACM_OFLOWCONTROL
/* Report state of output flow control */
# warning Missing logic
#endif
#ifdef CONFIG_CDCACM_IFLOWCONTROL
/* Report state of input flow control */
termiosp->c_cflag |= (priv->iflow) ? CRTS_IFLOW : 0;
#endif
}
break;
case TCSETS:
{
struct termios *termiosp = (FAR struct termios *)arg;
#ifdef CONFIG_CDCACM_IFLOWCONTROL
bool iflow;
#endif
if (!termiosp)
{
ret = -EINVAL;
break;
}
/* Update the flags we keep at this layer */
serdev->tc_iflag = termiosp->c_iflag;
serdev->tc_oflag = termiosp->c_oflag;
serdev->tc_lflag = termiosp->c_lflag;
#ifdef CONFIG_CDCACM_OFLOWCONTROL
/* Handle changes to output flow control */
# warning Missing logic
#endif
#ifdef CONFIG_CDCACM_IFLOWCONTROL
/* Handle changes to input flow control */
iflow = ((termiosp->c_cflag & CRTS_IFLOW) != 0);
if (iflow != priv->iflow)
{
/* Check if flow control has been disabled. */
if (!iflow)
{
/* Flow control has been disabled. We need to make sure
* that DSR is set unconditionally.
*/
if ((priv->serialstate & CDCACM_UART_DSR) == 0)
{
priv->serialstate |= (CDCACM_UART_DSR | CDCACM_UART_DCD);
ret = cdcacm_serialstate(priv);
}
/* Save the new flow control setting. */
priv->iflow = false;
priv->iactive = false;
/* During the time that flow control was disabled, incoming
* packets were queued in priv->rxpending. We must now
* process all of them (unless RX interrupts are also
* disabled)
*/
(void)cdcacm_release_rxpending(priv);
}
/* Flow control has been enabled. */
else
{
/* Save the new flow control setting. */
priv->iflow = true;
priv->iactive = false;
/* If the RX buffer is already (nearly) full, the we need to
* make sure the DSR is clear.
*
* NOTE: Here we assume that DSR is set so we don't check its
* current value nor to we handle the case where we would set
* DSR because the RX buffer is (nearly) empty!
*/
if (priv->upper)
{
priv->serialstate &= ~CDCACM_UART_DSR;
priv->serialstate |= CDCACM_UART_DCD;
ret = cdcacm_serialstate(priv);
/* Input flow control is now active */
priv->iactive = true;
}
}
/* RX "interrupts are no longer disabled */
priv->rxenabled = true;
}
#endif
}
break;
#endif
/* Get the number of bytes that may be read from the RX buffer (without
* waiting)
*/
case FIONREAD:
{
int count;
irqstate_t flags = enter_critical_section();
/* Determine the number of bytes available in the RX buffer. */
if (serdev->recv.tail <= serdev->recv.head)
{
count = serdev->recv.head - serdev->recv.tail;
}
else
{
count = serdev->recv.size -
(serdev->recv.tail - serdev->recv.head);
}
leave_critical_section(flags);
*(int *)arg = count;
ret = 0;
}
break;
/* Get the number of bytes that have been written to the TX buffer. */
case FIONWRITE:
{
int count;
irqstate_t flags = enter_critical_section();
/* Determine the number of bytes waiting in the TX buffer. */
if (serdev->xmit.tail <= serdev->xmit.head)
{
count = serdev->xmit.head - serdev->xmit.tail;
}
else
{
count = serdev->xmit.size -
(serdev->xmit.tail - serdev->xmit.head);
}
leave_critical_section(flags);
*(int *)arg = count;
ret = 0;
}
break;
/* Get the number of free bytes in the TX buffer */
case FIONSPACE:
{
int count;
irqstate_t flags = enter_critical_section();
/* Determine the number of bytes free in the TX buffer */
if (serdev->xmit.head < serdev->xmit.tail)
{
count = serdev->xmit.tail - serdev->xmit.head - 1;
}
else
{
count = serdev->xmit.size -
(serdev->xmit.head - serdev->xmit.tail) - 1;
}
leave_critical_section(flags);
*(FAR int *)arg = count;
ret = 0;
}
break;
default:
ret = -ENOTTY;
break;
}
return ret;
}
/****************************************************************************
* Name: cdcuart_rxint
*
* Description:
* Called by the serial driver to enable or disable RX interrupts. We, of
* course, have no RX interrupts but must behave consistently. This method
* is called under the conditions:
*
* 1. With enable==true when the port is opened (just after cdcuart_setup
* and cdcuart_attach are called called)
* 2. With enable==false while transferring data from the RX buffer
* 2. With enable==true while waiting for more incoming data
* 3. With enable==false when the port is closed (just before cdcuart_detach
* and cdcuart_shutdown are called).
*
* Assumptions:
* Called from the serial upper-half driver running on the thread of
* execution of the caller of the driver or, possibly, on from the
* USB interrupt handler (at least for the case where the RX interrupt
* is disabled)
*
****************************************************************************/
static void cdcuart_rxint(FAR struct uart_dev_s *dev, bool enable)
{
FAR struct cdcacm_dev_s *priv;
irqstate_t flags;
usbtrace(CDCACM_CLASSAPI_RXINT, (uint16_t)enable);
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (!dev || !dev->priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract reference to private data */
priv = (FAR struct cdcacm_dev_s *)dev->priv;
/* We need exclusive access to the RX buffer and private structure
* in the following.
*/
flags = enter_critical_section();
if (enable)
{
/* RX "interrupts" are enabled. Is this a transition from disabled
* to enabled state?
*/
if (!priv->rxenabled)
{
/* Yes.. RX "interrupts are no longer disabled */
priv->rxenabled = true;
}
/* During the time that RX interrupts was disabled, incoming
* packets were queued in priv->rxpending. We must now process
* all of them (unless flow control is enabled)
*
* NOTE: This action may cause this function to be re-entered
* with enable == false , anyway the pend-list should be flushed
*/
(void)cdcacm_release_rxpending(priv);
}
/* RX "interrupts" are disabled. Nothing special needs to be done on a
* transition from the enabled to the disabled state.
*/
else
{
priv->rxenabled = false;
}
leave_critical_section(flags);
}
/****************************************************************************
* Name: cdcuart_rxflowcontrol
*
* Description:
* Called when Rx buffer is full (or exceeds configured watermark levels
* if CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS is defined).
* Return true if UART activated RX flow control to block more incoming
* data
*
* Input Parameters:
* dev - UART device instance
* nbuffered - the number of characters currently buffered
* (if CONFIG_SERIAL_IFLOWCONTROL_WATERMARKS is
* not defined the value will be 0 for an empty buffer or the
* defined buffer size for a full buffer)
* upper - true indicates the upper watermark was crossed where
* false indicates the lower watermark has been crossed
*
* Returned Value:
* true if RX flow control activated.
*
****************************************************************************/
#ifdef CONFIG_SERIAL_IFLOWCONTROL
static bool cdcuart_rxflowcontrol(FAR struct uart_dev_s *dev,
unsigned int nbuffered, bool upper)
{
#ifdef CONFIG_CDCACM_IFLOWCONTROL
FAR struct cdcacm_dev_s *priv;
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (dev == NULL || dev->priv == NULL)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return false;
}
#endif
/* Extract reference to private data */
priv = (FAR struct cdcacm_dev_s *)dev->priv;
/* Is input flow control enabled? */
priv->upper = upper;
if (priv->iflow)
{
/* Yes.. Set DSR (TX carrier) if the lower water mark has been crossed
* or clear it if the upper water mark has been crossed.
*/
if (upper)
{
/* Don't do anything unless this results in a change in the
* setting of DSR.
*/
if ((priv->serialstate & CDCACM_UART_DSR) != 0)
{
/* Clear DSR (set DCD in any case). */
priv->serialstate &= ~CDCACM_UART_DSR;
priv->serialstate |= CDCACM_UART_DCD;
/* And send the SerialState message.
* REVISIT: Error return case. Would an error mean DSR is not
* set?
*/
(void)cdcacm_serialstate(priv);
}
/* Flow control is active */
priv->iactive = true;
}
/* Lower watermark crossing. Don't do anything unless this results in
* a change in the setting of DSR.
*/
else
{
/* Flow control is not active (Needed before calling
* cdcacm_release_rxpending())
*/
priv->iactive = false;
/* Set DSR if it is not alredy set */
if ((priv->serialstate & CDCACM_UART_DSR) == 0)
{
priv->serialstate |= (CDCACM_UART_DSR | CDCACM_UART_DCD);
/* And send the SerialState message.
* REVISIT: Error return case. Would an error mean DSR is
* still clear?
*/
(void)cdcacm_serialstate(priv);
}
/* During the time that flow control ws disabled, incoming packets
* were queued in priv->rxpending. We must now process all of
* them (unless RX interrupts becomes enabled)
*
* NOTE: This action may cause this function to be re-entered with
* upper == false.
*/
(void)cdcacm_release_rxpending(priv);
}
}
else
{
/* Flow control is disabled ... DSR must be set */
if ((priv->serialstate & CDCACM_UART_DSR) == 0)
{
/* Set DSR and DCD */
priv->serialstate |= (CDCACM_UART_DSR | CDCACM_UART_DCD);
/* And send the SerialState message
* REVISIT: Error return case. Would an error mean DSR is still
* not set?
*/
(void)cdcacm_serialstate(priv);
/* Flow control is not active */
priv->iactive = false;
}
}
/* Return true flow control is active */
return priv->iactive;
#else
return false;
#endif
}
#endif
/****************************************************************************
* Name: cdcuart_txint
*
* Description:
* Called by the serial driver to enable or disable TX interrupts. We, of
* course, have no TX interrupts but must behave consistently. Initially,
* TX interrupts are disabled. This method is called under the conditions:
*
* 1. With enable==false while transferring data into the TX buffer
* 2. With enable==true when data may be taken from the buffer.
* 3. With enable==false when the TX buffer is empty
*
****************************************************************************/
static void cdcuart_txint(FAR struct uart_dev_s *dev, bool enable)
{
FAR struct cdcacm_dev_s *priv;
usbtrace(CDCACM_CLASSAPI_TXINT, (uint16_t)enable);
/* Sanity checks */
#ifdef CONFIG_DEBUG_FEATURES
if (!dev || !dev->priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return;
}
#endif
/* Extract references to private data */
priv = (FAR struct cdcacm_dev_s *)dev->priv;
/* If the new state is enabled and if there is data in the XMIT buffer,
* send the next packet now.
*/
uinfo("enable=%d head=%d tail=%d\n",
enable, priv->serdev.xmit.head, priv->serdev.xmit.tail);
if (enable && priv->serdev.xmit.head != priv->serdev.xmit.tail)
{
cdcacm_sndpacket(priv);
}
}
/****************************************************************************
* Name: cdcuart_txempty
*
* Description:
* Return true when all data has been sent. This is called from the
* serial driver when the driver is closed. It will call this API
* periodically until it reports true. NOTE that the serial driver takes
* all responsibility for flushing TX data through the hardware so we can
* be a bit sloppy about that.
*
****************************************************************************/
static bool cdcuart_txempty(FAR struct uart_dev_s *dev)
{
FAR struct cdcacm_dev_s *priv = (FAR struct cdcacm_dev_s *)dev->priv;
usbtrace(CDCACM_CLASSAPI_TXEMPTY, 0);
#ifdef CONFIG_DEBUG_FEATURES
if (!priv)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_INVALIDARG), 0);
return true;
}
#endif
/* When all of the allocated write requests have been returned to the
* txfree, then there is no longer any TX data in flight.
*/
return priv->nwrq >= CONFIG_CDCACM_NWRREQS;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: cdcacm_classobject
*
* Description:
* Register USB serial port (and USB serial console if so configured) and
* return the class object.
*
* Input Parameters:
* minor - Device minor number. E.g., minor 0 would correspond to
* /dev/ttyACM0.
* classdev - The location to return the CDC serial class' device
* instance.
*
* Returned Value:
* A pointer to the allocated class object (NULL on failure).
*
****************************************************************************/
#ifndef CONFIG_CDCACM_COMPOSITE
static
#endif
int cdcacm_classobject(int minor, FAR struct usbdev_devinfo_s *devinfo,
FAR struct usbdevclass_driver_s **classdev)
{
FAR struct cdcacm_alloc_s *alloc;
FAR struct cdcacm_dev_s *priv;
FAR struct cdcacm_driver_s *drvr;
char devname[CDCACM_DEVNAME_SIZE];
int ret;
/* Allocate the structures needed */
alloc = (FAR struct cdcacm_alloc_s *)
kmm_malloc(sizeof(struct cdcacm_alloc_s));
if (!alloc)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_ALLOCDEVSTRUCT), 0);
return -ENOMEM;
}
/* Convenience pointers into the allocated blob */
priv = &alloc->dev;
drvr = &alloc->drvr;
/* Initialize the USB serial driver structure */
memset(priv, 0, sizeof(struct cdcacm_dev_s));
sq_init(&priv->txfree);
sq_init(&priv->rxpending);
priv->minor = minor;
/* Save the caller provided device description (composite only) */
memcpy(&priv->devinfo, devinfo,
sizeof(struct usbdev_devinfo_s));
/* Allocate a failsafe time so that we can be assured that RX data
* can never stall in the priv->rxpending queue.
*/
priv->rxfailsafe = wd_create();
DEBUGASSERT(priv->rxfailsafe != NULL);
#ifdef CONFIG_CDCACM_IFLOWCONTROL
/* SerialState */
priv->serialstate = (CDCACM_UART_DCD | CDCACM_UART_DSR);
#endif
/* Fake line status */
priv->linecoding.baud[0] = (115200) & 0xff; /* Baud=115200 */
priv->linecoding.baud[1] = (115200 >> 8) & 0xff;
priv->linecoding.baud[2] = (115200 >> 16) & 0xff;
priv->linecoding.baud[3] = (115200 >> 24) & 0xff;
priv->linecoding.stop = CDC_CHFMT_STOP1; /* One stop bit */
priv->linecoding.parity = CDC_PARITY_NONE; /* No parity */
priv->linecoding.nbits = 8; /* 8 data bits */
/* Initialize the serial driver sub-structure */
/* The initial state is disconnected */
#ifdef CONFIG_SERIAL_REMOVABLE
priv->serdev.disconnected = true;
#endif
priv->serdev.recv.size = CONFIG_CDCACM_RXBUFSIZE;
priv->serdev.recv.buffer = priv->rxbuffer;
priv->serdev.xmit.size = CONFIG_CDCACM_TXBUFSIZE;
priv->serdev.xmit.buffer = priv->txbuffer;
priv->serdev.ops = &g_uartops;
priv->serdev.priv = priv;
/* Initialize the USB class driver structure */
#ifdef CONFIG_USBDEV_DUALSPEED
drvr->drvr.speed = USB_SPEED_HIGH;
#else
drvr->drvr.speed = USB_SPEED_FULL;
#endif
drvr->drvr.ops = &g_driverops;
drvr->dev = priv;
/* Register the USB serial console */
#ifdef CONFIG_CDCACM_CONSOLE
priv->serdev.isconsole = true;
ret = uart_register("/dev/console", &priv->serdev);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_CONSOLEREGISTER),
(uint16_t)-ret);
goto errout_with_class;
}
#endif
/* Register the CDC/ACM TTY device */
sprintf(devname, CDCACM_DEVNAME_FORMAT, minor);
ret = uart_register(devname, &priv->serdev);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UARTREGISTER),
(uint16_t)-ret);
goto errout_with_class;
}
*classdev = &drvr->drvr;
return OK;
errout_with_class:
kmm_free(alloc);
return ret;
}
/****************************************************************************
* Name: cdcacm_initialize
*
* Description:
* Register USB serial port (and USB serial console if so configured).
*
* Input Parameters:
* minor - Device minor number. E.g., minor 0 would correspond to
* /dev/ttyACM0.
* handle - An optional opaque reference to the CDC/ACM class object that
* may subsequently be used with cdcacm_uninitialize().
*
* Returned Value:
* Zero (OK) means that the driver was successfully registered. On any
* failure, a negated errno value is returned.
*
****************************************************************************/
#ifndef CONFIG_CDCACM_COMPOSITE
int cdcacm_initialize(int minor, FAR void **handle)
{
FAR struct usbdevclass_driver_s *drvr = NULL;
struct usbdev_devinfo_s devinfo;
int ret;
memset(&devinfo, 0, sizeof(struct usbdev_devinfo_s));
/* Interfaces.
*
* ifnobase must be provided by board-specific logic
*/
devinfo.ninterfaces = CDCACM_NINTERFACES; /* Number of interfaces in the configuration */
/* Strings.
*
* strbase must be provided by board-specific logic
*/
devinfo.nstrings = CDCACM_NSTRIDS; /* Number of Strings */
/* Endpoints.
*
* Endpoint numbers must be provided by board-specific logic when
* CDC/ACM is used in a composite device.
*/
devinfo.nendpoints = CDCACM_NUM_EPS;
#ifndef CONFIG_CDCACM_COMPOSITE
devinfo.epno[CDCACM_EP_INTIN_IDX] = CONFIG_CDCACM_EPINTIN;
devinfo.epno[CDCACM_EP_BULKIN_IDX] = CONFIG_CDCACM_EPBULKIN;
devinfo.epno[CDCACM_EP_BULKOUT_IDX] = CONFIG_CDCACM_EPBULKOUT;
#endif
/* Get an instance of the serial driver class object */
ret = cdcacm_classobject(minor, &devinfo, &drvr);
if (ret == OK)
{
/* Register the USB serial class driver */
ret = usbdev_register(drvr);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_DEVREGISTER),
(uint16_t)-ret);
}
}
/* Return the driver instance (if any) if the caller has requested it
* by provided a pointer to the location to return it.
*/
if (handle)
{
*handle = (FAR void *)drvr;
}
return ret;
}
#endif
/****************************************************************************
* Name: cdcacm_uninitialize
*
* Description:
* Un-initialize the USB storage class driver. This function is used
* internally by the USB composite driver to uninitialize the CDC/ACM
* driver. This same interface is available (with an untyped input
* parameter) when the CDC/ACM driver is used standalone.
*
* Input Parameters:
* There is one parameter, it differs in typing depending upon whether the
* CDC/ACM driver is an internal part of a composite device, or a standalone
* USB driver:
*
* classdev - The class object returned by cdcacm_classobject()
* handle - The opaque handle representing the class object returned by
* a previous call to cdcacm_initialize().
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_CDCACM_COMPOSITE
void cdcacm_uninitialize(FAR struct usbdevclass_driver_s *classdev)
#else
void cdcacm_uninitialize(FAR void *handle)
#endif
{
#ifdef CONFIG_CDCACM_COMPOSITE
FAR struct cdcacm_driver_s *drvr = (FAR struct cdcacm_driver_s *)classdev;
#else
FAR struct cdcacm_driver_s *drvr = (FAR struct cdcacm_driver_s *)handle;
#endif
FAR struct cdcacm_dev_s *priv = drvr->dev;
char devname[CDCACM_DEVNAME_SIZE];
int ret;
#ifdef CONFIG_CDCACM_COMPOSITE
/* Check for pass 2 uninitialization. We did most of the work on the
* first pass uninitialization.
*/
if (priv->minor == (uint8_t)-1)
{
/* In this second and final pass, all that remains to be done is to
* free the memory resources.
*/
kmm_free(priv);
return;
}
#endif
/* Un-register the CDC/ACM TTY device */
sprintf(devname, CDCACM_DEVNAME_FORMAT, priv->minor);
ret = unregister_driver(devname);
if (ret < 0)
{
usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_UARTUNREGISTER),
(uint16_t)-ret);
}
/* Unregister the driver (unless we are a part of a composite device). The
* device unregister logic will (1) return all of the requests to us then
* (2) all the unbind method.
*
* The same thing will happen in the composite case except that: (1) the
* composite driver will call usbdev_unregister() which will (2) return the
* requests for all members of the composite, and (3) call the unbind
* method in the composite device which will (4) call the unbind method
* for this device.
*/
#ifndef CONFIG_CDCACM_COMPOSITE
usbdev_unregister(&drvr->drvr);
/* And free the driver structure */
kmm_free(priv);
#else
/* For the case of the composite driver, there is a two pass
* uninitialization sequence. We cannot yet free the driver structure.
* We will do that on the second pass. We mark the fact that we have
* already uninitialized by setting the minor number to -1. If/when we
* are called again, then we will free the memory resources.
*/
priv->minor = (uint8_t)-1;
#endif
}
/****************************************************************************
* Name: cdcacm_get_composite_devdesc
*
* Description:
* Helper function to fill in some constants into the composite
* configuration struct.
*
* Input Parameters:
* dev - Pointer to the configuration struct we should fill
*
* Returned Value:
* None
*
****************************************************************************/
#if defined(CONFIG_USBDEV_COMPOSITE) && defined(CONFIG_CDCACM_COMPOSITE)
void cdcacm_get_composite_devdesc(struct composite_devdesc_s *dev)
{
memset(dev, 0, sizeof(struct composite_devdesc_s));
/* The callback functions for the CDC/ACM class.
*
* classobject() and uninitialize() must be provided by board-specific
* logic
*/
dev->mkconfdesc = cdcacm_mkcfgdesc;
dev->mkstrdesc = cdcacm_mkstrdesc;
dev->nconfigs = CDCACM_NCONFIGS; /* Number of configurations supported */
dev->configid = CDCACM_CONFIGID; /* The only supported configuration ID */
/* Let the construction function calculate the size of the config descriptor */
#ifdef CONFIG_USBDEV_DUALSPEED
dev->cfgdescsize = cdcacm_mkcfgdesc(NULL, NULL, USB_SPEED_UNKNOWN, 0);
#else
dev->cfgdescsize = cdcacm_mkcfgdesc(NULL, NULL);
#endif
/* Board-specific logic must provide the device minor */
/* Interfaces.
*
* ifnobase must be provided by board-specific logic
*/
dev->devinfo.ninterfaces = CDCACM_NINTERFACES; /* Number of interfaces in the configuration */
/* Strings.
*
* strbase must be provided by board-specific logic
*/
dev->devinfo.nstrings = CDCACM_NSTRIDS; /* Number of Strings */
/* Endpoints.
*
* Endpoint numbers must be provided by board-specific logic.
*/
dev->devinfo.nendpoints = CDCACM_NUM_EPS;
}
#endif