2246afcdd8
Signed-off-by: chao.an <anchao@xiaomi.com>
417 lines
16 KiB
Plaintext
417 lines
16 KiB
Plaintext
README
|
|
^^^^^^
|
|
|
|
This README discusses issues unique to NuttX configurations for the
|
|
Atmel SAM4S Xplained development board. This board features the
|
|
ATSAM4S32C MCU with 1MB FLASH and 128KB.
|
|
|
|
The SAM4S Xplained features:
|
|
|
|
- 120 MHz Cortex-M4 with MPU
|
|
- 12MHz crystal (no 32.768KHz crystal)
|
|
- Segger J-Link JTAG emulator on-board for program and debug
|
|
- MICRO USB A/B connector for USB connectivity
|
|
- IS66WV51216DBLL ISSI SRAM 8Mb 512K x 16 55ns PSRAM 2.5v-3.6v
|
|
- Four Atmel QTouch buttons
|
|
- External voltage input
|
|
- Two LEDs, one controllable from software
|
|
- Xplained expansion headers
|
|
- Footprint for external serial Flash (not fitted)
|
|
|
|
Contents
|
|
^^^^^^^^
|
|
|
|
- PIO Muliplexing
|
|
- Buttons and LEDs
|
|
- Serial Consoles
|
|
- SAM4S Xplained-specific Configuration Options
|
|
- Configurations
|
|
|
|
PIO Muliplexing
|
|
^^^^^^^^^^^^^^^
|
|
|
|
PA0 SMC_A17 PB0 J2.3 default PC0 SMC_D0
|
|
PA1 SMC_A18 PB1 J2.4 PC1 SMC_D1
|
|
PA2 J3.7 default PB2 J1.3 & J4.3 PC2 SMC_D2
|
|
PA3 J1.1 & J4.1 PB3 J1.4 & J4.4 PC3 SMC_D3
|
|
PA4 J1.2 & J4.2 PB4 JTAG PC4 SMC_D4
|
|
PA5 User_button BP2 PB5 JTAG PC5 SMC_D5
|
|
PA6 J3.7 optional PB6 JTAG PC6 SMC_D6
|
|
PA7 CLK_32K PB7 JTAG PC7 SMC_D7
|
|
PA8 CLK_32K PB8 CLK_12M PC8 SMC_NWE
|
|
PA9 RX_UART0 PB9 CLK_12M PC9 Power on detect
|
|
PA10 TX_UART0 PB10 USB_DDM PC10 User LED D9
|
|
PA11 J3.2 default PB11 USB_DDP PC11 SMC_NRD
|
|
PA12 MISO PB12 ERASE PC12 J2.2
|
|
PA13 MOSI PB13 J2.3 optional PC13 J2.7
|
|
PA14 SPCK PB14 N/A PC14 SMC_NCS0
|
|
PA15 J3.5 PC15 SMC_NSC1
|
|
PA16 J3.6 PC16 N/A
|
|
PA17 J2.5 PC17 User LED D10
|
|
PA18 J3.4 & SMC_A14 PC18 SMC_A0
|
|
PA19 J3.4 optional & SMC_A15 PC19 SMC_A1
|
|
PA20 J3.1 & SMC_A16 PC20 SMC_A2
|
|
PA21 J2.6 PC21 SMC_A3
|
|
PA22 J2.1 PC22 SMC_A4
|
|
PA23 J3.3 PC23 SMC_A5
|
|
PA24 TSLIDR_SL_SN PC24 SMC_A6
|
|
PA25 TSLIDR_SL_SNSK PC25 SMC_A7
|
|
PA26 TSLIDR_SM_SNS PC26 SMC_A8
|
|
PA27 TSLIDR_SM_SNSK PC27 SMC_A9
|
|
PA28 TSLIDR_SR_SNS PC28 SMC_A10
|
|
PA29 TSLIDR_SR_SNSK PC29 SMC_A11
|
|
PA30 J4.5 PC30 SMC_A12
|
|
PA31 J1.5 PC31 SMC_A13
|
|
|
|
Buttons and LEDs
|
|
^^^^^^^^^^^^^^^^
|
|
|
|
Buttons
|
|
-------
|
|
The SAM4S Xplained has two mechanical buttons. One button is the RESET button
|
|
connected to the SAM4S reset line and the other is a generic user configurable
|
|
button labeled BP2 and connected to GPIO PA5. When a button is pressed it
|
|
will drive the I/O line to GND.
|
|
|
|
LEDs
|
|
----
|
|
There is one LED on board the SAM4S Xplained board Pro that can be
|
|
controlled by software in the SAM4S:
|
|
|
|
LED GPIO
|
|
---------------- -----
|
|
LED0 Yellow LED PC23
|
|
|
|
It can be illuminated by driving the GPIO output to ground (low).
|
|
|
|
If CONFIG_ARCH_LEDs is defined, then NuttX will control the LED on
|
|
board the SAM4S Xplained Pro, otherwise it can controlled by the user
|
|
with functions defined into boards file src/sam_userleds.c.
|
|
|
|
The user LED is not used by the board port unless CONFIG_ARCH_LEDS is
|
|
defined. In that case, the usage by the board port is defined in
|
|
include/board.h and src/sam_leds.c. The LEDs are used to encode OS-
|
|
related events as follows:
|
|
|
|
SYMBOL Meaning LED state
|
|
LED0
|
|
------------------- ----------------------- -----------
|
|
LED_STARTED NuttX has been started OFF
|
|
LED_HEAPALLOCATE Heap has been allocated OFF
|
|
LED_IRQSENABLED Interrupts enabled OFF
|
|
LED_STACKCREATED Idle stack created ON
|
|
LED_INIRQ In an interrupt No change
|
|
LED_SIGNAL In a signal handler No change
|
|
LED_ASSERTION An assertion failed No change
|
|
LED_PANIC The system has crashed OFF
|
|
LED_IDLE MCU is is sleep mode Not used
|
|
|
|
Thus if LED0 is statically on, NuttX has successfully booted and is,
|
|
apparently, running normally. If LED0 is flashing at approximately
|
|
2Hz, then a fatal error has been detected and the system has halted.
|
|
|
|
Serial Consoles
|
|
^^^^^^^^^^^^^^^
|
|
|
|
UART1
|
|
-----
|
|
If you have a TTL to RS-232 converter then this is the most convenient
|
|
serial console to use. UART1 is the default in all of these
|
|
configurations.
|
|
|
|
UART1 RXD PB2 J1 pin 3 J4 pin 3
|
|
UART1 TXD PB3 J1 pin 4 J4 pin 4
|
|
GND J1 pin 9 J4 pin 9
|
|
Vdd J1 pin 10 J4 pin 10
|
|
|
|
USART1
|
|
------
|
|
USART1 is another option:
|
|
|
|
USART1 RXD PA21 J2 pin 6
|
|
USART1 TXD PA22 J2 pin 1
|
|
GND J2 pin 9
|
|
Vdd J2 pin 10
|
|
|
|
Virtual COM Port
|
|
----------------
|
|
Yet another option is to use UART0 and the virtual COM port. This
|
|
option may be more convenient for long term development, but was
|
|
painful to use during board bring-up.
|
|
|
|
The SAM4S Xplained contains an Embedded Debugger (EDBG) that can be
|
|
used to program and debug the ATSAM4S16C using Serial Wire Debug (SWD).
|
|
The Embedded debugger also include a Virtual Com port interface over
|
|
USART1. Virtual COM port connections:
|
|
|
|
AT91SAM4S16 ATSAM3U4CAU
|
|
-------------- --------------
|
|
PA9 RX_UART0 PA9_4S PA12
|
|
PA10 TX_UART0 RX_3U PA11
|
|
|
|
SAM4S Xplained-specific Configuration Options
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
|
|
be set to:
|
|
|
|
CONFIG_ARCH=arm
|
|
|
|
CONFIG_ARCH_family - For use in C code:
|
|
|
|
CONFIG_ARCH_ARM=y
|
|
|
|
CONFIG_ARCH_architecture - For use in C code:
|
|
|
|
CONFIG_ARCH_CORTEXM4=y
|
|
|
|
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
|
|
|
|
CONFIG_ARCH_CHIP="sam34"
|
|
|
|
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
|
|
chip:
|
|
|
|
CONFIG_ARCH_CHIP_SAM34
|
|
CONFIG_ARCH_CHIP_SAM4S
|
|
CONFIG_ARCH_CHIP_ATSAM4D32C
|
|
|
|
CONFIG_ARCH_BOARD - Identifies the boards/ subdirectory and
|
|
hence, the board that supports the particular chip or SoC.
|
|
|
|
CONFIG_ARCH_BOARD=sam4s-xplained-pro (for the SAM4S Xplained Pro development board)
|
|
|
|
CONFIG_ARCH_BOARD_name - For use in C code
|
|
|
|
CONFIG_ARCH_BOARD_SAM4S_XPLAINED_PRO=y
|
|
|
|
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
|
|
of delay loops
|
|
|
|
CONFIG_ENDIAN_BIG - define if big endian (default is little
|
|
endian)
|
|
|
|
CONFIG_RAM_SIZE - Describes the installed DRAM (SRAM in this case):
|
|
|
|
CONFIG_RAM_SIZE=0x00008000 (32Kb)
|
|
|
|
CONFIG_RAM_START - The start address of installed DRAM
|
|
|
|
CONFIG_RAM_START=0x20000000
|
|
|
|
CONFIG_ARCH_IRQPRIO - The SAM4S supports interrupt prioritization
|
|
|
|
CONFIG_ARCH_IRQPRIO=y
|
|
|
|
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
|
|
have LEDs
|
|
|
|
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
|
|
stack. If defined, this symbol is the size of the interrupt
|
|
stack in bytes. If not defined, the user task stacks will be
|
|
used during interrupt handling.
|
|
|
|
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
|
|
|
|
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
|
|
|
|
Individual subsystems can be enabled:
|
|
|
|
CONFIG_SAM34_RTC - Real Time Clock
|
|
CONFIG_SAM34_RTT - Real Time Timer
|
|
CONFIG_SAM34_WDT - Watchdog Timer
|
|
CONFIG_SAM34_UART0 - UART 0
|
|
CONFIG_SAM34_UART1 - UART 1
|
|
CONFIG_SAM34_SMC - Static Memory Controller
|
|
CONFIG_SAM34_USART0 - USART 0
|
|
CONFIG_SAM34_USART1 - USART 1
|
|
CONFIG_SAM34_HSMCI - High Speed Multimedia Card Interface
|
|
CONFIG_SAM34_TWI0 - Two-Wire Interface 0
|
|
CONFIG_SAM34_TWI1 - Two-Wire Interface 1
|
|
CONFIG_SAM34_SPI0 - Serial Peripheral Interface
|
|
CONFIG_SAM34_SSC - Synchronous Serial Controller
|
|
CONFIG_SAM34_TC0 - Timer Counter 0
|
|
CONFIG_SAM34_TC1 - Timer Counter 1
|
|
CONFIG_SAM34_TC2 - Timer Counter 2
|
|
CONFIG_SAM34_TC3 - Timer Counter 3
|
|
CONFIG_SAM34_TC4 - Timer Counter 4
|
|
CONFIG_SAM34_TC5 - Timer Counter 5
|
|
CONFIG_SAM34_ADC12B - 12-bit Analog To Digital Converter
|
|
CONFIG_SAM34_DACC - Digital To Analog Converter
|
|
CONFIG_SAM34_PWM - Pulse Width Modulation
|
|
CONFIG_SAM34_CRCCU - CRC Calculation Unit
|
|
CONFIG_SAM34_ACC - Analog Comparator
|
|
CONFIG_SAM34_UDP - USB Device Port
|
|
|
|
Some subsystems can be configured to operate in different ways. The drivers
|
|
need to know how to configure the subsystem.
|
|
|
|
CONFIG_GPIOA_IRQ
|
|
CONFIG_GPIOB_IRQ
|
|
CONFIG_GPIOC_IRQ
|
|
CONFIG_USART0_SERIALDRIVER
|
|
CONFIG_USART1_SERIALDRIVER
|
|
CONFIG_USART2_SERIALDRIVER
|
|
CONFIG_USART3_SERIALDRIVER
|
|
|
|
ST91SAM4S specific device driver settings
|
|
|
|
CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=0,1,2,3) or UART
|
|
m (m=4,5) for the console and ttys0 (default is the USART1).
|
|
CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received.
|
|
This specific the size of the receive buffer
|
|
CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before
|
|
being sent. This specific the size of the transmit buffer
|
|
CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be
|
|
CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8.
|
|
CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
|
|
CONFIG_U[S]ARTn_2STOP - Two stop bits
|
|
|
|
Configurations
|
|
^^^^^^^^^^^^^^
|
|
|
|
Each SAM4S Xplained configuration is maintained in a sub-directory and
|
|
can be selected as follow:
|
|
|
|
tools/configure.shsam4s-xplained-pro:<subdir>
|
|
|
|
Before building, make sure the PATH environment variable includes the
|
|
correct path to the directory than holds your toolchain binaries.
|
|
|
|
And then build NuttX by simply typing the following. At the conclusion of
|
|
the make, the nuttx binary will reside in an ELF file called, simply, nuttx.
|
|
|
|
make
|
|
|
|
The <subdir> that is provided above as an argument to the tools/configure.sh
|
|
must be is one of the following.
|
|
|
|
NOTES:
|
|
|
|
1. These configurations use the mconf-based configuration tool. To
|
|
change any of these configurations using that tool, you should:
|
|
|
|
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
|
|
see additional README.txt files in the NuttX tools repository.
|
|
|
|
b. Execute 'make menuconfig' in nuttx/ in order to start the
|
|
reconfiguration process.
|
|
|
|
2. Unless stated otherwise, all configurations generate console
|
|
output on UART1 which is available on J1 or J4 (see the
|
|
section "Serial Consoles" above). USART1 or the virtual COM
|
|
port on UART0 are options. The virtual COM port could
|
|
be used, for example, by reconfiguring to use UART0 like:
|
|
|
|
System Type -> AT91SAM3/4 Peripheral Support
|
|
CONFIG_SAM_UART0=y
|
|
CONFIG_SAM_UART1=n
|
|
|
|
Device Drivers -> Serial Driver Support -> Serial Console
|
|
CONFIG_UART0_SERIAL_CONSOLE=y
|
|
|
|
Device Drivers -> Serial Driver Support -> UART0 Configuration
|
|
CONFIG_UART0_2STOP=0
|
|
CONFIG_UART0_BAUD=115200
|
|
CONFIG_UART0_BITS=8
|
|
CONFIG_UART0_PARITY=0
|
|
CONFIG_UART0_RXBUFSIZE=256
|
|
CONFIG_UART0_TXBUFSIZE=256
|
|
|
|
3. Unless otherwise stated, the configurations are setup for
|
|
Linux (or any other POSIX environment like Cygwin under Windows):
|
|
|
|
Build Setup:
|
|
CONFIG_HOST_LINUX=y : Linux or other POSIX environment
|
|
|
|
4. These configurations use the older, OABI, buildroot toolchain. But
|
|
that is easily reconfigured:
|
|
|
|
System Type -> Toolchain:
|
|
CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT=y : Buildroot toolchain
|
|
CONFIG_ARMV7M_OABI_TOOLCHAIN=y : Older, OABI toolchain
|
|
|
|
If you want to use the Atmel GCC toolchain, here are the steps to
|
|
do so:
|
|
|
|
Build Setup:
|
|
CONFIG_HOST_WINDOWS=y : Windows
|
|
CONFIG_HOST_CYGWIN=y : Using Cygwin or other POSIX environment
|
|
|
|
System Type -> Toolchain:
|
|
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABI=y : General GCC EABI toolchain under windows
|
|
|
|
This re-configuration should be done before making NuttX or else the
|
|
subsequent 'make' will fail. If you have already attempted building
|
|
NuttX then you will have to 1) 'make distclean' to remove the old
|
|
configuration, 2) 'tools/configure.sh sam3u-ek/ksnh' to start
|
|
with a fresh configuration, and 3) perform the configuration changes
|
|
above.
|
|
|
|
Also, make sure that your PATH variable has the new path to your
|
|
Atmel tools. Try 'which arm-none-eabi-gcc' to make sure that you
|
|
are selecting the right tool.
|
|
|
|
See also the "NOTE about Windows native toolchains" in the section call
|
|
"GNU Toolchain Options" above.
|
|
|
|
Configuration sub-directories
|
|
-----------------------------
|
|
|
|
nsh:
|
|
This configuration directory will built the NuttShell. See NOTES above.
|
|
|
|
NOTES:
|
|
1. The configuration configuration can be modified to include support
|
|
for the on-board SRAM (1MB).
|
|
|
|
System Type -> External Memory Configuration
|
|
CONFIG_SAM34_EXTSRAM0=y : Select SRAM on CS0
|
|
CONFIG_SAM34_EXTSRAM0SIZE=1048576 : Size=1MB
|
|
|
|
Now what are you going to do with the SRAM. There are two choices:
|
|
|
|
a) To enable the NuttX RAM test that may be used to verify the
|
|
external SRAM:
|
|
|
|
System Type -> External Memory Configuration
|
|
CONFIG_SAM34_EXTSRAM0HEAP=n : Don't add to heap
|
|
|
|
Application Configuration -> System NSH Add-Ons
|
|
CONFIG_SYSTEM_RAMTEST=y : Enable the RAM test built-in
|
|
|
|
In this configuration, the SDRAM is not added to heap and so is
|
|
not excessible to the applications. So the RAM test can be
|
|
freely executed against the SRAM memory beginning at address
|
|
0x6000:0000 (CS0).
|
|
|
|
nsh> ramtest -h
|
|
Usage: <noname> [-w|h|b] <hex-address> <decimal-size>
|
|
|
|
Where:
|
|
<hex-address> starting address of the test.
|
|
<decimal-size> number of memory locations (in bytes).
|
|
-w Sets the width of a memory location to 32-bits.
|
|
-h Sets the width of a memory location to 16-bits (default).
|
|
-b Sets the width of a memory location to 8-bits.
|
|
|
|
To test the entire external SRAM:
|
|
|
|
nsh> ramtest 60000000 1048576
|
|
RAMTest: Marching ones: 60000000 1048576
|
|
RAMTest: Marching zeroes: 60000000 1048576
|
|
RAMTest: Pattern test: 60000000 1048576 55555555 aaaaaaaa
|
|
RAMTest: Pattern test: 60000000 1048576 66666666 99999999
|
|
RAMTest: Pattern test: 60000000 1048576 33333333 cccccccc
|
|
RAMTest: Address-in-address test: 60000000 1048576
|
|
|
|
b) To add this RAM to the NuttX heap, you would need to change the
|
|
configuration as follows:
|
|
|
|
System Type -> External Memory Configuration
|
|
CONFIG_SAM34_EXTSRAM0HEAP=y : Add external RAM to heap
|
|
|
|
Memory Management
|
|
-CONFIG_MM_REGIONS=1 : Only the internal SRAM
|
|
+CONFIG_MM_REGIONS=2 : Also include external SRAM
|