nuttx/arch/z16/src/z16f/z16f_espi.c

846 lines
24 KiB
C

/****************************************************************************
* arch/z16/src/z16f/z16f_espi.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <arch/board/board.h>
#include <nuttx/irq.h>
#include <nuttx/semaphore.h>
#include <nuttx/spi/spi.h>
#include "z16_arch.h"
#include "chip.h"
#ifdef CONFIG_Z16F_ESPI
/****************************************************************************
* Private Types
****************************************************************************/
/* The overall state of one SPI controller */
struct z16f_spi_s
{
struct spi_dev_s spi; /* Externally visible part of the SPI interface */
bool initialized; /* TRUE: Controller has been initialized */
uint8_t nbits; /* Width of word in bits (1-8) */
uint8_t mode; /* Mode 0,1,2,3 */
sem_t exclsem; /* Assures mutually exclusive access to SPI */
uint32_t frequency; /* Requested clock frequency */
uint32_t actual; /* Actual clock frequency */
/* Debug stuff */
#ifdef CONFIG_Z16F_ESPI_REGDEBUG
bool wr; /* Last was a write */
uint16_t regval; /* Last value */
int ntimes; /* Number of times */
uintptr_t regaddr; /* Last address */
#endif
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Helpers */
#ifdef CONFIG_Z16F_ESPI_REGDEBUG
static bool spi_checkreg(FAR struct z16f_spi_s *priv, bool wr,
uint16_t regval, uintptr_t regaddr);
static uint8_t spi_getreg8(FAR struct z16f_spi_s *priv, uintptr_t regaddr);
static void spi_putreg8(FAR struct z16f_spi_s *priv, uint8_t regval,
uintptr_t regaddr);
static void spi_putreg16(FAR struct z16f_spi_s *priv, uint16_t regval,
uintptr_t regaddr);
#else
# define spi_getreg8(priv,regaddr) getreg8(regaddr)
# define spi_putreg8(priv,regval,regaddr) putreg8(regval, regaddr)
# define spi_putreg16(priv,regval,regaddr) putreg16(regval, regaddr)
#endif
#ifdef CONFIG_DEBUG_SPI_INFO
static void spi_dumpregs(FAR struct z16f_spi_s *priv, const char *msg);
#else
# define spi_dumpregs(priv,msg)
#endif
static void spi_flush(FAR struct z16f_spi_s *priv);
/* SPI methods */
static int spi_lock(FAR struct spi_dev_s *dev, bool lock);
static uint32_t spi_setfrequency(FAR struct spi_dev_s *dev,
uint32_t frequency);
static void spi_setmode(FAR struct spi_dev_s *dev, enum spi_mode_e mode);
static void spi_setbits(FAR struct spi_dev_s *dev, int nbits);
static uint32_t spi_send(FAR struct spi_dev_s *dev, uint32_t wd);
static void spi_exchange(FAR struct spi_dev_s *dev,
FAR const void *txbuffer, FAR void *rxbuffer,
size_t nwords);
#ifndef CONFIG_SPI_EXCHANGE
static void spi_sndblock(FAR struct spi_dev_s *dev,
FAR const void *buffer, size_t nwords);
static void spi_recvblock(FAR struct spi_dev_s *dev, FAR void *buffer,
size_t nwords);
#endif
/****************************************************************************
* Private Data
****************************************************************************/
/* SEPI driver operations */
static const struct spi_ops_s g_epsiops =
{
spi_lock,
z16f_espi_select,
spi_setfrequency,
spi_setmode,
spi_setbits,
#ifdef CONFIG_SPI_HWFEATURES
NULL, /* hwfeatures: Not supported */
#endif
z16f_espi_status,
#ifdef CONFIG_SPI_CMDDATA
z16f_espi_cmddata,
#endif
spi_send,
#ifdef CONFIG_SPI_EXCHANGE
spi_exchange,
#else
spi_sndblock,
spi_recvblock,
#endif
NULL /* registercallback: Not implemented */
};
/* ESPI driver state */
static struct z16f_spi_s g_espi;
/****************************************************************************
* Public Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: spi_checkreg
*
* Description:
* Check if the current register access is a duplicate of the preceding.
*
* Input Parameters:
* wr - true:write false:read
* regval - The value to be written
* regaddr - The address of the register to write to
*
* Returned Value:
* true: This is the first register access of this type.
* flase: This is the same as the preceding register access.
*
****************************************************************************/
#ifdef CONFIG_Z16F_ESPI_REGDEBUG
static bool spi_checkreg(FAR struct z16f_spi_s *priv, bool wr,
uint16_t regval, uintptr_t regaddr)
{
if (wr == priv->wr && /* Same kind of access? */
regval == priv->regval && /* Same value? */
regaddr == priv->regaddr) /* Same address? */
{
/* Yes, then just keep a count of the number of times we did this. */
priv->ntimes++;
return false;
}
else
{
/* Did we do the previous operation more than once? */
if (priv->ntimes > 0)
{
/* Yes... show how many times we did it */
syslog(LOG_INFO, "...[Repeats %d times]...\n", priv->ntimes);
}
/* Save information about the new access */
priv->wr = wr;
priv->regval = regval;
priv->regaddr = regaddr;
priv->ntimes = 0;
}
/* Return true if this is the first time that we have done this operation */
return true;
}
#endif
/****************************************************************************
* Name: spi_getreg8
*
* Description:
* Read an SPI register
*
****************************************************************************/
#ifdef CONFIG_Z16F_ESPI_REGDEBUG
static uint8_t spi_getreg8(FAR struct z16f_spi_s *priv, uintptr_t regaddr)
{
uint8_t regval = getreg8(regaddr);
if (spi_checkreg(priv, false, (uint16_t)regval, regaddr))
{
syslog(LOG_INFO, "%06x->%02x\n", regaddr, regval);
}
return regval;
}
#endif
/****************************************************************************
* Name: spi_putreg8
*
* Description:
* Write a value to an SPI register
*
****************************************************************************/
#ifdef CONFIG_Z16F_ESPI_REGDEBUG
static void spi_putreg8(FAR struct z16f_spi_s *priv, uint8_t regval,
uintptr_t regaddr)
{
if (spi_checkreg(priv, true, (uint16_t)regval, regaddr))
{
syslog(LOG_INFO, "%06x<-%02x\n", regaddr, regval);
}
putreg8(regval, regaddr);
}
#endif
/****************************************************************************
* Name: spi_putreg16
*
* Description:
* Write a value to an SPI register
*
****************************************************************************/
#ifdef CONFIG_Z16F_ESPI_REGDEBUG
static void spi_putreg16(FAR struct z16f_spi_s *priv, uint16_t regval,
uintptr_t regaddr)
{
if (spi_checkreg(priv, true, regval, regaddr))
{
syslog(LOG_INFO, "%06x<-%04x\n", regaddr, regval);
}
putreg8(regval, regaddr);
}
#endif
/****************************************************************************
* Name: spi_dumpregs
*
* Description:
* Dump the contents of all SPI registers
*
* Input Parameters:
* priv - The SPI controller to dump
* msg - Message to print before the register data
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_DEBUG_SPI_INFO
static void spi_dumpregs(FAR struct z16f_spi_s *priv, FAR const char *msg)
{
spiinfo("%s:\n", msg);
spiinfo(" DCR: %02x CTL: %02x MODE: %02x STAT: %02x\n",
getreg8(Z16F_ESPI_DCR), getreg8(Z16F_ESPI_CTL),
getreg8(Z16F_ESPI_MODE), getreg8(Z16F_ESPI_STAT));
spiinfo(" STATE: %02x BR: %02x %02x\n",
getreg8(Z16F_ESPI_STATE), getreg8(Z16F_ESPI_BRH),
getreg8(Z16F_ESPI_BRL));
}
#endif
/****************************************************************************
* Name: spi_flush
*
* Description:
* Make sure that there are now dangling SPI transfer in progress
*
* Input Parameters:
* priv - SPI controller state
*
* Returned Value:
* None
*
****************************************************************************/
static void spi_flush(FAR struct z16f_spi_s *priv)
{
/* Make sure the no transfer is in progress... waiting if necessary */
while ((spi_getreg8(priv, Z16F_ESPI_STAT) & Z16F_ESPI_STAT_TFST) != 0);
/* Then make sure that there is no pending RX data .. reading as
* discarding as necessary.
*/
while ((spi_getreg8(priv, Z16F_ESPI_STAT) & Z16F_ESPI_STAT_RDRF) != 0)
{
spi_getreg8(priv, Z16F_ESPI_DATA);
}
}
/****************************************************************************
* Name: spi_lock
*
* Description:
* On SPI buses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected. After
* locking the SPI bus, the caller should then also call the setfrequency,
* setbits, and setmode methods to make sure that the SPI is properly
* configured for the device. If the SPI bus is being shared, then it
* may have been left in an incompatible state.
*
* Input Parameters:
* dev - Device-specific state data
* lock - true: Lock SPI bus, false: unlock SPI bus
*
* Returned Value:
* None
*
****************************************************************************/
static int spi_lock(FAR struct spi_dev_s *dev, bool lock)
{
FAR struct z16f_spi_s *priv = (FAR struct z16f_spi_s *)dev;
int ret;
spiinfo("lock=%d\n", lock);
if (lock)
{
ret = nxsem_wait_uninterruptible(&priv->exclsem);
}
else
{
ret = nxsem_post(&priv->exclsem);
}
return ret;
}
/****************************************************************************
* Name: spi_setfrequency
*
* Description:
* Set the SPI frequency.
*
* Input Parameters:
* dev - Device-specific state data
* frequency - The SPI frequency requested
*
* Returned Value:
* Returns the actual frequency selected
*
****************************************************************************/
static uint32_t spi_setfrequency(FAR struct spi_dev_s *dev,
uint32_t frequency)
{
FAR struct z16f_spi_s *priv = (FAR struct z16f_spi_s *)dev;
uint32_t actual;
uint32_t brg;
spiinfo("frequency=%d\n", frequency);
/* Check if the requested frequency is the same as the frequency
* selection.
*/
if (priv->frequency == frequency)
{
/* We are already at this frequency. Return the actual. */
return priv->actual;
}
/* Fbaud = Fsystem / (2 * BRG)
* BRG = Fsystem / (2 * Fbaud)
*
* Example, Fsystem = 18.432MHz, Fbaud = 9600
* BRG = 960
*/
brg = (BOARD_SYSTEM_FREQUENCY >> 1) / frequency;
if (brg > 0xffff)
{
brg = 0xffff;
}
/* Save the new BRG setting */
spi_putreg16(priv, (uint16_t)brg, Z16F_ESPI_BR);
/* Calculate the new actual frequency */
actual = (BOARD_SYSTEM_FREQUENCY >> 1) / brg;
spiinfo("BR=%04x actual=%ld\n", (unsigned int)brg, (long)actual);
/* Save the frequency setting */
priv->frequency = frequency;
priv->actual = actual;
spiinfo("Frequency %d->%d\n", frequency, actual);
return actual;
}
/****************************************************************************
* Name: spi_setmode
*
* Description:
* Set the SPI mode. Optional. See enum spi_mode_e for mode definitions
*
* Input Parameters:
* dev - Device-specific state data
* mode - The SPI mode requested
*
* Returned Value:
* none
*
****************************************************************************/
static void spi_setmode(FAR struct spi_dev_s *dev, enum spi_mode_e mode)
{
FAR struct z16f_spi_s *priv = (FAR struct z16f_spi_s *)dev;
uint8_t regval;
spiinfo("mode=%d\n", mode);
/* Has the mode changed? */
if (mode != priv->mode)
{
/* Yes... Set the mode appropriately:
*
* SPI CPOL CPHA
* MODE
* 0 0 0
* 1 0 1
* 2 1 0
* 3 1 1
*/
regval = spi_getreg8(priv, Z16F_ESPI_CTL);
regval &= ~(Z16F_ESPI_CTL_PHASE | Z16F_ESPI_CTL_CLKPOL);
switch (mode)
{
case SPIDEV_MODE0: /* CPOL=0; NCPHA=1 */
break;
case SPIDEV_MODE1: /* CPOL=0; NCPHA=0 */
regval |= Z16F_ESPI_CTL_PHASE;
break;
case SPIDEV_MODE2: /* CPOL=1; NCPHA=1 */
regval |= Z16F_ESPI_CTL_CLKPOL;
break;
case SPIDEV_MODE3: /* CPOL=1; NCPHA=0 */
regval |= (Z16F_ESPI_CTL_PHASE | Z16F_ESPI_CTL_CLKPOL);
break;
default:
DEBUGASSERT(false);
return;
}
spi_putreg8(priv, regval, Z16F_ESPI_CTL);
spiinfo("ESPI CTL: %02x\n", regval);
/* Save the mode so that subsequent re-configurations will be faster */
priv->mode = mode;
}
}
/****************************************************************************
* Name: spi_setbits
*
* Description:
* Set the number if bits per word.
*
* Input Parameters:
* dev - Device-specific state data
* nbits - The number of bits requests
*
* Returned Value:
* none
*
****************************************************************************/
static void spi_setbits(FAR struct spi_dev_s *dev, int nbits)
{
FAR struct z16f_spi_s *priv = (FAR struct z16f_spi_s *)dev;
uint8_t regval;
spiinfo("nbits=%d\n", nbits);
DEBUGASSERT(priv && nbits > 0 && nbits <= 8);
/* Has the number of bits changed? */
if (nbits != priv->nbits)
{
/* Yes... Set number of bits appropriately */
regval = spi_getreg8(priv, Z16F_ESPI_MODE);
regval &= ~Z16F_ESPI_MODE_NUMBITS_MASK;
/* The register value of zero is 8-bit */
if (nbits < 8)
{
regval |= ((uint8_t)nbits << Z16F_ESPI_MODE_NUMBITS_SHIFT);
}
spi_putreg8(priv, regval, Z16F_ESPI_MODE);
spiinfo("ESPI MODE: %02x\n", regval);
/* Save the selection so the subsequence re-configurations will be
* faster.
*/
priv->nbits = nbits;
}
}
/****************************************************************************
* Name: spi_send
*
* Description:
* Exchange one word on SPI
*
* Input Parameters:
* dev - Device-specific state data
* wd - The word to send. the size of the data is determined by the
* number of bits selected for the SPI interface.
*
* Returned Value:
* response
*
****************************************************************************/
static uint32_t spi_send(FAR struct spi_dev_s *dev, uint32_t wd)
{
uint8_t txbyte;
uint8_t rxbyte;
/* spi_exchange can do this. Note: right now, this only deals with 8-bit
* words. If the SPI interface were configured for words of other sizes,
* this would fail.
*/
txbyte = (uint8_t)wd;
rxbyte = (uint8_t)0;
spi_exchange(dev, &txbyte, &rxbyte, 1);
spiinfo("Sent %02x received %02x\n", txbyte, rxbyte);
return (uint32_t)rxbyte;
}
/****************************************************************************
* Name: spi_exchange
*
* Description:
* Exchange a block of data from SPI.
*
* Input Parameters:
* dev - Device-specific state data
* txbuffer - A pointer to the buffer of data to be sent
* rxbuffer - A pointer to the buffer in which to receive data
* nwords - the length of data that to be exchanged in units of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into
* uint16_t's
*
* Returned Value:
* None
*
****************************************************************************/
static void spi_exchange(FAR struct spi_dev_s *dev, FAR const void *txbuffer,
FAR void *rxbuffer, size_t nwords)
{
FAR struct z16f_spi_s *priv = (struct z16f_spi_s *)dev;
uint8_t data;
FAR uint8_t *rxptr = rxbuffer;
FAR const uint8_t *txptr = txbuffer;
spiinfo("txbuffer=%p rxbuffer=%p nwords=%d\n", txbuffer, rxbuffer, nwords);
/* Make sure that any previous transfer is flushed from the hardware */
spi_flush(priv);
/* Make sure the TEOF bit is not set (SSV must also be zero) */
spi_putreg8(priv, 0, Z16F_ESPI_CTL);
/* Loop, sending each word in the user-provided data buffer.
*
* Note 2: This loop might be made more efficient. Would logic
* like the following improve the throughput? Or would it
* just add the risk of overruns?
*
* Get byte 1;
* Send byte 1; Now word 1 is "in flight"
* nwords--;
* for ( ; byte > 0; byte--)
* {
* Get byte N.
* Wait for TDRE meaning that byte N-1 has moved to the shift
* register.
* Disable interrupts to keep the following atomic
* Send byte N. Now both work N-1 and N are "in flight"
* Wait for RDRF meaning that byte N-1 is available
* Read byte N-1.
* Re-enable interrupts.
* Save byte N-1.
* }
* Wait for RDRF meaning that the final byte is available
* Read the final byte.
* Save the final byte.
*/
for (; nwords > 0; nwords--)
{
/* Get the data to send (0xff if there is no data source). */
if (txptr)
{
data = *txptr++;
}
else
{
data = 0xff;
}
/* Do we need to set the TEOF bit in the CTL register too? */
if (nwords == 1)
{
spi_putreg8(priv, Z16F_ESPI_DCR_TEOF, Z16F_ESPI_CTL);
}
/* Wait for any transmit data register to be empty. */
while ((spi_getreg8(priv, Z16F_ESPI_STAT) & Z16F_ESPI_STAT_TDRE) == 0);
/* Write the data to transmitted to the Transmit Data Register (TDR) */
spi_putreg8(priv, data, Z16F_ESPI_DATA);
/* Wait for the read data to be available in the data register. */
while ((spi_getreg8(priv, Z16F_ESPI_STAT) & Z16F_ESPI_STAT_RDRF) == 0);
/* Read the received data from the SPI Data Register. */
data = spi_getreg8(priv, Z16F_ESPI_DATA);
if (rxptr)
{
*rxptr++ = (uint8_t)data;
}
}
}
/****************************************************************************
* Name: spi_sndblock
*
* Description:
* Send a block of data on SPI
*
* Input Parameters:
* dev - Device-specific state data
* buffer - A pointer to the buffer of data to be sent
* nwords - the length of data to send from the buffer in number of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into
* uint16_t's
*
* Returned Value:
* None
*
****************************************************************************/
#ifndef CONFIG_SPI_EXCHANGE
static void spi_sndblock(FAR struct spi_dev_s *dev, FAR const void *buffer,
size_t nwords)
{
/* spi_exchange can do this. */
spi_exchange(dev, buffer, NULL, nwords);
}
#endif
/****************************************************************************
* Name: spi_recvblock
*
* Description:
* Revice a block of data from SPI
*
* Input Parameters:
* dev - Device-specific state data
* buffer - A pointer to the buffer in which to receive data
* nwords - the length of data that can be received in the buffer in number
* of words. The wordsize is determined by the number of
* bits-per-word selected for the SPI interface. If nbits <= 8,
* the data is packed into uint8_t's; if nbits >8, the data is
* packed into uint16_t's
*
* Returned Value:
* None
*
****************************************************************************/
#ifndef CONFIG_SPI_EXCHANGE
static void spi_recvblock(FAR struct spi_dev_s *dev, FAR void *buffer,
size_t nwords)
{
/* spi_exchange can do this. */
spi_exchange(dev, NULL, buffer, nwords);
}
#endif
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: z16_spibus_initialize
*
* Description:
* Initialize the selected SPI port
*
* Input Parameters:
* port - Identifies the "logical" SPI port. Must be zero in this case.
*
* Returned Value:
* Valid SPI device structure reference on success; a NULL on failure
*
****************************************************************************/
FAR struct spi_dev_s *z16_spibus_initialize(int port)
{
FAR struct z16f_spi_s *priv;
irqstate_t flags;
uint8_t regval;
spiinfo("port: %d\n", port);
DEBUGASSERT(port == 0);
/* Check if we have already initialized the ESPI */
priv = &g_espi;
if (priv->initialized)
{
/* Initialize the ESPI state structure */
flags = enter_critical_section();
priv->spi.ops = &g_epsiops;
nxsem_init(&priv->exclsem, 0, 1);
/* Set up the SPI pin configuration (board-specific logic is required
* to configure and manage all chip selects).
*
* SCK - PC3, Alternate function 1
* MOSI - PC4, Alternate function 1
* MISO - PC5, Alternate function 1
*/
regval = spi_getreg8(priv, Z16F_GPIOC_AFL);
regval |= 0x38;
spi_putreg8(priv, regval, Z16F_GPIOC_AFL);
regval = spi_getreg8(priv, Z16F_GPIOC_AFH);
regval &= ~0x38;
spi_putreg8(priv, regval, Z16F_GPIOC_AFH);
/* Initialize the ESPI peripheral. Master, Mode 0, 8-bits, 400KHz */
spi_putreg8(priv, 0x00, Z16F_ESPI_CTL); /* Disabled the ESPI */
spi_putreg8(priv, 0x00, Z16F_ESPI_DCR); /* Disabled slave select; clear TEOF */
regval = Z16F_ESPI_MODE_SSIO | Z16F_ESPI_MODE_NUMBITS_8BITS |
Z16F_ESPI_MODE_SSMD_SPI;
spi_putreg8(priv, regval, Z16F_ESPI_MODE); /* SPI mode, 8-bit */
regval = Z16F_ESPI_CTL_ESPIEN0 | Z16F_ESPI_CTL_MMEN |
Z16F_ESPI_CTL_ESPIEN1;
spi_putreg8(priv, 0x00, Z16F_ESPI_CTL); /* TX/RX mode, Master mode */
/* Make sure that we are all in agreement about the configuration and
* set the BRG for 400KHz operation.
*/
spi_setfrequency(&priv->spi, 400000);
spi_setmode(&priv->spi, SPIDEV_MODE0);
spi_setbits(&priv->spi, 8);
/* Now we are initialized */
priv->initialized = true;
leave_critical_section(flags);
}
spi_dumpregs(priv, "After initialization");
return &priv->spi;
}
#endif /* CONFIG_Z16F_ESPI */