44bd3212d4
let's arch define the correct value instead Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com> |
||
---|---|---|
.. | ||
configs | ||
include | ||
kernel | ||
scripts | ||
src | ||
Kconfig | ||
README.txt |
README ====== README for NuttX port to the "Bambino 200E" board from Micromint USA featuring the NXP LPC4330FBD144 MCU Contents ======== - Bambino 200E board - Status - Serial Console - FPU - Bambino-200e Configuration Options - Configurations Bambino 200E board ===================== Memory Map ---------- Block Start Length Name Address --------------------- ---------- ------ RAM 0x10000000 128K RAM2 0x10080000 72K RAMAHB 0x20000000 32K RAMAHB2 0x20008000 16K RAMAHB3 0x2000c000 16K SPIFI flash 0x1e000000 4096K GPIO Usage: ----------- GPIO PIN SIGNAL NAME -------------------------------- ------- -------------- gpio3[7] - LED1 101 GPIO3[7] gpio5[5] - LED2 91 GPIO5[5] gpio0[7] - BTN1 96 GPIO0[7] Console ------- The Bambino 200E default console is the UART1 on Gadgeteer Sockets 5 (U). Status ====== Many drivers are working (USB0 Device, Ethernet, etc), but many drivers are missing. Development Environment ======================= Either Linux or Cygwin on Windows can be used for the development environment. The source has been built only using the GNU toolchain (see below). Other toolchains will likely cause problems. Testing was performed using the Cygwin environment. Serial Console ============== The LPC4330 Xplorer does not have RS-232 drivers or serial connectors on board. USART0 and UART1 are available on J8 as follows: ------ ------ ----------------------- SIGNAL J8 PIN LPC4330FET100 PIN (TFBGA100 package) ------ ------ ----------------------- U0_TXD pin 9 F6 P6_4 U0_TXD=Alt 2 U0_RXD pin 10 F9 P6_5 U0_RXD=Alt 2 U1_TXD pin 13 H8 P1_13 U1_TXD=Alt 1 U1_RXD pin 14 J8 P1_14 U1_RXD=Alt 1 ------ ------ ----------------------- GND is available on J8 pin 1 5V is available on J8 pin 2 VBAT is available on J8 pin 3 FPU === FPU Configuration Options ------------------------- There are two version of the FPU support built into the most NuttX Cortex-M4 ports. 1. Non-Lazy Floating Point Register Save In this configuration floating point register save and restore is implemented on interrupt entry and return, respectively. In this case, you may use floating point operations for interrupt handling logic if necessary. This FPU behavior logic is enabled by default with: CONFIG_ARCH_FPU=y 2. Lazy Floating Point Register Save. An alternative implementation only saves and restores FPU registers only on context switches. This means: (1) floating point registers are not stored on each context switch and, hence, possibly better interrupt performance. But, (2) since floating point registers are not saved, you cannot use floating point operations within interrupt handlers. This logic can be enabled by simply adding the following to your .config file: CONFIG_ARCH_FPU=y CONFIG_ARMV7M_LAZYFPU=y CFLAGS ------ Only the recent toolchains have built-in support for the Cortex-M4 FPU. You will see the following lines in each Make.defs file: ifeq ($(CONFIG_ARCH_FPU),y) ARCHCPUFLAGS = -mcpu=cortex-m4 -mthumb -march=armv7e-m -mfpu=fpv4-sp-d16 -mfloat-abi=hard else ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft endif Bambino-200e Configuration Options ================================== CONFIG_ARCH - Identifies the arch/ subdirectory. This should be set to: CONFIG_ARCH=arm CONFIG_ARCH_family - For use in C code: CONFIG_ARCH_ARM=y CONFIG_ARCH_architecture - For use in C code: CONFIG_ARCH_CORTEXM4=y CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory CONFIG_ARCH_CHIP=lpc43xx CONFIG_ARCH_CHIP_name - For use in C code to identify the exact chip: CONFIG_ARCH_CHIP_LPC4330=y CONFIG_ARCH_BOARD - Identifies the boards/ subdirectory and hence, the board that supports the particular chip or SoC. CONFIG_ARCH_BOARD=bambino-200e (for the Bambino-200e board) CONFIG_ARCH_BOARD_name - For use in C code CONFIG_ARCH_BOARD_BAMBINO_200E=y CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation of delay loops CONFIG_ENDIAN_BIG - define if big endian (default is little endian) CONFIG_RAM_SIZE - Describes the installed DRAM (CPU SRAM in this case): CONFIG_RAM_SIZE=(32*1024) (32Kb) There is an additional 32Kb of SRAM in AHB SRAM banks 0 and 1. CONFIG_RAM_START - The start address of installed DRAM CONFIG_RAM_START=0x10000000 CONFIG_ARCH_FPU - The LPC43xxx supports a floating point unit (FPU) CONFIG_ARCH_FPU=y CONFIG_LPC43_BOOT_xxx - The startup code needs to know if the code is running from internal FLASH, external FLASH, SPIFI, or SRAM in order to initialize properly. Note that a boot device is not specified for cases where the code is copied into SRAM; those cases are all covered by CONFIG_LPC43_BOOT_SRAM. CONFIG_LPC43_BOOT_SRAM=y : Running from SRAM (0x1000:0000) CONFIG_LPC43_BOOT_SPIFI=y : Running from QuadFLASH (0x1400:0000) CONFIG_LPC43_BOOT_FLASHA=y : Running in internal FLASHA (0x1a00:0000) CONFIG_LPC43_BOOT_FLASHB=y : Running in internal FLASHA (0x1b00:0000) CONFIG_LPC43_BOOT_CS0FLASH=y : Running in external FLASH CS0 (0x1c00:0000) CONFIG_LPC43_BOOT_CS1FLASH=y : Running in external FLASH CS1 (0x1d00:0000) CONFIG_LPC43_BOOT_CS2FLASH=y : Running in external FLASH CS2 (0x1e00:0000) CONFIG_LPC43_BOOT_CS3FLASH=y : Running in external FLASH CS3 (0x1f00:0000) CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that have LEDs CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt stack. If defined, this symbol is the size of the interrupt stack in bytes. If not defined, the user task stacks will be used during interrupt handling. CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture. Individual subsystems can be enabled: CONFIG_LPC43_ADC0=y CONFIG_LPC43_ADC1=y CONFIG_LPC43_ATIMER=y CONFIG_LPC43_CAN0=y CONFIG_LPC43_CAN1=y CONFIG_LPC43_DAC=y CONFIG_LPC43_EMC=y CONFIG_LPC43_ETHERNET=y CONFIG_LPC43_EVNTMNTR=y CONFIG_LPC43_GPDMA=y CONFIG_LPC43_I2C0=y CONFIG_LPC43_I2C1=y CONFIG_LPC43_I2S0=y CONFIG_LPC43_I2S1=y CONFIG_LPC43_LCD=y CONFIG_LPC43_MCPWM=y CONFIG_LPC43_QEI=y CONFIG_LPC43_RIT=y CONFIG_LPC43_RTC=y CONFIG_LPC43_SCT=y CONFIG_LPC43_SDMMC=y CONFIG_LPC43_SPI=y CONFIG_LPC43_SPIFI=y CONFIG_LPC43_SSP0=y CONFIG_LPC43_SSP1=y CONFIG_LPC43_TMR0=y CONFIG_LPC43_TMR1=y CONFIG_LPC43_TMR2=y CONFIG_LPC43_TMR3=y CONFIG_LPC43_USART0=y CONFIG_LPC43_UART1=y CONFIG_LPC43_USART2=y CONFIG_LPC43_USART3=y CONFIG_LPC43_USB0=y CONFIG_LPC43_USB1=y CONFIG_LPC43_USB1_ULPI=y CONFIG_LPC43_WWDT=y LPC43xx specific U[S]ART device driver settings CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the UARTn for the console and ttys0 (default is the USART0). CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received. This specific the size of the receive buffer CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before being sent. This specific the size of the transmit buffer CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8. CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity CONFIG_U[S]ARTn_2STOP - Two stop bits CONFIG_USARTn_RS485MODE - Support LPC43xx USART0,2,3 RS485 mode ioctls (TIOCSRS485 and TIOCGRS485) to enable and disable RS-485 mode. LPC43xx specific CAN device driver settings. These settings all require CONFIG_CAN: CONFIG_CAN_EXTID - Enables support for the 29-bit extended ID. Default Standard 11-bit IDs. CONFIG_LPC43_CAN0_BAUD - CAN1 BAUD rate. Required if CONFIG_LPC43_CAN0 is defined. CONFIG_LPC43_CAN1_BAUD - CAN1 BAUD rate. Required if CONFIG_LPC43_CAN1 is defined. CONFIG_LPC43_CAN_TSEG1 - The number of CAN time quanta in segment 1. Default: 12 CONFIG_LPC43_CAN_TSEG2 = the number of CAN time quanta in segment 2. Default: 4 LPC43xx specific PHY/Ethernet device driver settings. These setting also require CONFIG_NET and CONFIG_LPC43_ETHERNET. CONFIG_ETH0_PHY_KS8721 - Selects Micrel KS8721 PHY CONFIG_LPC43_AUTONEG - Enable auto-negotiation CONFIG_LPC17_40_EMACRAM_SIZE - Size of EMAC RAM. Default: 16Kb CONFIG_LPC43_ETH_NTXDESC - Configured number of Tx descriptors. Default: 18 CONFIG_LPC43_ETH_NRXDESC - Configured number of Rx descriptors. Default: 18 CONFIG_NET_REGDEBUG - Enabled low level register debug. Also needs CONFIG_DEBUG_FEATURES. CONFIG_NET_DUMPPACKET - Dump all received and transmitted packets. Also needs CONFIG_DEBUG_FEATURES. LPC43xx USB Device Configuration CONFIG_LPC43_USBDEV_FRAME_INTERRUPT Handle USB Start-Of-Frame events. Enable reading SOF from interrupt handler vs. simply reading on demand. Probably a bad idea... Unless there is some issue with sampling the SOF from hardware asynchronously. CONFIG_LPC43_USBDEV_EPFAST_INTERRUPT Enable high priority interrupts. I have no idea why you might want to do that CONFIG_LPC43_USBDEV_NDMADESCRIPTORS Number of DMA descriptors to allocate in SRAM. CONFIG_LPC43_USBDEV_DMA Enable lpc17xx/lpc40xx-specific DMA support CONFIG_LPC43_USBDEV_NOVBUS Define if the hardware implementation does not support the VBUS signal CONFIG_LPC43_USBDEV_NOLED Define if the hardware implementation does not support the LED output Configurations ============== Each Bambino-200e configuration is maintained in a sub-directory and can be selected as follow: tools/configure.sh bambino-200e:<subdir> Where <subdir> is one of the following: knsh: ----- This is identical to the nsh configuration below except that NuttX is built as a PROTECTED mode, monolithic module and the user applications are built separately. It is recommends to use a special make command; not just 'make' but make with the following two arguments: make pass1 pass2 In the normal case (just 'make'), make will attempt to build both user- and kernel-mode blobs more or less interleaved. That actual works! However, for me it is very confusing so I prefer the above make command: Make the user-space binaries first (pass1), then make the kernel-space binaries (pass2) NOTES: 1. At the end of the build, there will be several files in the top-level NuttX build directory: PASS1: nuttx_user.elf - The pass1 user-space ELF file nuttx_user.hex - The pass1 Intel HEX format file (selected in defconfig) User.map - Symbols in the user-space ELF file PASS2: nuttx - The pass2 kernel-space ELF file nuttx.hex - The pass2 Intel HEX file (selected in defconfig) System.map - Symbols in the kernel-space ELF file The J-Link programmer will except files in .hex, .mot, .srec, and .bin formats. 2. Combining .hex files. If you plan to use the .hex files with your debugger or FLASH utility, then you may need to combine the two hex files into a single .hex file. Here is how you can do that. a. The 'tail' of the nuttx.hex file should look something like this (with my comments added): $ tail nuttx.hex # 00, data records ... :10 9DC0 00 01000000000800006400020100001F0004 :10 9DD0 00 3B005A0078009700B500D400F300110151 :08 9DE0 00 30014E016D0100008D # 05, Start Linear Address Record :04 0000 05 0800 0419 D2 # 01, End Of File record :00 0000 01 FF Use an editor such as vi to remove the 05 and 01 records. b. The 'head' of the nuttx_user.hex file should look something like this (again with my comments added): $ head nuttx_user.hex # 04, Extended Linear Address Record :02 0000 04 0801 F1 # 00, data records :10 8000 00 BD89 01084C800108C8110208D01102087E :10 8010 00 0010 00201C1000201C1000203C16002026 :10 8020 00 4D80 01085D80010869800108ED83010829 ... Nothing needs to be done here. The nuttx_user.hex file should be fine. c. Combine the edited nuttx.hex and un-edited nuttx_user.hex $ cat nuttx.hex nuttx_user.hex >combined.hex Then use the combined.hex file with the to write the FLASH image. If you do this a lot, you will probably want to invest a little time to develop a tool to automate these steps. Other option is to combine nuttx.bin and nuttx_user.bin this way: $ dd if=/dev/zero of=empty.bin bs=1k count=256 $ cat nuttx.bin empty.bin > nuttxtmp.bin $ dd if=nuttxtmp.bin of=nuttxpad.bin bs=1k count=256 $ cat nuttxpad.bin nuttx_user.bin > nuttxfinal.bin netnsh: ------- Configures the NuttShell (nsh) located at examples/nsh. This configuration is focused on network testing. nsh: ---- This configuration is the NuttShell (NSH) example at examples/nsh/. NOTES: 1. This configuration uses the mconf-based configuration tool. To change this configurations using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt see additional README.txt files in the NuttX tools repository. b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. 2. By default, this project assumes that you are executing directly from SRAM. CONFIG_LPC43_BOOT_SRAM=y : Executing in SRAM CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIW=y : GNU EABI toolchain for Windows 3. To execute from SPIFI, you would need to set: CONFIG_LPC43_BOOT_SPIFI=y : Executing from SPIFI CONFIG_RAM_SIZE=(128*1024) : SRAM Bank0 size CONFIG_RAM_START=0x10000000 : SRAM Bank0 base address CONFIG_SPIFI_OFFSET=(512*1024) : SPIFI file system offset CONFIG_MM_REGIONS should also be increased if you want to other SRAM banks to the memory pool. 4. This configuration an also be used create a block device on the SPIFI FLASH. CONFIG_LPC43_SPIFI=y must also be defined to enable SPIFI setup support: SPIFI device geometry: CONFIG_SPIFI_OFFSET - Offset the beginning of the block driver this many bytes into the device address space. This offset must be an exact multiple of the erase block size (CONFIG_SPIFI_BLKSIZE). Default 0. CONFIG_SPIFI_BLKSIZE - The size of one device erase block. If not defined then the driver will try to determine the correct erase block size by examining that data returned from spifi_initialize (which sometimes seems bad). Other SPIFI options CONFIG_SPIFI_SECTOR512 - If defined, then the driver will report a more FAT friendly 512 byte sector size and will manage the read-modify-write operations on the larger erase block. CONFIG_SPIFI_READONLY - Define to support only read-only operations. CONFIG_SPIFI_LIBRARY - Don't use the LPC43xx ROM routines but, instead, use an external library implementation of the SPIFI interface. CONFIG_SPIFI_VERIFY - Verify all spifi_program() operations by reading from the SPI address space after each write. CONFIG_DEBUG_SPIFI_DUMP - Debug option to dump read/write buffers. You probably do not want to enable this unless you want to dig through a *lot* of debug output! Also required CONFIG_DEBUG_FEATURES, CONFIG_DEBUG_INFO, and CONFIG_DEBUG_FS, 5. In my experience, there were some missing function pointers in the LPC43xx SPIFI ROM routines and the SPIFI configuration could only be built with CONFIG_SPIFI_LIBRARY=y. The SPIFI library is proprietary and cannot be provided within NuttX open source repository; SPIFI library binaries can be found on the lpcware.com website. In this build sceneario, you must also provide the patch to the external SPIFI library be defining the make variable EXTRA_LIBS in the top-level Make.defs file. Good luck! usbnsh: ------- This is another NSH example. If differs from other 'nsh' configurations in that this configurations uses a USB serial device for console I/O. NOTES: 1. This configuration does have UART1 output enabled and set up as the system logging device: CONFIG_SYSLOG_CHAR=y : Use a character device for system logging CONFIG_SYSLOG_DEVPATH="/dev/ttyS0" : UART1 will be /dev/ttyS0 However, there is nothing to generate SYSLOG output in the default configuration so nothing should appear on UART1 unless you enable some debug output or enable the USB monitor. NOTE: Using the SYSLOG to get debug output has limitations. Among those are that you cannot get debug output from interrupt handlers. So, in particularly, debug output is not a useful way to debug the USB device controller driver. Instead, use the USB monitor with USB debug off and USB trace on (see below). 4. Enabling USB monitor SYSLOG output. If tracing is enabled, the USB device will save encoded trace output in in-memory buffer; if the USB monitor is enabled, that trace buffer will be periodically emptied and dumped to the system logging device (UART2 in this configuration): CONFIG_USBDEV_TRACE=y : Enable USB trace feature CONFIG_USBDEV_TRACE_NRECORDS=128 : Buffer 128 records in memory CONFIG_NSH_USBDEV_TRACE=n : No builtin tracing from NSH CONFIG_NSH_ARCHINIT=y : Automatically start the USB monitor CONFIG_USBMONITOR=y : Enable the USB monitor daemon CONFIG_USBMONITOR_STACKSIZE=2048 : USB monitor daemon stack size CONFIG_USBMONITOR_PRIORITY=50 : USB monitor daemon priority CONFIG_USBMONITOR_INTERVAL=2 : Dump trace data every 2 seconds CONFIG_USBMONITOR_TRACEINIT=y : Enable TRACE output CONFIG_USBMONITOR_TRACECLASS=y CONFIG_USBMONITOR_TRACETRANSFERS=y CONFIG_USBMONITOR_TRACECONTROLLER=y CONFIG_USBMONITOR_TRACEINTERRUPTS=y