6a3c2aded6
* Simplify EINTR/ECANCEL error handling 1. Add semaphore uninterruptible wait function 2 .Replace semaphore wait loop with a single uninterruptible wait 3. Replace all sem_xxx to nxsem_xxx * Unify the void cast usage 1. Remove void cast for function because many place ignore the returned value witout cast 2. Replace void cast for variable with UNUSED macro
392 lines
13 KiB
C
392 lines
13 KiB
C
/****************************************************************************
|
|
* sched/timer/timer_settime.c
|
|
*
|
|
* Copyright (C) 2007-2010, 2013-2016, 2018 Gregory Nutt. All rights
|
|
* reserved.
|
|
* Author: Gregory Nutt <gnutt@nuttx.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
|
|
#include <stdint.h>
|
|
#include <time.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
|
|
#include <nuttx/irq.h>
|
|
|
|
#include "clock/clock.h"
|
|
#include "timer/timer.h"
|
|
|
|
#ifndef CONFIG_DISABLE_POSIX_TIMERS
|
|
|
|
/****************************************************************************
|
|
* Private Function Prototypes
|
|
****************************************************************************/
|
|
|
|
static inline void timer_signotify(FAR struct posix_timer_s *timer);
|
|
static inline void timer_restart(FAR struct posix_timer_s *timer,
|
|
wdparm_t itimer);
|
|
static void timer_timeout(int argc, wdparm_t itimer);
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: timer_signotify
|
|
*
|
|
* Description:
|
|
* This function basically re-implements nxsig_queue() so that the si_code
|
|
* can be correctly set to SI_TIMER
|
|
*
|
|
* Input Parameters:
|
|
* timer - A reference to the POSIX timer that just timed out
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
* Assumptions:
|
|
* This function executes in the context of the watchod timer interrupt.
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline void timer_signotify(FAR struct posix_timer_s *timer)
|
|
{
|
|
DEBUGVERIFY(nxsig_notification(timer->pt_owner, &timer->pt_event,
|
|
SI_TIMER, &timer->pt_work));
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: timer_restart
|
|
*
|
|
* Description:
|
|
* If a periodic timer has been selected, then restart the watchdog.
|
|
*
|
|
* Input Parameters:
|
|
* timer - A reference to the POSIX timer that just timed out
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
* Assumptions:
|
|
* This function executes in the context of the watchdog timer interrupt.
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline void timer_restart(FAR struct posix_timer_s *timer,
|
|
wdparm_t itimer)
|
|
{
|
|
/* If this is a repetitive timer, then restart the watchdog */
|
|
|
|
if (timer->pt_delay)
|
|
{
|
|
timer->pt_last = timer->pt_delay;
|
|
wd_start(timer->pt_wdog, timer->pt_delay,
|
|
(wdentry_t)timer_timeout, 1, itimer);
|
|
}
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: timer_timeout
|
|
*
|
|
* Description:
|
|
* This function is called if the timeout elapses before the condition is
|
|
* signaled.
|
|
*
|
|
* Input Parameters:
|
|
* argc - the number of arguments (should be 1)
|
|
* itimer - A reference to the POSIX timer that just timed out
|
|
* signo - The signal to use to wake up the task
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
* Assumptions:
|
|
* This function executes in the context of the watchod timer interrupt.
|
|
*
|
|
****************************************************************************/
|
|
|
|
static void timer_timeout(int argc, wdparm_t itimer)
|
|
{
|
|
#ifndef CONFIG_CAN_PASS_STRUCTS
|
|
/* On many small machines, pointers are encoded and cannot be simply cast
|
|
* from wdparm_t to struct tcb_s *. The following union works around this
|
|
* (see wdogparm_t).
|
|
*/
|
|
|
|
union
|
|
{
|
|
FAR struct posix_timer_s *timer;
|
|
wdparm_t itimer;
|
|
} u;
|
|
|
|
u.itimer = itimer;
|
|
|
|
/* Send the specified signal to the specified task. Increment the
|
|
* reference count on the timer first so that will not be deleted until
|
|
* after the signal handler returns.
|
|
*/
|
|
|
|
u.timer->pt_crefs++;
|
|
timer_signotify(u.timer);
|
|
|
|
/* Release the reference. timer_release will return nonzero if the timer
|
|
* was not deleted.
|
|
*/
|
|
|
|
if (timer_release(u.timer))
|
|
{
|
|
/* If this is a repetitive timer, then restart the watchdog */
|
|
|
|
timer_restart(u.timer, itimer);
|
|
}
|
|
#else
|
|
FAR struct posix_timer_s *timer = (FAR struct posix_timer_s *)itimer;
|
|
|
|
/* Send the specified signal to the specified task. Increment the
|
|
* reference count on the timer first so that will not be deleted until
|
|
* after the signal handler returns.
|
|
*/
|
|
|
|
timer->pt_crefs++;
|
|
timer_signotify(timer);
|
|
|
|
/* Release the reference. timer_release will return nonzero if the timer
|
|
* was not deleted.
|
|
*/
|
|
|
|
if (timer_release(timer))
|
|
{
|
|
/* If this is a repetitive timer, the restart the watchdog */
|
|
|
|
timer_restart(timer, itimer);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: timer_settime
|
|
*
|
|
* Description:
|
|
* The timer_settime() function sets the time until the next expiration of
|
|
* the timer specified by timerid from the it_value member of the value
|
|
* argument and arm the timer if the it_value member of value is non-zero.
|
|
* If the specified timer was already armed when timer_settime() is
|
|
* called, this call will reset the time until next expiration to the
|
|
* value specified. If the it_value member of value is zero, the timer
|
|
* will be disarmed. The effect of disarming or resetting a timer with
|
|
* pending expiration notifications is unspecified.
|
|
*
|
|
* If the flag TIMER_ABSTIME is not set in the argument flags,
|
|
* timer_settime() will behave as if the time until next expiration is set
|
|
* to be equal to the interval specified by the it_value member of value.
|
|
* That is, the timer will expire in it_value nanoseconds from when the
|
|
* call is made. If the flag TIMER_ABSTIME is set in the argument flags,
|
|
* timer_settime() will behave as if the time until next expiration is set
|
|
* to be equal to the difference between the absolute time specified by
|
|
* the it_value member of value and the current value of the clock
|
|
* associated with timerid. That is, the timer will expire when the clock
|
|
* reaches the value specified by the it_value member of value. If the
|
|
* specified time has already passed, the function will succeed and the
|
|
* expiration notification will be made.
|
|
*
|
|
* The reload value of the timer will be set to the value specified by the
|
|
* it_interval member of value. When a timer is armed with a non-zero
|
|
* it_interval, a periodic (or repetitive) timer is specified.
|
|
*
|
|
* Time values that are between two consecutive non-negative integer
|
|
* multiples of the resolution of the specified timer will be rounded up
|
|
* to the larger multiple of the resolution. Quantization error will not
|
|
* cause the timer to expire earlier than the rounded time value.
|
|
*
|
|
* If the argument ovalue is not NULL, the timer_settime() function will
|
|
* store, in the location referenced by ovalue, a value representing the
|
|
* previous amount of time before the timer would have expired, or zero if
|
|
* the timer was disarmed, together with the previous timer reload value.
|
|
* Timers will not expire before their scheduled time.
|
|
*
|
|
* Input Parameters:
|
|
* timerid - The pre-thread timer, previously created by the call to
|
|
* timer_create(), to be be set.
|
|
* flags - Specifies characteristics of the timer (see above)
|
|
* value - Specifies the timer value to set
|
|
* ovalue - A location in which to return the time remaining from the
|
|
* previous timer setting.
|
|
*
|
|
* Returned Value:
|
|
* If the timer_settime() succeeds, a value of 0 (OK) will be returned.
|
|
* If an error occurs, the value -1 (ERROR) will be returned, and errno set
|
|
* to indicate the error.
|
|
*
|
|
* EINVAL - The timerid argument does not correspond to an ID returned by
|
|
* timer_create() but not yet deleted by timer_delete().
|
|
* EINVAL - A value structure specified a nanosecond value less than zero or
|
|
* greater than or equal to 1000 million, and the it_value member of that
|
|
* structure did not specify zero seconds and nanoseconds.
|
|
*
|
|
* Assumptions:
|
|
*
|
|
****************************************************************************/
|
|
|
|
int timer_settime(timer_t timerid, int flags,
|
|
FAR const struct itimerspec *value,
|
|
FAR struct itimerspec *ovalue)
|
|
{
|
|
FAR struct posix_timer_s *timer = (FAR struct posix_timer_s *)timerid;
|
|
irqstate_t intflags;
|
|
sclock_t delay;
|
|
int ret = OK;
|
|
|
|
/* Some sanity checks */
|
|
|
|
if (!timer || !value)
|
|
{
|
|
set_errno(EINVAL);
|
|
return ERROR;
|
|
}
|
|
|
|
if (ovalue)
|
|
{
|
|
/* Get the number of ticks before the underlying watchdog expires */
|
|
|
|
delay = wd_gettime(timer->pt_wdog);
|
|
|
|
/* Convert that to a struct timespec and return it */
|
|
|
|
clock_ticks2time(delay, &ovalue->it_value);
|
|
clock_ticks2time(timer->pt_last, &ovalue->it_interval);
|
|
}
|
|
|
|
/* Disarm the timer (in case the timer was already armed when timer_settime()
|
|
* is called).
|
|
*/
|
|
|
|
wd_cancel(timer->pt_wdog);
|
|
|
|
/* Cancel any pending notification */
|
|
|
|
nxsig_cancel_notification(&timer->pt_work);
|
|
|
|
/* If the it_value member of value is zero, the timer will not be re-armed */
|
|
|
|
if (value->it_value.tv_sec <= 0 && value->it_value.tv_nsec <= 0)
|
|
{
|
|
return OK;
|
|
}
|
|
|
|
/* Setup up any repetitive timer */
|
|
|
|
if (value->it_interval.tv_sec > 0 || value->it_interval.tv_nsec > 0)
|
|
{
|
|
clock_time2ticks(&value->it_interval, &delay);
|
|
|
|
/* REVISIT: Should pt_delay be sclock_t? */
|
|
|
|
timer->pt_delay = (int)delay;
|
|
}
|
|
else
|
|
{
|
|
timer->pt_delay = 0;
|
|
}
|
|
|
|
/* We need to disable timer interrupts through the following section so
|
|
* that the system timer is stable.
|
|
*/
|
|
|
|
intflags = enter_critical_section();
|
|
|
|
/* Check if abstime is selected */
|
|
|
|
if ((flags & TIMER_ABSTIME) != 0)
|
|
{
|
|
/* Calculate a delay corresponding to the absolute time in 'value'.
|
|
* NOTE: We have internal knowledge the clock_abstime2ticks only
|
|
* returns an error if clockid != CLOCK_REALTIME.
|
|
*/
|
|
|
|
clock_abstime2ticks(CLOCK_REALTIME, &value->it_value, &delay);
|
|
}
|
|
else
|
|
{
|
|
/* Calculate a delay assuming that 'value' holds the relative time
|
|
* to wait. We have internal knowledge that clock_time2ticks always
|
|
* returns success.
|
|
*/
|
|
|
|
clock_time2ticks(&value->it_value, &delay);
|
|
}
|
|
|
|
/* If the time is in the past or now, then set up the next interval
|
|
* instead (assuming a repetitive timer).
|
|
*/
|
|
|
|
if (delay <= 0)
|
|
{
|
|
delay = timer->pt_delay;
|
|
}
|
|
|
|
/* Then start the watchdog */
|
|
|
|
if (delay > 0)
|
|
{
|
|
/* REVISIT: Should pt_last be sclock_t? Should wd_start delay be
|
|
* sclock_t?
|
|
*/
|
|
|
|
timer->pt_last = delay;
|
|
ret = wd_start(timer->pt_wdog, delay, (wdentry_t)timer_timeout,
|
|
1, (uint32_t)((wdparm_t)timer));
|
|
if (ret < 0)
|
|
{
|
|
set_errno(-ret);
|
|
ret = ERROR;
|
|
}
|
|
else
|
|
{
|
|
ret = OK;
|
|
}
|
|
}
|
|
|
|
leave_critical_section(intflags);
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_DISABLE_POSIX_TIMERS */
|