838 lines
33 KiB
Plaintext
838 lines
33 KiB
Plaintext
README
|
|
======
|
|
|
|
This README discusses issues unique to NuttX configurations for the Atmel
|
|
SAM4E-EK development. This board features the SAM4E16 MCU running at 96
|
|
or 120MHz.
|
|
|
|
Contents
|
|
========
|
|
|
|
- Development Environment
|
|
- GNU Toolchain Options
|
|
- IDEs
|
|
- NuttX EABI "buildroot" Toolchain
|
|
- NuttX OABI "buildroot" Toolchain
|
|
- NXFLAT Toolchain
|
|
- Atmel Studio 6.1
|
|
- Loading Code with J-Link
|
|
- Writing to FLASH using SAM-BA
|
|
- LEDs
|
|
- Serial Console
|
|
- Networking Support
|
|
- SAM4E-EK-specific Configuration Options
|
|
- Configurations
|
|
|
|
Development Environment
|
|
=======================
|
|
|
|
Either Linux or Cygwin on Windows can be used for the development environment.
|
|
The source has been built only using the GNU toolchain (see below). Other
|
|
toolchains will likely cause problems. Testing was performed using the Cygwin
|
|
environment.
|
|
|
|
GNU Toolchain Options
|
|
=====================
|
|
|
|
The NuttX make system can be configured to support the various different
|
|
toolchain options. All testing has been conducted using the NuttX buildroot
|
|
toolchain. To use alternative toolchain, you simply need to add change of
|
|
the following configuration options to your .config (or defconfig) file:
|
|
|
|
CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYW=y : CodeSourcery under Windows
|
|
CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYL=y : CodeSourcery under Linux
|
|
CONFIG_ARMV7M_TOOLCHAIN_ATOLLIC=y : Atollic toolchain for Windos
|
|
CONFIG_ARMV7M_TOOLCHAIN_DEVKITARM=y : devkitARM under Windows
|
|
CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default)
|
|
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIL=y : Generic GCC ARM EABI toolchain for Linux
|
|
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIW=y : Generic GCC ARM EABI toolchain for Windows
|
|
|
|
You may also have to modify the PATH in the setenv.h file if your
|
|
make cannot find the tools.
|
|
|
|
NOTE about Windows native toolchains
|
|
------------------------------------
|
|
|
|
There are basically three kinds of GCC toolchains that can be used:
|
|
|
|
1. A Linux native toolchain in a Linux environment,
|
|
2. The buildroot Cygwin tool chain built in the Cygwin environment,
|
|
3. A Windows native toolchain.
|
|
|
|
There are several limitations to using a Windows based toolchain (#3) in a
|
|
Cygwin environment. The three biggest are:
|
|
|
|
1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
|
|
performed automatically in the Cygwin makefiles using the 'cygpath'
|
|
utility but you might easily find some new path problems. If so, check
|
|
out 'cygpath -w'
|
|
|
|
2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic
|
|
links are used in Nuttx (e.g., include/arch). The make system works
|
|
around these problems for the Windows tools by copying directories
|
|
instead of linking them. But this can also cause some confusion for
|
|
you: For example, you may edit a file in a "linked" directory and find
|
|
that your changes had no effect. That is because you are building the
|
|
copy of the file in the "fake" symbolic directory. If you use a
|
|
Windows toolchain, you should get in the habit of making like this:
|
|
|
|
make clean_context all
|
|
|
|
An alias in your .bashrc file might make that less painful.
|
|
|
|
3. Dependencies are not made when using Windows versions of the GCC. This
|
|
is because the dependencies are generated using Windows paths which do
|
|
not work with the Cygwin make.
|
|
|
|
MKDEP = $(TOPDIR)/tools/mknulldeps.sh
|
|
|
|
IDEs
|
|
====
|
|
|
|
NuttX is built using command-line make. It can be used with an IDE, but some
|
|
effort will be required to create the project (There is a simple RIDE project
|
|
in the RIDE subdirectory).
|
|
|
|
Makefile Build
|
|
--------------
|
|
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
|
|
simply use the NuttX makefile to build the system. That is almost for free
|
|
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
|
|
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
|
|
there is a lot of help on the internet).
|
|
|
|
Native Build
|
|
------------
|
|
Here are a few tips before you start that effort:
|
|
|
|
1) Select the toolchain that you will be using in your .config file
|
|
2) Start the NuttX build at least one time from the Cygwin command line
|
|
before trying to create your project. This is necessary to create
|
|
certain auto-generated files and directories that will be needed.
|
|
3) Set up include pathes: You will need include/, arch/arm/src/sam34,
|
|
arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
|
|
4) All assembly files need to have the definition option -D __ASSEMBLY__
|
|
on the command line.
|
|
|
|
Startup files will probably cause you some headaches. The NuttX startup file
|
|
is arch/arm/src/sam34/sam_vectors.S. You may need to build NuttX
|
|
one time from the Cygwin command line in order to obtain the pre-built
|
|
startup object needed by RIDE.
|
|
|
|
NuttX EABI "buildroot" Toolchain
|
|
================================
|
|
|
|
A GNU GCC-based toolchain is assumed. The files */setenv.sh should
|
|
be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
|
|
different from the default in your PATH variable).
|
|
|
|
If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
|
|
SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/).
|
|
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
|
|
|
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
|
|
|
cd tools
|
|
./configure.sh sam4e-ek/<sub-dir>
|
|
|
|
2. Download the latest buildroot package into <some-dir>
|
|
|
|
3. unpack the buildroot tarball. The resulting directory may
|
|
have versioning information on it like buildroot-x.y.z. If so,
|
|
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
|
|
|
4. cd <some-dir>/buildroot
|
|
|
|
5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config
|
|
|
|
6. make oldconfig
|
|
|
|
7. make
|
|
|
|
8. Edit setenv.h, if necessary, so that the PATH variable includes
|
|
the path to the newly built binaries.
|
|
|
|
See the file configs/README.txt in the buildroot source tree. That has more
|
|
details PLUS some special instructions that you will need to follow if you are
|
|
building a Cortex-M3 toolchain for Cygwin under Windows.
|
|
|
|
NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
|
|
the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for
|
|
more information about this problem. If you plan to use NXFLAT, please do not
|
|
use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain.
|
|
See instructions below.
|
|
|
|
NuttX OABI "buildroot" Toolchain
|
|
================================
|
|
|
|
The older, OABI buildroot toolchain is also available. To use the OABI
|
|
toolchain:
|
|
|
|
1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3
|
|
configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI
|
|
configuration such as cortexm3-defconfig-4.3.3
|
|
|
|
2. Modify the Make.defs file to use the OABI conventions:
|
|
|
|
+CROSSDEV = arm-nuttx-elf-
|
|
+ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft
|
|
+NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections
|
|
-CROSSDEV = arm-nuttx-eabi-
|
|
-ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft
|
|
-NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections
|
|
|
|
NXFLAT Toolchain
|
|
================
|
|
|
|
If you are *not* using the NuttX buildroot toolchain and you want to use
|
|
the NXFLAT tools, then you will still have to build a portion of the buildroot
|
|
tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can
|
|
be downloaded from the NuttX SourceForge download site
|
|
(https://sourceforge.net/projects/nuttx/files/).
|
|
|
|
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
|
|
|
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
|
|
|
cd tools
|
|
./configure.sh sam4e-ek/<sub-dir>
|
|
|
|
2. Download the latest buildroot package into <some-dir>
|
|
|
|
3. unpack the buildroot tarball. The resulting directory may
|
|
have versioning information on it like buildroot-x.y.z. If so,
|
|
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
|
|
|
4. cd <some-dir>/buildroot
|
|
|
|
5. cp configs/cortexm3-defconfig-nxflat .config
|
|
|
|
6. make oldconfig
|
|
|
|
7. make
|
|
|
|
8. Edit setenv.h, if necessary, so that the PATH variable includes
|
|
the path to the newly builtNXFLAT binaries.
|
|
|
|
Atmel Studio 6.1
|
|
================
|
|
|
|
You can use Atmel Studio 6.1 to load and debug code.
|
|
|
|
- To load code into FLASH:
|
|
|
|
Tools menus: Tools -> Device Programming.
|
|
|
|
Configure the debugger and chip and you are in business.
|
|
|
|
- Debugging the NuttX Object File:
|
|
|
|
1) Rename object file from nutt to nuttx.elf. That is an extension that
|
|
will be recognized by the file menu.
|
|
|
|
2) Select the project name, the full path to the NuttX object (called
|
|
just nuttx with no extension), and chip. Take the time to resolve
|
|
all of the source file linkages or else you will not have source
|
|
level debug!
|
|
|
|
File menu: File -> Open -> Open object file for debugging
|
|
- Select nuttx.elf object file
|
|
- Select AT91SAM4E16
|
|
- Select files for symbols as desired
|
|
- Select debugger
|
|
|
|
3) Debug menu: Debug -> Start debugging and break
|
|
- This will reload the nuttx.elf file into FLASH
|
|
|
|
STATUS: At this point, Atmel Studio 6.1 claims that my object files are
|
|
not readable. A little more needs to be done to wring out this procedure.
|
|
|
|
Loading Code into SRAM with J-Link
|
|
==================================
|
|
|
|
Loading code with the Segger tools and GDB
|
|
------------------------------------------
|
|
|
|
1) Change directories into the directory where you built NuttX.
|
|
2) Start the GDB server and wait until it is ready to accept GDB
|
|
connections.
|
|
3) Then run GDB like this:
|
|
|
|
$ arm-none-eabi-gdb
|
|
(gdb) target remote localhost:2331
|
|
(gdb) mon reset
|
|
(gdb) load nuttx
|
|
(gdb) ... start debugging ...
|
|
|
|
Loading code using J-Link Commander
|
|
----------------------------------
|
|
|
|
J-Link> r
|
|
J-Link> loadbin <file> <address>
|
|
J-Link> setpc <address of __start>
|
|
J-Link> ... start debugging ...
|
|
|
|
STATUS: As of this writing, I have no been successful writing to FLASH
|
|
using the GDB server. I think that this is because of issues with GPNVM1
|
|
settings and flash lock bits. In any event, the GDB server works great for
|
|
debugging after writing the program to FLASH using SAM-BA.
|
|
|
|
Writing to FLASH using SAM-BA
|
|
=============================
|
|
|
|
Assumed starting configuration:
|
|
|
|
1. You have installed the J-Link USB driver
|
|
|
|
Using SAM-BA to write to FLASH:
|
|
|
|
1. Start the SAM-BA application, selecting (1) the SAM-ICE/J-Link
|
|
port, and (2) board = at91sam4e16-ek.
|
|
2. The SAM-BA menu should appear.
|
|
3. Select the FLASH tab and enable FLASH access
|
|
4. "Send" the file to flash
|
|
5. Enable "Boot from Flash (GPNVM1)
|
|
6. Reset the board.
|
|
|
|
STATUS: Works great!
|
|
|
|
LEDs
|
|
====
|
|
|
|
The SAM4E-EK board has three, user-controllable LEDs labelled D2 (blue),
|
|
D3 (amber), and D4 (green) on the board. Usage of these LEDs is defined
|
|
in include/board.h and src/up_leds.c. They are encoded as follows:
|
|
|
|
SYMBOL Meaning D3* D2 D4
|
|
------------------- ----------------------- ------- ------- -------
|
|
LED_STARTED NuttX has been started OFF OFF OFF
|
|
LED_HEAPALLOCATE Heap has been allocated OFF OFF ON
|
|
LED_IRQSENABLED Interrupts enabled OFF ON OFF
|
|
LED_STACKCREATED Idle stack created OFF ON ON
|
|
LED_INIRQ In an interrupt** N/C FLASH N/C
|
|
LED_SIGNAL In a signal handler*** N/C N/C FLASH
|
|
LED_ASSERTION An assertion failed FLASH N/C N/C
|
|
LED_PANIC The system has crashed FLASH N/C N/C
|
|
|
|
* If D2 and D4 are statically on, then NuttX probably failed to boot
|
|
and these LEDs will give you some indication of where the failure was
|
|
** The normal state is D3=OFF, D4=ON and D2 faintly glowing. This faint
|
|
glow is because of timer interrupts that result in the LED being
|
|
illuminated on a small proportion of the time.
|
|
*** D4 may also flicker normally if signals are processed.
|
|
|
|
Serial Console
|
|
==============
|
|
|
|
By default, all of these configurations use UART0 for the NuttX serial
|
|
console. UART0 corresponds to the DB-9 connector J17 labelled "DBGU".
|
|
This is a male connector and will require a female-to-female, NUL modem
|
|
cable to connect to a PC.
|
|
|
|
An alternate is USART1 which connects to the other DB-9 connector labelled
|
|
"USART1". USART1 is not enabled by default unless specifically noted
|
|
otherwise in the configuration description. A NUL modem cable must be
|
|
used with the port as well.
|
|
|
|
NOTE: To avoid any electrical conflict, the RS232 and RS485 transceiver
|
|
are isolated from the receiving line PA21.
|
|
|
|
- Chose RS485 channel: Close 1-2 pins on JP11 and set PA23 to high level
|
|
- Chose RS232 channel: Close 2-3 pins on JP11 and set PA23 to low level
|
|
|
|
By default serial console is configured for 115000, 8-bit, 1 stop bit, and
|
|
no parity.
|
|
|
|
Networking
|
|
==========
|
|
|
|
Networking support via the can be added to NSH by selecting the following
|
|
configuration options.
|
|
|
|
Selecting the EMAC peripheral
|
|
-----------------------------
|
|
|
|
System Type -> SAM34 Peripheral Support
|
|
CONFIG_SAM34_EMAC=y : Enable the EMAC peripheral
|
|
|
|
System Type -> EMAC device driver options
|
|
CONFIG_SAM34_EMAC_NRXBUFFERS=16 : Set aside some RS and TX buffers
|
|
CONFIG_SAM34_EMAC_NTXBUFFERS=4
|
|
CONFIG_SAM34_EMAC_PHYADDR=1 : KSZ8051 PHY is at address 1
|
|
CONFIG_SAM34_EMAC_AUTONEG=y : Use autonegotiation
|
|
CONFIG_SAM34_EMAC_MII=y : Only the MII interface is supported
|
|
CONFIG_SAM34_EMAC_PHYSR=30 : Address of PHY status register on KSZ8051
|
|
CONFIG_SAM34_EMAC_PHYSR_ALTCONFIG=y : Needed for KSZ8051
|
|
CONFIG_SAM34_EMAC_PHYSR_ALTMODE=0x7 : " " " " " "
|
|
CONFIG_SAM34_EMAC_PHYSR_10HD=0x1 : " " " " " "
|
|
CONFIG_SAM34_EMAC_PHYSR_100HD=0x2 : " " " " " "
|
|
CONFIG_SAM34_EMAC_PHYSR_10FD=0x5 : " " " " " "
|
|
CONFIG_SAM34_EMAC_PHYSR_100FD=0x6 : " " " " " "
|
|
|
|
PHY selection. Later in the configuration steps, you will need to select
|
|
the KSZ8051 PHY for EMAC (See below)
|
|
|
|
Networking Support
|
|
CONFIG_NET=y : Enable Neworking
|
|
CONFIG_NET_SOCKOPTS=y : Enable socket operations
|
|
CONFIG_NET_BUFSIZE=562 : Maximum packet size (MTD) 1518 is more standard
|
|
CONFIG_NET_RECEIVE_WINDOW=536 : Should be the same as CONFIG_NET_BUFSIZE
|
|
CONFIG_NET_TCP=y : Enable TCP/IP networking
|
|
CONFIG_NET_TCPBACKLOG=y : Support TCP/IP backlog
|
|
CONFIG_NET_TCP_READAHEAD_BUFSIZE=536 Read-ahead buffer size
|
|
CONFIG_NET_UDP=y : Enable UDP networking
|
|
CONFIG_NET_BROADCAST=y : Needed for DNS name resolution
|
|
CONFIG_NET_ICMP=y : Enable ICMP networking
|
|
CONFIG_NET_ICMP_PING=y : Needed for NSH ping command
|
|
: Defaults should be okay for other options
|
|
Device drivers -> Network Device/PHY Support
|
|
CONFIG_NETDEVICES=y : Enabled PHY selection
|
|
CONFIG_ETH0_PHY_KSZ8051=y : Select the KSZ8051 PHY (for EMAC)
|
|
|
|
Application Configuration -> Network Utilities
|
|
CONFIG_NETUTILS_RESOLV=y : Enable host address resolution
|
|
CONFIG_NETUTILS_TELNETD=y : Enable the Telnet daemon
|
|
CONFIG_NETUTILS_TFTPC=y : Enable TFTP data file transfers for get and put commands
|
|
CONFIG_NETUTILS_UIPLIB=y : Network library support is needed
|
|
CONFIG_NETUTILS_WEBCLIENT=y : Needed for wget support
|
|
: Defaults should be okay for other options
|
|
Application Configuration -> NSH Library
|
|
CONFIG_NSH_TELNET=y : Enable NSH session via Telnet
|
|
CONFIG_NSH_IPADDR=0x0a000002 : Select an IP address
|
|
CONFIG_NSH_DRIPADDR=0x0a000001 : IP address of gateway/host PC
|
|
CONFIG_NSH_NETMASK=0xffffff00 : Netmask
|
|
CONFIG_NSH_NOMAC=y : Need to make up a bogus MAC address
|
|
: Defaults should be okay for other options
|
|
|
|
Using the network with NSH
|
|
--------------------------
|
|
|
|
So what can you do with this networking support? First you see that
|
|
NSH has several new network related commands:
|
|
|
|
ifconfig, ifdown, ifup: Commands to help manage your network
|
|
get and put: TFTP file transfers
|
|
wget: HTML file transfers
|
|
ping: Check for access to peers on the network
|
|
Telnet console: You can access the NSH remotely via telnet.
|
|
|
|
You can also enable other add on features like full FTP or a Web
|
|
Server or XML RPC and others. There are also other features that
|
|
you can enable like DHCP client (or server) or network name
|
|
resolution.
|
|
|
|
By default, the IP address of the SAM4E-EK will be 10.0.0.2 and
|
|
it will assume that your host is the gateway and has the IP address
|
|
10.0.0.1.
|
|
|
|
nsh> ifconfig
|
|
eth0 HWaddr 00:e0:de:ad:be:ef at UP
|
|
IPaddr:10.0.0.2 DRaddr:10.0.0.1 Mask:255.255.255.0
|
|
|
|
You can use ping to test for connectivity to the host (Careful,
|
|
Window firewalls usually block ping-related ICMP traffic). On the
|
|
target side, you can:
|
|
|
|
nsh> ping 10.0.0.1
|
|
PING 10.0.0.1 56 bytes of data
|
|
56 bytes from 10.0.0.1: icmp_seq=1 time=0 ms
|
|
56 bytes from 10.0.0.1: icmp_seq=2 time=0 ms
|
|
56 bytes from 10.0.0.1: icmp_seq=3 time=0 ms
|
|
56 bytes from 10.0.0.1: icmp_seq=4 time=0 ms
|
|
56 bytes from 10.0.0.1: icmp_seq=5 time=0 ms
|
|
56 bytes from 10.0.0.1: icmp_seq=6 time=0 ms
|
|
56 bytes from 10.0.0.1: icmp_seq=7 time=0 ms
|
|
56 bytes from 10.0.0.1: icmp_seq=8 time=0 ms
|
|
56 bytes from 10.0.0.1: icmp_seq=9 time=0 ms
|
|
56 bytes from 10.0.0.1: icmp_seq=10 time=0 ms
|
|
10 packets transmitted, 10 received, 0% packet loss, time 10100 ms
|
|
|
|
NOTE: In this configuration is is normal to have packet loss > 0%
|
|
the first time you ping due to the default handling of the ARP
|
|
table.
|
|
|
|
On the host side, you should also be able to ping the SAM4E-EK:
|
|
|
|
$ ping 10.0.0.2
|
|
|
|
You can also log into the NSH from the host PC like this:
|
|
|
|
$ telnet 10.0.0.2
|
|
Trying 10.0.0.2...
|
|
Connected to 10.0.0.2.
|
|
Escape character is '^]'.
|
|
sh_telnetmain: Session [3] Started
|
|
|
|
NuttShell (NSH) NuttX-6.31
|
|
nsh> help
|
|
help usage: help [-v] [<cmd>]
|
|
|
|
[ echo ifconfig mkdir mw sleep
|
|
? exec ifdown mkfatfs ping test
|
|
cat exit ifup mkfifo ps umount
|
|
cp free kill mkrd put usleep
|
|
cmp get losetup mh rm wget
|
|
dd help ls mount rmdir xd
|
|
df hexdump mb mv sh
|
|
|
|
Builtin Apps:
|
|
nsh>
|
|
|
|
NOTE: If you enable this feature, you experience a delay on booting.
|
|
That is because the start-up logic waits for the network connection
|
|
to be established before starting NuttX. In a real application, you
|
|
would probably want to do the network bringup on a separate thread
|
|
so that access to the NSH prompt is not delayed.
|
|
|
|
This delay will be especially long if the board is not connected to
|
|
a network.
|
|
|
|
|
|
SAM4E-EK-specific Configuration Options
|
|
=======================================
|
|
|
|
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
|
|
be set to:
|
|
|
|
CONFIG_ARCH=arm
|
|
|
|
CONFIG_ARCH_family - For use in C code:
|
|
|
|
CONFIG_ARCH_ARM=y
|
|
|
|
CONFIG_ARCH_architecture - For use in C code:
|
|
|
|
CONFIG_ARCH_CORTEXM3=y
|
|
|
|
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
|
|
|
|
CONFIG_ARCH_CHIP="sam34"
|
|
|
|
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
|
|
chip:
|
|
|
|
CONFIG_ARCH_CHIP_SAM34
|
|
CONFIG_ARCH_CHIP_SAM3U
|
|
CONFIG_ARCH_CHIP_ATSAM3U4
|
|
|
|
CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
|
|
hence, the board that supports the particular chip or SoC.
|
|
|
|
CONFIG_ARCH_BOARD=sam4e-ek (for the SAM4E-EK development board)
|
|
|
|
CONFIG_ARCH_BOARD_name - For use in C code
|
|
|
|
CONFIG_ARCH_BOARD_SAM4EEK=y
|
|
|
|
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
|
|
of delay loops
|
|
|
|
CONFIG_ENDIAN_BIG - define if big endian (default is little
|
|
endian)
|
|
|
|
CONFIG_RAM_SIZE - Describes the installed DRAM (SRAM in this case):
|
|
|
|
CONFIG_RAM_SIZE=0x00020000 (128Kb)
|
|
|
|
CONFIG_RAM_START - The start address of installed DRAM
|
|
|
|
CONFIG_RAM_START=0x20000000
|
|
|
|
CONFIG_ARCH_IRQPRIO - The SAM3U supports interrupt prioritization
|
|
|
|
CONFIG_ARCH_IRQPRIO=n
|
|
|
|
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
|
|
have LEDs
|
|
|
|
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
|
|
stack. If defined, this symbol is the size of the interrupt
|
|
stack in bytes. If not defined, the user task stacks will be
|
|
used during interrupt handling.
|
|
|
|
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
|
|
|
|
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
|
|
|
|
CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
|
|
cause a 100 second delay during boot-up. This 100 second delay
|
|
serves no purpose other than it allows you to calibratre
|
|
CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure
|
|
the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
|
|
the delay actually is 100 seconds.
|
|
|
|
Individual subsystems can be enabled:
|
|
|
|
CONFIG_SAM34_SPI0 - Serial Peripheral Interface 0 (SPI0)
|
|
CONFIG_SAM34_SPI1 - Serial Peripheral Interface 1 (SPI1)
|
|
CONFIG_SAM34_SSC - Synchronous Serial Controller (SSC)
|
|
CONFIG_SAM34_TC0 - Timer/Counter 0 (TC0)
|
|
CONFIG_SAM34_TC1 - Timer/Counter 1 (TC1)
|
|
CONFIG_SAM34_TC2 - Timer/Counter 2 (TC2)
|
|
CONFIG_SAM34_TC3 - Timer/Counter 3 (TC3)
|
|
CONFIG_SAM34_TC4 - Timer/Counter 4 (TC4)
|
|
CONFIG_SAM34_TC5 - Timer/Counter 5 (TC5)
|
|
CONFIG_SAM34_TC6 - Timer/Counter 6 (TC6)
|
|
CONFIG_SAM34_TC7 - Timer/Counter 7 (TC6)
|
|
CONFIG_SAM34_TC8 - Timer/Counter 6 (TC8)
|
|
CONFIG_SAM34_PWM - Pulse Width Modulation (PWM) Controller
|
|
CONFIG_SAM34_TWIM0 - Two-wire Master Interface 0 (TWIM0)
|
|
CONFIG_SAM34_TWIS0 - Two-wire Slave Interface 0 (TWIS0)
|
|
CONFIG_SAM34_TWIM1B - Two-wire Master Interface 1 (TWIM1)
|
|
CONFIG_SAM34_TWIS1 - Two-wire Slave Interface 1 (TWIS1)
|
|
CONFIG_SAM34_UART0 - UART 0
|
|
CONFIG_SAM34_UART1 - UART 1
|
|
CONFIG_SAM34_USART0 - USART 0
|
|
CONFIG_SAM34_USART1 - USART 1
|
|
CONFIG_SAM34_USART2 - USART 2
|
|
CONFIG_SAM34_USART3 - USART 3
|
|
CONFIG_SAM34_AFEC0 - Analog Front End 0
|
|
CONFIG_SAM34_AFEC1 - Analog Front End 1
|
|
CONFIG_SAM34_DACC - Digital-to-Analog Converter
|
|
CONFIG_SAM34_ACC - Analog Comparator
|
|
CONFIG_SAM34_EMAC - Ethernet MAC
|
|
CONFIG_SAM34_CAN0 - CAN 0
|
|
CONFIG_SAM34_CAN1 - CAN 1
|
|
CONFIG_SAM34_SMC - Static Memory Controller
|
|
CONFIG_SAM34_NAND - NAND support
|
|
CONFIG_SAM34_PDCA - Peripheral DMA controller
|
|
CONFIG_SAM34_DMAC - DMA controller
|
|
CONFIG_SAM34_UDP - USB 2.0 Full-Speed device
|
|
CONFIG_SAM34_CHIPID - Chip ID
|
|
CONFIG_SAM34_RTC - Real Time Clock
|
|
CONFIG_SAM34_RTT - Real Time Timer
|
|
CONFIG_SAM34_WDT - Watchdog Timer
|
|
CONFIG_SAM34_EIC - Interrupt controller
|
|
CONFIG_SAM34_HSMCI - High Speed Multimedia Card Interface
|
|
|
|
Some subsystems can be configured to operate in different ways. The drivers
|
|
need to know how to configure the subsystem.
|
|
|
|
CONFIG_GPIOA_IRQ
|
|
CONFIG_GPIOB_IRQ
|
|
CONFIG_GPIOC_IRQ
|
|
CONFIG_GPIOD_IRQ
|
|
CONFIG_GPIOE_IRQ
|
|
CONFIG_GPIOF_IRQ
|
|
CONFIG_GPIOG_IRQ
|
|
CONFIG_GPIOH_IRQ
|
|
CONFIG_GPIOJ_IRQ
|
|
CONFIG_GPIOK_IRQ
|
|
CONFIG_GPIOL_IRQ
|
|
CONFIG_GPIOM_IRQ
|
|
CONFIG_GPION_IRQ
|
|
CONFIG_GPIOP_IRQ
|
|
CONFIG_GPIOQ_IRQ
|
|
|
|
CONFIG_USART0_ISUART
|
|
CONFIG_USART1_ISUART
|
|
CONFIG_USART2_ISUART
|
|
CONFIG_USART3_ISUART
|
|
|
|
SAM3U specific device driver settings
|
|
|
|
CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=0,1,2,3) or UART
|
|
m (m=4,5) for the console and ttys0 (default is the USART1).
|
|
CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received.
|
|
This specific the size of the receive buffer
|
|
CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before
|
|
being sent. This specific the size of the transmit buffer
|
|
CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be
|
|
CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8.
|
|
CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
|
|
CONFIG_U[S]ARTn_2STOP - Two stop bits
|
|
|
|
LCD Options. Other than the standard LCD configuration options
|
|
(see configs/README.txt), the SAM4E-EK driver also supports:
|
|
|
|
CONFIG_LCD_PORTRAIT - Present the display in the standard 240x320
|
|
"Portrait" orientation. Default: The display is rotated to
|
|
support a 320x240 "Landscape" orientation.
|
|
|
|
Configurations
|
|
==============
|
|
|
|
Information Common to All Configurations
|
|
----------------------------------------
|
|
Each SAM4E-EK configuration is maintained in a sub-directory and
|
|
can be selected as follow:
|
|
|
|
cd tools
|
|
./configure.sh sam4e-ek/<subdir>
|
|
cd -
|
|
. ./setenv.sh
|
|
|
|
Before sourcing the setenv.sh file above, you should examine it and perform
|
|
edits as necessary so that BUILDROOT_BIN is the correct path to the directory
|
|
than holds your toolchain binaries.
|
|
|
|
And then build NuttX by simply typing the following. At the conclusion of
|
|
the make, the nuttx binary will reside in an ELF file called, simply, nuttx.
|
|
|
|
make
|
|
|
|
The <subdir> that is provided above as an argument to the tools/configure.sh
|
|
must be is one of the following.
|
|
|
|
NOTES:
|
|
|
|
1. These configurations use the mconf-based configuration tool. To
|
|
change any of these configurations using that tool, you should:
|
|
|
|
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
|
|
and misc/tools/
|
|
|
|
b. Execute 'make menuconfig' in nuttx/ in order to start the
|
|
reconfiguration process.
|
|
|
|
2. Unless stated otherwise, all configurations generate console
|
|
output on UART0 (J3).
|
|
|
|
3. Unless otherwise stated, the configurations are setup for
|
|
Linux (or any other POSIX environment like Cygwin under Windows):
|
|
|
|
Build Setup:
|
|
CONFIG_HOST_LINUX=y : Linux or other POSIX environment
|
|
|
|
4. All of these configurations use the older, OABI, buildroot toolchain
|
|
(unless stated otherwise in the description of the configuration). That
|
|
toolchain selection can easily be reconfigured using 'make menuconfig'.
|
|
Here are the relevant current settings:
|
|
|
|
Build Setup:
|
|
CONFIG_HOST_LINUX=y : Linux or other pure POSIX invironment
|
|
: (including Cygwin)
|
|
System Type -> Toolchain:
|
|
CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT=y : Buildroot toolchain
|
|
CONFIG_ARMV7M_OABI_TOOLCHAIN=y : Older, OABI toolchain
|
|
|
|
If you want to use the Atmel GCC toolchain, for example, here are the
|
|
steps to do so:
|
|
|
|
Build Setup:
|
|
CONFIG_HOST_WINDOWS=y : Windows
|
|
CONFIG_HOST_CYGWIN=y : Using Cygwin or other POSIX environment
|
|
|
|
System Type -> Toolchain:
|
|
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIW=y : General GCC EABI toolchain under windows
|
|
|
|
Library Routines ->
|
|
CONFIG_CXX_NEWLONG=n : size_t is an unsigned int, not long
|
|
|
|
This re-configuration should be done before making NuttX or else the
|
|
subsequent 'make' will fail. If you have already attempted building
|
|
NuttX then you will have to 1) 'make distclean' to remove the old
|
|
configuration, 2) 'cd tools; ./configure.sh sam4e-ek/ksnh' to start
|
|
with a fresh configuration, and 3) perform the configuration changes
|
|
above.
|
|
|
|
Also, make sure that your PATH variable has the new path to your
|
|
Atmel tools. Try 'which arm-none-eabi-gcc' to make sure that you
|
|
are selecting the right tool. setenv.sh is available for you to
|
|
use to set or PATH variable. The path in the that file may not,
|
|
however, be correct for your installation.
|
|
|
|
See also the "NOTE about Windows native toolchains" in the section call
|
|
"GNU Toolchain Options" above.
|
|
|
|
Configuration sub-directories
|
|
-----------------------------
|
|
|
|
nsh:
|
|
Configures the NuttShell (nsh) located at examples/nsh. The
|
|
Configuration enables both the serial and telnetd NSH interfaces.
|
|
|
|
NOTES:
|
|
|
|
1. NSH built-in applications are supported. However, there are
|
|
no built-in applications built with the default configuration.
|
|
|
|
Binary Formats:
|
|
CONFIG_BUILTIN=y : Enable support for built-in programs
|
|
|
|
Applicaton Configuration:
|
|
CONFIG_NSH_BUILTIN_APPS=y : Enable starting apps from NSH command line
|
|
|
|
2. This configuration has been used for verifying the touchscreen on
|
|
on the SAM4E-EK LCD. With these modifications, you can include the
|
|
touchscreen test program at apps/examples/touchscreen as an NSH built-in
|
|
application. You can enable the touchscreen and test by modifying the
|
|
default configuration in the following ways:
|
|
|
|
Device Drivers
|
|
CONFIG_SPI=y : Enable SPI support
|
|
CONFIG_SPI_EXCHANGE=y : The exchange() method is supported
|
|
CONFIG_SPI_OWNBUS=y : Smaller code if this is the only SPI device
|
|
|
|
CONFIG_INPUT=y : Enable support for input devices
|
|
CONFIG_INPUT_ADS7843E=y : Enable support for the XPT2046
|
|
CONFIG_ADS7843E_SPIDEV=2 : Use SPI CS 2 for communication
|
|
CONFIG_ADS7843E_SPIMODE=0 : Use SPI mode 0
|
|
CONFIG_ADS7843E_FREQUENCY=1000000 : SPI BAUD 1MHz
|
|
CONFIG_ADS7843E_SWAPXY=y : If landscpe orientation
|
|
CONFIG_ADS7843E_THRESHX=51 : These will probably need to be tuned
|
|
CONFIG_ADS7843E_THRESHY=39
|
|
|
|
System Type -> Peripherals:
|
|
CONFIG_SAM34_SPI0=y : Enable support for SPI
|
|
|
|
System Type:
|
|
CONFIG_GPIO_IRQ=y : GPIO interrupt support
|
|
CONFIG_GPIOA_IRQ=y : Enable GPIO interrupts from port A
|
|
|
|
RTOS Features:
|
|
CONFIG_DISABLE_SIGNALS=n : Signals are required
|
|
|
|
Library Support:
|
|
CONFIG_SCHED_WORKQUEUE=y : Work queue support required
|
|
|
|
Applicaton Configuration:
|
|
CONFIG_EXAMPLES_TOUCHSCREEN=y : Enable the touchscreen built-int test
|
|
|
|
Defaults should be okay for related touchscreen settings. Touchscreen
|
|
debug output on UART0 can be enabled with:
|
|
|
|
Build Setup:
|
|
CONFIG_DEBUG=y : Enable debug features
|
|
CONFIG_DEBUG_VERBOSE=y : Enable verbose debug output
|
|
CONFIG_DEBUG_INPUT=y : Enable debug output from input devices
|
|
|
|
3. Enabling HSMCI support. The SAM3U-KE provides a an SD memory card
|
|
slot. Support for the SD slot can be enabled with the following
|
|
settings:
|
|
|
|
System Type->ATSAM3/4 Peripheral Support
|
|
CONFIG_SAM34_HSMCI=y : Enable HSMCI support
|
|
CONFIG_SAM34_DMAC=y : DMAC support is needed by HSMCI
|
|
|
|
System Type
|
|
CONFIG_SAM34_GPIO_IRQ=y : PIO interrupts needed
|
|
CONFIG_SAM34_GPIOA_IRQ=y : Card detect pin is on PIOA
|
|
|
|
Device Drivers -> MMC/SD Driver Support
|
|
CONFIG_MMCSD=y : Enable MMC/SD support
|
|
CONFIG_MMSCD_NSLOTS=1 : One slot per driver instance
|
|
CONFIG_MMCSD_HAVECARDDETECT=y : Supports card-detect PIOs
|
|
CONFIG_MMCSD_SDIO=y : SDIO-based MMC/SD support
|
|
CONFIG_SDIO_DMA=y : Use SDIO DMA
|
|
CONFIG_SDIO_BLOCKSETUP=y : Needs to know block sizes
|
|
|
|
Library Routines
|
|
CONFIG_SCHED_WORKQUEUE=y : Driver needs work queue support
|
|
|
|
Application Configuration -> NSH Library
|
|
CONFIG_NSH_ARCHINIT=y : NSH board-initialization
|
|
|
|
STATUS:
|
|
2013-6-28: The touchscreen is functional.
|
|
2013-6-29: Hmmm... but there appear to be conditions when the
|
|
touchscreen driver locks up. Looks like some issue with
|
|
managing the interrupts.
|
|
2013-6-30: Those lock-ups appear to be due to poorly placed
|
|
debug output statements. If you do not enable debug output,
|
|
the touchscreen is rock-solid.
|
|
2013-8-10: Added the comments above above enabling HSMCI memory
|
|
card support and verified that the configuration builds without
|
|
error. However, that configuration has not yet been tested (and
|
|
is may even be incomplete).
|