nuttx/sched/task/task_cancelpt.c
Ville Juven df1d7dd480 libc/exit: Purge calls to userspace API exit() from kernel
Remove calls to the userspace API exit() from the kernel. The problem
with doing such calls is that the exit functions are called with kernel
mode privileges which is a big security no-no.
2023-02-17 23:07:17 +08:00

425 lines
14 KiB
C

/****************************************************************************
* sched/task/task_cancelpt.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Cancellation Points.
*
* Cancellation points shall occur when a thread is executing the following
* functions:
*
* accept() mq_timedsend() putpmsg() sigtimedwait()
* aio_suspend() msgrcv() pwrite() sigwait()
* clock_nanosleep() msgsnd() read() sigwaitinfo()
* close() msync() readv() sleep()
* connect() nanosleep() recv() system()
* creat() open() recvfrom() tcdrain()
* fcntl() pause() recvmsg() usleep()
* fdatasync() poll() select() wait()
* fsync() pread() sem_timedwait() waitid()
* getmsg() pselect() sem_wait() waitpid()
* getpmsg() pthread_cond_timedwait() send() write()
* lockf() pthread_cond_wait() sendmsg() writev()
* mq_receive() pthread_join() sendto()
* mq_send() pthread_testcancel() sigpause()
* mq_timedreceive() putmsg() sigsuspend()
*
* Each of the above function must call enter_cancellation_point() on entry
* in order to establish the cancellation point and
* leave_cancellation_point() on exit. These functions are described below.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sched.h>
#include <assert.h>
#include <errno.h>
#include <nuttx/irq.h>
#include <nuttx/cancelpt.h>
#include "sched/sched.h"
#include "semaphore/semaphore.h"
#include "signal/signal.h"
#include "mqueue/mqueue.h"
#include "task/task.h"
#ifdef CONFIG_CANCELLATION_POINTS
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: enter_cancellation_point
*
* Description:
* Called at the beginning of the cancellation point to establish the
* cancellation point. This function does the following:
*
* 1. If deferred cancellation does not apply to this thread, nothing is
* done, otherwise, it
* 2. Sets state information in the caller's TCB and increments a nesting
* count.
* 3. If this is the outermost nesting level, it checks if there is a
* pending cancellation and, if so, calls either exit() or
* pthread_exit(), depending upon the type of the thread.
*
* Input Parameters:
* None
*
* Returned Value:
* true is returned if a cancellation is pending but cannot be performed
* now due to the nesting level.
*
****************************************************************************/
bool enter_cancellation_point(void)
{
FAR struct tcb_s *tcb = this_task();
bool ret = false;
/* Disabling pre-emption should provide sufficient protection. We only
* need the TCB to be stationary (no interrupt level modification is
* anticipated).
*
* REVISIT: is locking the scheduler sufficient in SMP mode?
*/
sched_lock();
/* If cancellation is disabled on this thread or if this thread is using
* asynchronous cancellation, then do nothing.
*
* Special case: if the cpcount count is greater than zero, then we are
* nested and the above condition was certainly true at the outermost
* nesting level.
*/
if (((tcb->flags & TCB_FLAG_NONCANCELABLE) == 0 &&
(tcb->flags & TCB_FLAG_CANCEL_DEFERRED) != 0) ||
tcb->cpcount > 0)
{
/* Check if there is a pending cancellation */
if ((tcb->flags & TCB_FLAG_CANCEL_PENDING) != 0)
{
/* Yes... return true (if we don't exit here) */
ret = true;
/* If there is a pending cancellation and we are at the outermost
* nesting level of cancellation function calls, then exit
* according to the type of the thread.
*/
if (tcb->cpcount == 0)
{
#ifndef CONFIG_DISABLE_PTHREAD
if ((tcb->flags & TCB_FLAG_TTYPE_MASK) ==
TCB_FLAG_TTYPE_PTHREAD)
{
pthread_exit(PTHREAD_CANCELED);
}
else
#endif
{
_exit(EXIT_FAILURE);
}
}
}
/* Otherwise, indicate that we are at a cancellation point by
* incrementing the nesting level of the cancellation point
* functions.
*/
DEBUGASSERT(tcb->cpcount < INT16_MAX);
tcb->cpcount++;
}
sched_unlock();
return ret;
}
/****************************************************************************
* Name: leave_cancellation_point
*
* Description:
* Called at the end of the cancellation point. This function does the
* following:
*
* 1. If deferred cancellation does not apply to this thread, nothing is
* done, otherwise, it
* 2. Clears state information in the caller's TCB and decrements a
* nesting count.
* 3. If this is the outermost nesting level, it checks if there is a
* pending cancellation and, if so, calls either exit() or
* pthread_exit(), depending upon the type of the thread.
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
****************************************************************************/
void leave_cancellation_point(void)
{
FAR struct tcb_s *tcb = this_task();
/* Disabling pre-emption should provide sufficient protection. We only
* need the TCB to be stationary (no interrupt level modification is
* anticipated).
*
* REVISIT: is locking the scheduler sufficient in SMP mode?
*/
sched_lock();
/* If cancellation is disabled on this thread or if this thread is using
* asynchronous cancellation, then do nothing. Here we check only the
* nesting level: if the cpcount count is greater than zero, then the
* required condition was certainly true at the outermost nesting level.
*/
if (tcb->cpcount > 0)
{
/* Decrement the nesting level. If if would decrement to zero, then
* we are at the outermost nesting level and may need to do more.
*/
if (tcb->cpcount == 1)
{
/* We are no longer at the cancellation point */
tcb->cpcount = 0;
/* If there is a pending cancellation then just exit according to
* the type of the thread.
*/
if ((tcb->flags & TCB_FLAG_CANCEL_PENDING) != 0)
{
#ifndef CONFIG_DISABLE_PTHREAD
if ((tcb->flags & TCB_FLAG_TTYPE_MASK) ==
TCB_FLAG_TTYPE_PTHREAD)
{
pthread_exit(PTHREAD_CANCELED);
}
else
#endif
{
_exit(EXIT_FAILURE);
}
}
}
else
{
/* We are not at the outermost nesting level. Just decrment the
* nesting level count.
*/
tcb->cpcount--;
}
}
sched_unlock();
}
/****************************************************************************
* Name: check_cancellation_point
*
* Description:
* Returns true if:
*
* 1. Deferred cancellation does applies to this thread,
* 2. We are within a cancellation point (i.e., the nesting level in the
* TCB is greater than zero).
*
* Input Parameters:
* None
*
* Returned Value:
* true is returned if a cancellation is pending but cannot be performed
* now due to the nesting level.
*
****************************************************************************/
bool check_cancellation_point(void)
{
FAR struct tcb_s *tcb = this_task();
bool ret = false;
/* Disabling pre-emption should provide sufficient protection. We only
* need the TCB to be stationary (no interrupt level modification is
* anticipated).
*
* REVISIT: is locking the scheduler sufficient in SMP mode?
*/
sched_lock();
/* If cancellation is disabled on this thread or if this thread is using
* asynchronous cancellation, then return false.
*
* If the cpcount count is greater than zero, then we within a
* cancellation and will true if there is a pending cancellation.
*/
if (((tcb->flags & TCB_FLAG_NONCANCELABLE) == 0 &&
(tcb->flags & TCB_FLAG_CANCEL_DEFERRED) != 0) ||
tcb->cpcount > 0)
{
/* Check if there is a pending cancellation. If so, return true. */
ret = ((tcb->flags & TCB_FLAG_CANCEL_PENDING) != 0);
}
sched_unlock();
return ret;
}
#endif /* CONFIG_CANCELLATION_POINTS */
/****************************************************************************
* Name: nxnotify_cancellation
*
* Description:
* Called by task_delete() or pthread_cancel() if the cancellation occurs
* while we the thread is within the cancellation point. This logic
* behaves much like sending a signal: It will cause waiting threads
* to wake up and terminated with ECANCELED. A call to
* leave_cancellation_point() would then follow, causing the thread to
* exit.
*
* Returned Value:
* Indicate whether the notification delivery to the target
*
****************************************************************************/
bool nxnotify_cancellation(FAR struct tcb_s *tcb)
{
irqstate_t flags;
bool ret = false;
/* We need perform the following operations from within a critical section
* because it can compete with interrupt level activity.
*/
flags = enter_critical_section();
/* We only notify the cancellation if (1) the thread has not disabled
* cancellation, (2) the thread uses the deferred cancellation mode,
* (3) the thread is waiting within a cancellation point.
*/
/* Check to see if this task has the non-cancelable bit set. */
if ((tcb->flags & TCB_FLAG_NONCANCELABLE) != 0)
{
/* Then we cannot cancel the thread now. Here is how this is
* supposed to work:
*
* "When cancellability is disabled, all cancels are held pending
* in the target thread until the thread changes the cancellability.
* When cancellability is deferred, all cancels are held pending in
* the target thread until the thread changes the cancellability,
* calls a function which is a cancellation point or calls
* pthread_testcancel(), thus creating a cancellation point. When
* cancellability is asynchronous, all cancels are acted upon
* immediately, interrupting the thread with its processing."
*/
tcb->flags |= TCB_FLAG_CANCEL_PENDING;
leave_critical_section(flags);
return true;
}
#ifdef CONFIG_CANCELLATION_POINTS
/* Check if this task supports deferred cancellation */
if ((tcb->flags & TCB_FLAG_CANCEL_DEFERRED) != 0)
{
/* Then we cannot cancel the task asynchronously. */
ret = true;
/* Mark the cancellation as pending. */
tcb->flags |= TCB_FLAG_CANCEL_PENDING;
/* If the task is waiting at a cancellation point, then notify of the
* cancellation thereby waking the task up with an ECANCELED error.
*/
if (tcb->cpcount > 0)
{
/* If the thread is blocked waiting for a semaphore, then the
* thread must be unblocked to handle the cancellation.
*/
if (tcb->task_state == TSTATE_WAIT_SEM)
{
nxsem_wait_irq(tcb, ECANCELED);
}
/* If the thread is blocked waiting on a signal, then the
* thread must be unblocked to handle the cancellation.
*/
else if (tcb->task_state == TSTATE_WAIT_SIG)
{
nxsig_wait_irq(tcb, ECANCELED);
}
#if !defined(CONFIG_DISABLE_MQUEUE) || !defined(CONFIG_DISABLE_MQUEUE_SYSV)
/* If the thread is blocked waiting on a message queue, then
* the thread must be unblocked to handle the cancellation.
*/
else if (tcb->task_state == TSTATE_WAIT_MQNOTEMPTY ||
tcb->task_state == TSTATE_WAIT_MQNOTFULL)
{
nxmq_wait_irq(tcb, ECANCELED);
}
#endif
}
#ifdef HAVE_GROUP_MEMBERS
else if (tcb->group && (tcb->group->tg_flags & GROUP_FLAG_EXITING))
{
/* Exit in progress, do asynchronous cancel instead */
ret = false;
}
#endif
}
#endif
leave_critical_section(flags);
return ret;
}