nuttx/drivers/wireless/ieee802154/mrf24j40/mrf24j40.c

2506 lines
64 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/****************************************************************************
* drivers/wireless/ieee802154/mrf24j40/mrf24j40.c
*
* Copyright (C) 2015-2016 Sebastien Lorquet. All rights reserved.
* Copyright (C) 2017 Verge Inc. All rights reserved.
* Author: Sebastien Lorquet <sebastien@lorquet.fr>
* Author: Anthony Merlino <anthony@vergeaero.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <assert.h>
#include <debug.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <semaphore.h>
#include <nuttx/arch.h>
#include <nuttx/kmalloc.h>
#include <nuttx/wqueue.h>
#include <nuttx/semaphore.h>
#include <nuttx/fs/fs.h>
#include <nuttx/spi/spi.h>
#include <nuttx/mm/iob.h>
#include <nuttx/wireless/ieee802154/mrf24j40.h>
#include <nuttx/wireless/ieee802154/ieee802154_radio.h>
#include <nuttx/wireless/ieee802154/ieee802154_mac.h>
#include "mrf24j40.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#ifndef CONFIG_SCHED_HPWORK
# error High priority work queue required in this driver
#endif
#ifndef CONFIG_IEEE802154_MRF24J40_SPIMODE
# define CONFIG_IEEE802154_MRF24J40_SPIMODE SPIDEV_MODE0
#endif
#ifndef CONFIG_IEEE802154_MRF24J40_FREQUENCY
# define CONFIG_IEEE802154_MRF24J40_FREQUENCY 8000000
#endif
#ifndef CONFIG_SPI_EXCHANGE
# error CONFIG_SPI_EXCHANGE required for this driver
#endif
/* Definitions for the device structure */
#define MRF24J40_RXMODE_NORMAL 0
#define MRF24J40_RXMODE_PROMISC 1
#define MRF24J40_RXMODE_NOCRC 2
#define MRF24J40_MODE_DEVICE 0
#define MRF24J40_MODE_COORD 1
#define MRF24J40_MODE_PANCOORD 2
/* Definitions for PA control on high power modules */
#define MRF24J40_PA_AUTO 1
#define MRF24J40_PA_ED 2
#define MRF24J40_PA_SLEEP 3
#define MRF24J40_GTS_SLOTS 2
/* Clock configuration macros */
#define MRF24J40_SLPCLKPER_100KHZ ((1000 * 1000 * 1000)/100000) /* 10ns */
#define MRF24J40_SLPCLKPER_32KHZ ((1000 * 1000 * 1000)/32000) /* 31.25ns */
#define MRF24J40_BEACONINTERVAL_NSEC(beaconorder) \
(IEEE802154_BASE_SUPERFRAME_DURATION * (1 << beaconorder) * (16 *1000))
/* For now I am just setting the REMCNT to the maximum while staying in multiples
* of 10000 (100khz period) */
#define MRF24J40_REMCNT 60000
#define MRF24J40_REMCNT_NSEC (MRF24J40_REMCNT * 50)
#define MRF24J40_MAINCNT(bo, clkper) \
((MRF24J40_BEACONINTERVAL_NSEC(bo) - MRF24J40_REMCNT_NSEC) / \
clkper)
/* Formula for calculating default macMaxFrameWaitTime is on pg. 130
*
* For PHYs other than CSS and UWB, the attribute phyMaxFrameDuration is given by:
*
* phyMaxFrameDuration = phySHRDuration +
* ceiling([aMaxPHYPacketSize + 1] x phySymbolsPerOctet)
*
* where ceiling() is a function that returns the smallest integer value greater
* than or equal to its argument value. [1] pg. 158
*/
#define MRF24J40_DEFAULT_MAX_FRAME_WAITTIME 1824
#define MRF24J40_SYMBOL_DURATION_PS 16000000
/****************************************************************************
* Private Types
****************************************************************************/
/* A MRF24J40 device instance */
struct mrf24j40_radio_s
{
struct ieee802154_radio_s radio; /* The public device instance */
FAR struct ieee802154_radiocb_s *radiocb; /* Registered callbacks */
/* Low-level MCU-specific support */
FAR const struct mrf24j40_lower_s *lower;
FAR struct spi_dev_s *spi; /* Saved SPI interface instance */
struct work_s irqwork; /* For deferring interrupt work to work queue */
struct work_s csma_pollwork; /* For deferring poll work to the work queue */
struct work_s gts_pollwork; /* For deferring poll work to the work queue */
sem_t exclsem; /* Exclusive access to this struct */
/* MAC Attributes */
struct ieee802154_addr_s addr;
uint8_t chan; /* 11 to 26 for the 2.4 GHz band */
uint8_t devmode; /* device mode: device, coord, pancoord */
uint8_t paenabled; /* enable usage of PA */
uint8_t rxmode; /* Reception mode: Main, no CRC, promiscuous */
int32_t txpower; /* TX power in mBm = dBm/100 */
struct ieee802154_cca_s cca; /* Clear channel assessement method */
/* MAC PIB attributes */
uint32_t max_frame_waittime;
struct ieee802154_txdesc_s *txdelayed_desc;
struct ieee802154_txdesc_s *csma_desc;
bool txdelayed_busy : 1;
bool csma_busy : 1;
bool reschedule_csma : 1;
bool rxenabled : 1;
uint8_t bsn;
struct ieee802154_txdesc_s *gts_desc[MRF24J40_GTS_SLOTS];
bool gts_busy[MRF24J40_GTS_SLOTS];
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Internal operations */
static void mrf24j40_spi_lock(FAR struct spi_dev_s *spi);
static void mrf24j40_setreg(FAR struct spi_dev_s *spi, uint32_t addr,
uint8_t val);
static uint8_t mrf24j40_getreg(FAR struct spi_dev_s *spi, uint32_t addr);
static int mrf24j40_resetrfsm(FAR struct mrf24j40_radio_s *dev);
static void mrf24j40_setorder(FAR struct mrf24j40_radio_s *dev, uint8_t bo,
uint8_t so);
static int mrf24j40_pacontrol(FAR struct mrf24j40_radio_s *dev, int mode);
static int mrf24j40_setrxmode(FAR struct mrf24j40_radio_s *dev, int mode);
static int mrf24j40_regdump(FAR struct mrf24j40_radio_s *dev);
static void mrf24j40_irqwork_rx(FAR struct mrf24j40_radio_s *dev);
static void mrf24j40_irqwork_txnorm(FAR struct mrf24j40_radio_s *dev);
static void mrf24j40_irqwork_txgts(FAR struct mrf24j40_radio_s *dev,
uint8_t gts_num);
static void mrf24j40_irqworker(FAR void *arg);
static int mrf24j40_interrupt(int irq, FAR void *context, FAR void *arg);
static void mrf24j40_dopoll_csma(FAR void *arg);
static void mrf24j40_dopoll_gts(FAR void *arg);
static void mrf24j40_norm_setup(FAR struct mrf24j40_radio_s *dev,
FAR struct iob_s *frame, bool csma);
static void mrf24j40_gts_setup(FAR struct mrf24j40_radio_s *dev, uint8_t gts,
FAR struct iob_s *frame);
static void mrf24j40_setup_fifo(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *buf, uint8_t length, uint32_t fifo_addr);
static inline void mrf24j40_norm_trigger(FAR struct mrf24j40_radio_s *dev);
static inline void mrf24j40_beacon_trigger(FAR struct mrf24j40_radio_s *dev);
static int mrf24j40_setchannel(FAR struct mrf24j40_radio_s *dev,
uint8_t chan);
static int mrf24j40_setpanid(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *panid);
static int mrf24j40_setsaddr(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *saddr);
static int mrf24j40_seteaddr(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *eaddr);
static int mrf24j40_setcoordsaddr(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *saddr);
static int mrf24j40_setcoordeaddr(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *eaddr);
static int mrf24j40_setdevmode(FAR struct mrf24j40_radio_s *dev,
uint8_t mode);
static int mrf24j40_settxpower(FAR struct mrf24j40_radio_s *dev,
int32_t txpwr);
static int mrf24j40_setcca(FAR struct mrf24j40_radio_s *dev,
FAR struct ieee802154_cca_s *cca);
static int mrf24j40_energydetect(FAR struct mrf24j40_radio_s *dev,
FAR uint8_t *energy);
static void mrf24j40_mactimer(FAR struct mrf24j40_radio_s *dev, int numsymbols);
/* Driver operations */
static int mrf24j40_bind(FAR struct ieee802154_radio_s *radio,
FAR struct ieee802154_radiocb_s *radiocb);
static int mrf24j40_reset(FAR struct ieee802154_radio_s *radio);
static int mrf24j40_getattr(FAR struct ieee802154_radio_s *radio,
enum ieee802154_attr_e attr,
FAR union ieee802154_attr_u *attrval);
static int mrf24j40_setattr(FAR struct ieee802154_radio_s *radio,
enum ieee802154_attr_e attr,
FAR const union ieee802154_attr_u *attrval);
static int mrf24j40_txnotify(FAR struct ieee802154_radio_s *radio, bool gts);
static int mrf24j40_txdelayed(FAR struct ieee802154_radio_s *radio,
FAR struct ieee802154_txdesc_s *txdesc,
uint32_t symboldelay);
static int mrf24j40_rxenable(FAR struct ieee802154_radio_s *dev, bool enable);
static int mrf24j40_beaconstart(FAR struct ieee802154_radio_s *radio,
FAR const struct ieee802154_superframespec_s *sfspec,
FAR struct ieee802154_beaconframe_s *beacon);
static int mrf24j40_beaconupdate(FAR struct ieee802154_radio_s *radio,
FAR struct ieee802154_beaconframe_s *beacon);
static int mrf24j40_beaconstop(FAR struct ieee802154_radio_s *radio);
static int mrf24j40_sfupdate(FAR struct ieee802154_radio_s *radio,
FAR const struct ieee802154_superframespec_s *sfspec);
/****************************************************************************
* Private Data
****************************************************************************/
static const uint8_t g_allones[8] =
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
/****************************************************************************
* Radio Interface Functions
****************************************************************************/
static int mrf24j40_bind(FAR struct ieee802154_radio_s *radio,
FAR struct ieee802154_radiocb_s *radiocb)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)radio;
DEBUGASSERT(dev != NULL);
dev->radiocb = radiocb;
return OK;
}
/****************************************************************************
* Function: mrf24j40_txnotify
*
* Description:
* Driver callback invoked when new TX data is available. This is a
* stimulus perform an out-of-cycle poll and, thereby, reduce the TX
* latency.
*
* Parameters:
* radio - Reference to the radio driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int mrf24j40_txnotify(FAR struct ieee802154_radio_s *radio, bool gts)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)radio;
if (gts)
{
/* Is our single work structure available? It may not be if there are
* pending interrupt actions and we will have to ignore the Tx
* availability action.
*/
if (work_available(&dev->gts_pollwork))
{
/* Schedule to serialize the poll on the worker thread. */
work_queue(HPWORK, &dev->gts_pollwork, mrf24j40_dopoll_gts, dev, 0);
}
}
else
{
/* Is our single work structure available? It may not be if there are
* pending interrupt actions and we will have to ignore the Tx
* availability action.
*/
if (work_available(&dev->csma_pollwork))
{
/* Schedule to serialize the poll on the worker thread. */
work_queue(HPWORK, &dev->csma_pollwork, mrf24j40_dopoll_csma, dev, 0);
}
}
return OK;
}
/****************************************************************************
* Function: mrf24j40_txdelayed
*
* Description:
* Transmit a packet without regard to supeframe structure after a certain
* number of symbols. This function is used to send Data Request responses.
* It can also be used to send data immediately if the delay is set to 0.
*
* Parameters:
* radio - Reference to the radio driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int mrf24j40_txdelayed(FAR struct ieee802154_radio_s *radio,
FAR struct ieee802154_txdesc_s *txdesc,
uint32_t symboldelay)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)radio;
uint8_t reg;
/* Get exclusive access to the radio device */
if (sem_wait(&dev->exclsem) != 0)
{
return -EINTR;
}
/* There should never be more than one of these transactions at once. */
DEBUGASSERT(!dev->txdelayed_busy);
dev->txdelayed_desc = txdesc;
dev->txdelayed_busy = true;
/* Disable the TX norm interrupt and clear it */
reg = mrf24j40_getreg(dev->spi, MRF24J40_INTCON);
reg |= MRF24J40_INTCON_TXNIE;
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, reg);
/* If after disabling the interrupt, the irqworker is not scheduled, there
* are no interrupts to worry about. However, if there is work scheduled,
* we need to process it before going any further.
*/
if (!work_available(&dev->irqwork))
{
work_cancel(HPWORK, &dev->irqwork);
sem_post(&dev->exclsem);
mrf24j40_irqworker((FAR void *)dev);
/* Get exclusive access to the radio device */
if (sem_wait(&dev->exclsem) != 0)
{
return -EINTR;
}
}
if (dev->csma_busy)
{
dev->reschedule_csma = true;
}
mrf24j40_norm_setup(dev, txdesc->frame, false);
if (symboldelay == 0)
{
mrf24j40_norm_trigger(dev);
}
else
{
mrf24j40_mactimer(dev, symboldelay);
}
sem_post(&dev->exclsem);
return OK;
}
static int mrf24j40_reset(FAR struct ieee802154_radio_s *radio)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)radio;
struct ieee802154_cca_s cca;
int reg;
/* Software reset */
mrf24j40_setreg(dev->spi, MRF24J40_SOFTRST , 0x07); /* 00000111 Reset */
while(mrf24j40_getreg(dev->spi, MRF24J40_SOFTRST) & 0x07);
/* Apply recommended settings */
mrf24j40_setreg(dev->spi, MRF24J40_PACON2 , 0x98); /* 10011000 Enable FIFO (default), TXONTS=6 (recommended), TXONT<8:7>=0 */
mrf24j40_setreg(dev->spi, MRF24J40_TXSTBL , 0x95); /* 10010101 set the SIFS period. RFSTBL=9, MSIFS=5, aMinSIFSPeriod=14 (min 12) */
mrf24j40_setreg(dev->spi, MRF24J40_TXPEND , 0x7C); /* 01111100 set the LIFS period, MLIFS=1Fh=31 aMinLIFSPeriod=40 (min 40) */
mrf24j40_setreg(dev->spi, MRF24J40_TXTIME , 0x30); /* 00110000 set the turnaround time, TURNTIME=3 aTurnAroundTime=12 */
mrf24j40_setreg(dev->spi, MRF24J40_RFCON1 , 0x02); /* 00000010 VCO optimization, recommended value */
mrf24j40_setreg(dev->spi, MRF24J40_RFCON2 , 0x80); /* 10000000 Enable PLL */
mrf24j40_setreg(dev->spi, MRF24J40_RFCON6 , 0x90); /* 10010000 TX filter enable, fast 20M recovery, No bat monitor*/
mrf24j40_setreg(dev->spi, MRF24J40_RFCON7 , 0x80); /* 10000000 Sleep clock on internal 100 kHz */
mrf24j40_setreg(dev->spi, MRF24J40_RFCON8 , 0x10); /* 00010000 VCO control bit, as recommended */
mrf24j40_setreg(dev->spi, MRF24J40_SLPCON1, 0x01); /* 00000001 no CLKOUT, default divisor */
mrf24j40_setreg(dev->spi, MRF24J40_BBREG6 , 0x40); /* 01000000 Append RSSI to rx packets */
/* Set this in reset since it can exist for all device modes. See pg 101 */
mrf24j40_setreg(dev->spi, MRF24J40_FRMOFFSET, 0x15);
/* For now, we want to always just have the frame pending bit set when
* acknowledging a Data Request command. The standard says that the coordinator
* can do this if it needs time to figure out whether it has data or not
*/
mrf24j40_setreg(dev->spi, MRF24J40_ACKTMOUT, 0x39 | MRF24J40_ACKTMOUT_DRPACK);
/* Set WAKECNT (SLPACK 0x35<6:0>) value = 0x5F to set the main oscillator
* (20 MHz) start-up timer value.
*/
mrf24j40_setreg(dev->spi, MRF24J40_SLPACK, 0x5F);
/* Enable the SLPIF and WAKEIF flags */
reg = mrf24j40_getreg(dev->spi, MRF24J40_INTCON);
reg &= ~(MRF24J40_INTCON_SLPIE | MRF24J40_INTCON_WAKEIE);
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, reg);
dev->rxenabled = false;
mrf24j40_setchannel(dev, 11);
mrf24j40_setpanid(dev, g_allones);
mrf24j40_setsaddr(dev, g_allones);
mrf24j40_seteaddr(dev, g_allones);
dev->max_frame_waittime = MRF24J40_DEFAULT_MAX_FRAME_WAITTIME;
dev->bsn = 0;
/* Default device params */
cca.use_ed = 1;
cca.use_cs = 0;
cca.edth = 0x60; /* CCA mode ED, no carrier sense, recommenced ED threshold -69 dBm */
mrf24j40_setcca(dev, &cca);
mrf24j40_setrxmode(dev, MRF24J40_RXMODE_NORMAL);
mrf24j40_settxpower(dev, 0); /*16. Set transmitter power .*/
mrf24j40_pacontrol(dev, MRF24J40_PA_AUTO);
return OK;
}
static int mrf24j40_getattr(FAR struct ieee802154_radio_s *radio,
enum ieee802154_attr_e attr,
FAR union ieee802154_attr_u *attrval)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)radio;
int ret;
switch (attr)
{
case IEEE802154_ATTR_MAC_EADDR:
{
memcpy(&attrval->mac.eaddr[0], &dev->addr.eaddr[0], 8);
ret = IEEE802154_STATUS_SUCCESS;
}
break;
case IEEE802154_ATTR_MAC_MAX_FRAME_WAITTIME:
{
attrval->mac.max_frame_waittime = dev->max_frame_waittime;
ret = IEEE802154_STATUS_SUCCESS;
}
break;
case IEEE802154_ATTR_PHY_SYMBOL_DURATION:
{
attrval->phy.symdur_picosec = MRF24J40_SYMBOL_DURATION_PS;
ret = IEEE802154_STATUS_SUCCESS;
}
break;
case IEEE802154_ATTR_PHY_CHAN:
{
attrval->phy.chan = dev->chan;
ret = IEEE802154_STATUS_SUCCESS;
}
default:
ret = IEEE802154_STATUS_UNSUPPORTED_ATTRIBUTE;
}
return ret;
}
static int mrf24j40_setattr(FAR struct ieee802154_radio_s *radio,
enum ieee802154_attr_e attr,
FAR const union ieee802154_attr_u *attrval)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)radio;
int ret;
switch (attr)
{
case IEEE802154_ATTR_MAC_PANID:
{
mrf24j40_setpanid(dev, attrval->mac.panid);
ret = IEEE802154_STATUS_SUCCESS;
}
break;
case IEEE802154_ATTR_MAC_SADDR:
{
mrf24j40_setsaddr(dev, attrval->mac.saddr);
ret = IEEE802154_STATUS_SUCCESS;
}
break;
case IEEE802154_ATTR_MAC_EADDR:
{
mrf24j40_seteaddr(dev, attrval->mac.eaddr);
ret = IEEE802154_STATUS_SUCCESS;
}
break;
case IEEE802154_ATTR_MAC_COORD_SADDR:
{
mrf24j40_setcoordsaddr(dev, attrval->mac.coordsaddr);
ret = IEEE802154_STATUS_SUCCESS;
}
break;
case IEEE802154_ATTR_MAC_COORD_EADDR:
{
mrf24j40_setcoordeaddr(dev, attrval->mac.coordeaddr);
ret = IEEE802154_STATUS_SUCCESS;
}
break;
case IEEE802154_ATTR_MAC_PROMISCUOUS_MODE:
{
if (attrval->mac.promisc_mode)
{
mrf24j40_setrxmode(dev, MRF24J40_RXMODE_PROMISC);
}
else
{
mrf24j40_setrxmode(dev, MRF24J40_RXMODE_NORMAL);
}
ret = IEEE802154_STATUS_SUCCESS;
}
break;
case IEEE802154_ATTR_PHY_CHAN:
{
mrf24j40_setchannel(dev, attrval->phy.chan);
ret = IEEE802154_STATUS_SUCCESS;
}
break;
default:
ret = IEEE802154_STATUS_UNSUPPORTED_ATTRIBUTE;
break;
}
return ret;
}
static int mrf24j40_beaconstart(FAR struct ieee802154_radio_s *radio,
FAR const struct ieee802154_superframespec_s *sfspec,
FAR struct ieee802154_beaconframe_s *beacon)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)radio;
int reg;
if (sfspec->pancoord)
{
/* Set the PANCOORD (RXMCR 0x00<3>) bit = 1to configure as PAN coordinator */
reg = mrf24j40_getreg(dev->spi, MRF24J40_RXMCR);
reg |= MRF24J40_RXMCR_PANCOORD;
mrf24j40_setreg(dev->spi, MRF24J40_RXMCR, reg);
/* Set the SLOTTED (TXMCR 0x11<5>) bit = 1 to use Slotted CSMA-CA mode */
reg = mrf24j40_getreg(dev->spi, MRF24J40_TXMCR);
reg |= MRF24J40_TXMCR_SLOTTED;
mrf24j40_setreg(dev->spi, MRF24J40_TXMCR, reg);
/* Load the beacon frame into the TXBFIFO (0x080-0x0FF). */
mrf24j40_setup_fifo(dev, beacon->bf_data, beacon->bf_len, MRF24J40_BEACON_FIFO);
/* The radio layer is responsible for setting the BSN. */
dev->bsn = 0;
mrf24j40_setreg(dev->spi, MRF24J40_BEACON_FIFO + 4, dev->bsn++);
/* Set the TXBMSK (TXBCON1 0x25<7>) bit = 1 to mask the beacon interrupt
* mask
*/
reg = mrf24j40_getreg(dev->spi, MRF24J40_TXBCON1);
reg |= MRF24J40_TXBCON1_TXBMSK;
mrf24j40_setreg(dev->spi, MRF24J40_TXBCON1, reg);
/* Set INTL (WAKECON 0x22<5:0>) value to 0x03. */
reg = mrf24j40_getreg(dev->spi, MRF24J40_WAKECON);
reg &= ~MRF24J40_WAKECON_INTL;
reg |= 0x03 & MRF24J40_WAKECON_INTL;
mrf24j40_setreg(dev->spi, MRF24J40_WAKECON, reg);
/* Program the CAP end slot (ESLOTG1 0x13<3:0>) value. */
reg = mrf24j40_getreg(dev->spi, MRF24J40_ESLOTG1);
reg &= ~MRF24J40_ESLOTG1_CAP;
reg |= sfspec->final_capslot & MRF24J40_ESLOTG1_CAP;
mrf24j40_setreg(dev->spi, MRF24J40_ESLOTG1, reg);
/* TODO: Add GTS related code. See pg 100 of datasheet */
mrf24j40_setorder(dev, sfspec->beaconorder, sfspec->sforder);
}
else
{
return -ENOTTY;
}
return OK;
}
static int mrf24j40_beaconupdate(FAR struct ieee802154_radio_s *radio,
FAR struct ieee802154_beaconframe_s *beacon)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)radio;
mrf24j40_setup_fifo(dev, beacon->bf_data, beacon->bf_len, MRF24J40_BEACON_FIFO);
mrf24j40_beacon_trigger(dev);
return OK;
}
static int mrf24j40_beaconstop(FAR struct ieee802154_radio_s *radio)
{
return -ENOTTY;
}
static int mrf24j40_sfupdate(FAR struct ieee802154_radio_s *radio,
FAR const struct ieee802154_superframespec_s *sfspec)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)radio;
int reg;
/* If we are operating on a beacon-enabled network, use slotted CSMA */
reg = mrf24j40_getreg(dev->spi, MRF24J40_TXMCR);
if (sfspec->beaconorder < 15)
{
reg |= MRF24J40_TXMCR_SLOTTED;
}
else
{
reg &= ~MRF24J40_TXMCR_SLOTTED;
}
mrf24j40_setreg(dev->spi, MRF24J40_TXMCR, reg);
mrf24j40_setorder(dev, sfspec->beaconorder, sfspec->sforder);
/* Program the CAP end slot (ESLOTG1 0x13<3:0>) value. */
reg = mrf24j40_getreg(dev->spi, MRF24J40_ESLOTG1);
reg &= ~MRF24J40_ESLOTG1_CAP;
reg |= sfspec->final_capslot & MRF24J40_ESLOTG1_CAP;
mrf24j40_setreg(dev->spi, MRF24J40_ESLOTG1, reg);
return OK;
}
/****************************************************************************
* Internal Functions
****************************************************************************/
static void mrf24j40_mactimer(FAR struct mrf24j40_radio_s *dev, int numsymbols)
{
uint16_t nhalfsym;
uint8_t reg;
nhalfsym = (numsymbols << 1);
/* Disable the interrupt, clear the timer count */
reg = mrf24j40_getreg(dev->spi, MRF24J40_INTCON);
reg |= MRF24J40_INTCON_HSYMTMRIE;
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, reg);
mrf24j40_setreg(dev->spi, MRF24J40_HSYMTMRL, 0x00);
mrf24j40_setreg(dev->spi, MRF24J40_HSYMTMRH, 0x00);
reg &= ~MRF24J40_INTCON_HSYMTMRIE;
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, reg);
/* Set the timer count and enable interrupts */
reg = (nhalfsym & 0xFF);
mrf24j40_setreg(dev->spi, MRF24J40_HSYMTMRL, reg);
reg = (nhalfsym >> 8) & 0xFF;
mrf24j40_setreg(dev->spi, MRF24J40_HSYMTMRH, reg);
}
/****************************************************************************
* Function: mrf24j40_dopoll_csma
*
* Description:
* This function is called in order to preform an out-of-sequence TX poll.
* This is done:
*
* 1. After completion of a transmission (mrf24j40_txdone_csma),
* 2. When new TX data is available (mrf24j40_txnotify), and
* 3. After a TX timeout to restart the sending process
* (mrf24j40_txtimeout_csma).
*
* Parameters:
* radio - Reference to the radio driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void mrf24j40_dopoll_csma(FAR void *arg)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)arg;
int len = 0;
/* Get exclusive access to the driver */
while (sem_wait(&dev->exclsem) != 0) { }
/* If this a CSMA transaction and we have room in the CSMA fifo */
if (!dev->csma_busy)
{
wlinfo("Polling for frame\n");
len = dev->radiocb->poll(dev->radiocb, false, &dev->csma_desc);
if (len > 0)
{
wlinfo("Frame received. Frame length: %d\n", len);
/* Now the txdesc is in use */
dev->csma_busy = 1;
/* Setup the transaction on the device in the CSMA FIFO */
mrf24j40_norm_setup(dev, dev->csma_desc->frame, true);
mrf24j40_norm_trigger(dev);
}
}
sem_post(&dev->exclsem);
}
/****************************************************************************
* Function: mrf24j40_dopoll_gts
*
* Description:
* This function is called in order to preform an out-of-sequence TX poll.
* This is done:
*
* 1. After completion of a transmission (mrf24j40_txdone_gts),
* 2. When new TX data is available (mrf24j40_txnotify), and
* 3. After a TX timeout to restart the sending process
* (mrf24j40_txtimeout_gts).
*
* Parameters:
* arg - Reference to the radio driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void mrf24j40_dopoll_gts(FAR void *arg)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)arg;
int gts = 0;
int len = 0;
/* Get exclusive access to the driver */
while (sem_wait(&dev->exclsem) != 0) { }
for (gts = 0; gts < MRF24J40_GTS_SLOTS; gts++)
{
if (!dev->gts_busy[gts])
{
len = dev->radiocb->poll(dev->radiocb, true, &dev->gts_desc[gts]);
if (len > 0)
{
/* Now the txdesc is in use */
dev->gts_busy[gts]= 1;
/* Setup the transaction on the device in the open GTS FIFO */
mrf24j40_gts_setup(dev, gts, dev->gts_desc[gts]->frame);
}
}
}
sem_post(&dev->exclsem);
}
/****************************************************************************
* Name: mrf24j40_spi_lock
*
* Description:
* Acquire exclusive access to the shared SPI bus.
*
****************************************************************************/
static void mrf24j40_spi_lock(FAR struct spi_dev_s *spi)
{
SPI_LOCK(spi, 1);
SPI_SETBITS(spi, 8);
SPI_SETMODE(spi, CONFIG_IEEE802154_MRF24J40_SPIMODE);
SPI_SETFREQUENCY(spi, CONFIG_IEEE802154_MRF24J40_FREQUENCY);
}
/****************************************************************************
* Name: mrf24j40_spi_unlock
*
* Description:
* Release exclusive access to the shared SPI bus.
*
****************************************************************************/
static inline void mrf24j40_spi_unlock(FAR struct spi_dev_s *spi)
{
SPI_LOCK(spi,0);
}
/****************************************************************************
* Name: mrf24j40_setreg
*
* Description:
* Define the value of an MRF24J40 device register
*
****************************************************************************/
static void mrf24j40_setreg(FAR struct spi_dev_s *spi, uint32_t addr,
uint8_t val)
{
uint8_t buf[3];
int len;
if (!(addr&0x80000000))
{
addr &= 0x3F; /* 6-bit address */
addr <<= 1;
addr |= 0x01; /* writing */
buf[0] = addr;
len = 1;
}
else
{
addr &= 0x3FF; /* 10-bit address */
addr <<= 5;
addr |= 0x8010; /* writing long */
buf[0] = (addr >> 8);
buf[1] = (addr & 0xFF);
len = 2;
}
buf[len++] = val;
mrf24j40_spi_lock(spi);
SPI_SELECT(spi, SPIDEV_IEEE802154(0), true);
SPI_SNDBLOCK(spi, buf, len);
SPI_SELECT(spi, SPIDEV_IEEE802154(0), false);
mrf24j40_spi_unlock(spi);
}
/****************************************************************************
* Name: mrf24j40_getreg
*
* Description:
* Return the value of an MRF24J40 device register*
*
****************************************************************************/
static uint8_t mrf24j40_getreg(FAR struct spi_dev_s *spi, uint32_t addr)
{
uint8_t buf[3];
uint8_t rx[3];
int len;
if (!(addr&0x80000000))
{
/* 6-bit address */
addr &= 0x3F;
addr <<= 1;
buf[0] = addr;
len = 1;
}
else
{
/* 10-bit address */
addr &= 0x3FF;
addr <<= 5;
addr |= 0x8000;
buf[0] = (addr >> 8);
buf[1] = (addr & 0xFF);
len = 2;
}
buf[len++] = 0xFF; /* dummy */
mrf24j40_spi_lock (spi);
SPI_SELECT (spi, SPIDEV_IEEE802154(0), true);
SPI_EXCHANGE (spi, buf, rx, len);
SPI_SELECT (spi, SPIDEV_IEEE802154(0), false);
mrf24j40_spi_unlock(spi);
/* wlinfo("r[%04X]=%02X\n", addr, rx[len - 1]); */
return rx[len - 1];
}
/****************************************************************************
* Name: mrf24j40_resetrfsm
*
* Description:
* Reset the RF state machine. Required at boot, after channel change,
* and probably after PA settings.
*
****************************************************************************/
static int mrf24j40_resetrfsm(FAR struct mrf24j40_radio_s *dev)
{
uint8_t reg;
reg = mrf24j40_getreg(dev->spi, MRF24J40_RFCTL);
reg |= 0x04;
mrf24j40_setreg(dev->spi, MRF24J40_RFCTL, reg);
reg &= ~0x04;
mrf24j40_setreg(dev->spi, MRF24J40_RFCTL, reg);
up_udelay(200);
return OK;
}
/****************************************************************************
* Name: mrf24j40_setorder
*
* Description:
* Configures the timers and sets the ORDER register
****************************************************************************/
static void mrf24j40_setorder(FAR struct mrf24j40_radio_s *dev, uint8_t bo,
uint8_t so)
{
uint32_t maincnt = 0;
uint32_t slpcal = 0;
/* Calibrate the Sleep Clock (SLPCLK) frequency. Refer to Section 3.15.1.2
* “Sleep Clock Calibration”.
*/
/* If the Sleep Clock Selection, SLPCLKSEL (0x207<7:6), is the internal
* oscillator (100 kHz), set SLPCLKDIV to a minimum value of 0x01.
*/
mrf24j40_setreg(dev->spi, MRF24J40_SLPCON1, 0x01);
/* Select the source of SLPCLK (internal 100kHz) */
mrf24j40_setreg(dev->spi, MRF24J40_RFCON7, MRF24J40_RFCON7_SEL_100KHZ);
/* Begin calibration by setting the SLPCALEN bit (SLPCAL2 0x20B<4>) to
* 1. Sixteen samples of the SLPCLK are counted and stored in the
* SLPCAL register. No need to mask, this is the only writable bit
*/
mrf24j40_setreg(dev->spi, MRF24J40_SLPCAL2, MRF24J40_SLPCAL2_SLPCALEN);
/* Calibration is complete when the SLPCALRDY bit (SLPCAL2 0x20B<7>) is
* set to 1.
*/
while (!(mrf24j40_getreg(dev->spi, MRF24J40_SLPCAL2) &
MRF24J40_SLPCAL2_SLPCALRDY))
{
usleep(1);
}
slpcal = mrf24j40_getreg(dev->spi, MRF24J40_SLPCAL0);
slpcal |= (mrf24j40_getreg(dev->spi, MRF24J40_SLPCAL1) << 8);
slpcal |= ((mrf24j40_getreg(dev->spi, MRF24J40_SLPCAL2) << 16) & 0x0F);
/* Program the Beacon Interval into the Main Counter, MAINCNT (0x229<1:0>,
* 0x228, 0x227, 0x226), and Remain Counter, REMCNT (0x225, 0x224),
* according to BO and SO values. Refer to Section 3.15.1.3 “Sleep Mode
* Counters”
*/
mrf24j40_setreg(dev->spi, MRF24J40_REMCNTL, (MRF24J40_REMCNT & 0xFF));
mrf24j40_setreg(dev->spi, MRF24J40_REMCNTH, ((MRF24J40_REMCNT >> 8) & 0xFF));
maincnt = MRF24J40_MAINCNT(bo, (slpcal * 50 / 16));
mrf24j40_setreg(dev->spi, MRF24J40_MAINCNT0, (maincnt & 0xFF));
mrf24j40_setreg(dev->spi, MRF24J40_MAINCNT1, ((maincnt >> 8) & 0xFF));
mrf24j40_setreg(dev->spi, MRF24J40_MAINCNT2, ((maincnt >> 16) & 0xFF));
mrf24j40_setreg(dev->spi, MRF24J40_MAINCNT3, ((maincnt >> 24) & 0x03));
/* Configure the BO (ORDER 0x10<7:4>) and SO (ORDER 0x10<3:0>) values.
* After configuring BO and SO, the beacon frame will be sent immediately.
*/
mrf24j40_setreg(dev->spi, MRF24J40_ORDER, ((bo << 4) & 0xF0) | (so & 0x0F));
}
/****************************************************************************
* Name: mrf24j40_pacontrol
*
* Description:
* Control the external LNA/PA on the MRF24J40MB/MC/MD/ME modules
* GPIO 1: PA enable
* GPIO 2: LNA enable
* GPIO 3: PA power enable (not required on MB)
****************************************************************************/
static int mrf24j40_pacontrol(FAR struct mrf24j40_radio_s *dev, int mode)
{
if (!dev->paenabled)
{
return OK;
}
if (mode == MRF24J40_PA_AUTO)
{
mrf24j40_setreg(dev->spi, MRF24J40_TRISGPIO, 0x08);
mrf24j40_setreg(dev->spi, MRF24J40_GPIO , 0x08);
mrf24j40_setreg(dev->spi, MRF24J40_TESTMODE, 0x0F);
}
else if (mode == MRF24J40_PA_ED)
{
mrf24j40_setreg(dev->spi, MRF24J40_TESTMODE, 0x08);
mrf24j40_setreg(dev->spi, MRF24J40_TRISGPIO, 0x0F);
mrf24j40_setreg(dev->spi, MRF24J40_GPIO , 0x0C);
}
else if (mode == MRF24J40_PA_SLEEP)
{
mrf24j40_setreg(dev->spi, MRF24J40_TESTMODE, 0x08);
mrf24j40_setreg(dev->spi, MRF24J40_TRISGPIO, 0x0F);
mrf24j40_setreg(dev->spi, MRF24J40_GPIO , 0x00);
}
else
{
return -EINVAL;
}
mrf24j40_resetrfsm(dev);
return OK;
}
/****************************************************************************
* Name: mrf24j40_setrxmode
*
* Description:
* Set the RX mode (normal, promiscuous, no CRC)
*
****************************************************************************/
static int mrf24j40_setrxmode(FAR struct mrf24j40_radio_s *dev, int mode)
{
uint8_t reg;
if (mode < MRF24J40_RXMODE_NORMAL || mode > MRF24J40_RXMODE_NOCRC)
{
return -EINVAL;
}
reg = mrf24j40_getreg(dev->spi, MRF24J40_RXMCR);
reg &= ~0x03;
reg |= mode;
/* Set mode options */
if (mode != MRF24J40_RXMODE_NORMAL)
{
/* Promisc and error modes: Disable auto ACK */
reg |= MRF24J40_RXMCR_NOACKRSP;
}
else
{
/* Normal mode : enable auto-ACK */
reg &= ~MRF24J40_RXMCR_NOACKRSP;
}
mrf24j40_setreg(dev->spi, MRF24J40_RXMCR, reg);
dev->rxmode = mode;
wlinfo("%u\n", (unsigned)mode);
return OK;
}
/****************************************************************************
* Name: mrf24j40_setchannel
*
* Description:
* Define the current radio channel the device is operating on.
* In the 2.4 GHz, there are 16 channels, each 2 MHz wide, 5 MHz spacing:
* Chan MHz Chan MHz Chan MHz Chan MHz
* 11 2405 15 2425 19 2445 23 2465
* 12 2410 16 2430 20 2450 24 2470
* 13 2415 17 2435 21 2455 25 2475
* 14 2420 18 2440 22 2460 26 2480
*
****************************************************************************/
static int mrf24j40_setchannel(FAR struct mrf24j40_radio_s *dev, uint8_t chan)
{
if (chan < 11 || chan > 26)
{
wlerr("ERROR: Invalid chan: %d\n",chan);
return -EINVAL;
}
/* 15. Set channel See Section 3.4 “Channel Selection”. */
mrf24j40_setreg(dev->spi, MRF24J40_RFCON0, (chan - 11) << 4 | 0x03);
/* 17. RFCTL (0x36) = 0x04 Reset RF state machine.
* 18. RFCTL (0x36) = 0x00.
*/
mrf24j40_resetrfsm(dev);
dev->chan = chan;
wlinfo("%u\n", (unsigned)chan);
return OK;
}
/****************************************************************************
* Name: mrf24j40_setpanid
*
* Description:
* Define the PAN ID the device is operating on.
*
****************************************************************************/
static int mrf24j40_setpanid(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *panid)
{
mrf24j40_setreg(dev->spi, MRF24J40_PANIDL, panid[0]);
mrf24j40_setreg(dev->spi, MRF24J40_PANIDH, panid[1]);
IEEE802154_PANIDCOPY(dev->addr.panid, panid);
wlinfo("%02X:%02X\n", panid[0], panid[1]);
return OK;
}
/****************************************************************************
* Name: mrf24j40_setsaddr
*
* Description:
* Define the device short address. The following addresses are special:
* FFFEh : Broadcast
* FFFFh : Unspecified
*
****************************************************************************/
static int mrf24j40_setsaddr(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *saddr)
{
mrf24j40_setreg(dev->spi, MRF24J40_SADRL, saddr[0]);
mrf24j40_setreg(dev->spi, MRF24J40_SADRH, saddr[1]);
IEEE802154_SADDRCOPY(dev->addr.saddr, saddr);
wlinfo("%02X:%02X\n", saddr[0], saddr[1]);
return OK;
}
/****************************************************************************
* Name: mrf24j40_seteaddr
*
* Description:
* Define the device extended address. The following addresses are special:
* FFFFFFFFFFFFFFFFh : Unspecified
*
****************************************************************************/
static int mrf24j40_seteaddr(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *eaddr)
{
int i;
for (i = 0; i < 8; i++)
{
mrf24j40_setreg(dev->spi, MRF24J40_EADR0 + i, eaddr[i]);
dev->addr.eaddr[i] = eaddr[i];
}
wlinfo("%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", eaddr[0], eaddr[1],
eaddr[2], eaddr[3], eaddr[4], eaddr[5], eaddr[6], eaddr[7]);
return OK;
}
/****************************************************************************
* Name: mrf24j40_setcoordsaddr
*
* Description:
* Define the coordinator short address. The following addresses are special:
* FFFEh : Broadcast
* FFFFh : Unspecified
*
****************************************************************************/
static int mrf24j40_setcoordsaddr(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *saddr)
{
mrf24j40_setreg(dev->spi, MRF24J40_ASSOSADR0, saddr[0]);
mrf24j40_setreg(dev->spi, MRF24J40_ASSOSADR1, saddr[1]);
IEEE802154_SADDRCOPY(dev->addr.saddr, saddr);
wlinfo("%02X:%02X\n", saddr[0], saddr[1]);
return OK;
}
/****************************************************************************
* Name: mrf24j40_setcoordeaddr
*
* Description:
* Define the coordinator extended address. The following addresses are special:
* FFFFFFFFFFFFFFFFh : Unspecified
*
****************************************************************************/
static int mrf24j40_setcoordeaddr(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *eaddr)
{
int i;
for (i = 0; i < 8; i++)
{
mrf24j40_setreg(dev->spi, MRF24J40_ASSOEADR0 + i, eaddr[i]);
dev->addr.eaddr[i] = eaddr[i];
}
wlinfo("%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", eaddr[0], eaddr[1],
eaddr[2], eaddr[3], eaddr[4], eaddr[5], eaddr[6], eaddr[7]);
return OK;
}
/****************************************************************************
* Name: mrf24j40_setdevmode
*
* Description:
* Define the device behaviour: normal end device or coordinator
*
****************************************************************************/
static int mrf24j40_setdevmode(FAR struct mrf24j40_radio_s *dev,
uint8_t mode)
{
int ret = OK;
uint8_t reg;
/* Disable slotted mode until I decide to implement slotted mode */
reg = mrf24j40_getreg(dev->spi, MRF24J40_TXMCR);
reg &= ~MRF24J40_TXMCR_SLOTTED;
mrf24j40_setreg(dev->spi, MRF24J40_TXMCR, reg);
mrf24j40_setreg(dev->spi, MRF24J40_ORDER, 0xFF);
/* Define dev mode */
reg = mrf24j40_getreg(dev->spi, MRF24J40_RXMCR);
if (mode == MRF24J40_MODE_PANCOORD)
{
reg |= MRF24J40_RXMCR_PANCOORD;
reg &= ~MRF24J40_RXMCR_COORD;
}
else if (mode == MRF24J40_MODE_COORD)
{
reg |= MRF24J40_RXMCR_COORD;
reg &= ~MRF24J40_RXMCR_PANCOORD;
}
else if (mode == MRF24J40_MODE_DEVICE)
{
reg &= ~MRF24J40_RXMCR_PANCOORD;
reg &= ~MRF24J40_RXMCR_COORD;
}
else
{
return -EINVAL;
}
mrf24j40_setreg(dev->spi, MRF24J40_RXMCR, reg);
dev->devmode = mode;
return ret;
}
/****************************************************************************
* Name: mrf24j40_settxpower
*
* Description:
* Define the transmit power. Value is passed in mBm, it is rounded to
* the nearest value. Some MRF modules have a power amplifier, this routine
* does not care about this. We only change the CHIP output power.
*
****************************************************************************/
static int mrf24j40_settxpower(FAR struct mrf24j40_radio_s *dev,
int32_t txpwr)
{
uint8_t reg;
int save_txpwr = txpwr;
if (txpwr <= -3000 && txpwr > -3630)
{
reg = 0xC0;
txpwr += 3000;
}
else if (txpwr <= -2000)
{
reg = 0x80;
txpwr += 2000;
}
else if (txpwr <= -1000)
{
reg = 0x40;
txpwr += 1000;
}
else if (txpwr <= 0)
{
reg = 0x00;
}
else
{
return -EINVAL;
}
wlinfo("Remaining attenuation: %d mBm\n",txpwr);
switch(txpwr/100)
{
case -9:
case -8:
case -7:
case -6:
reg |= 0x07;
break;
case -5:
reg |= 0x06;
break;
case -4:
reg |= 0x05;
break;
case -3:
reg |= 0x04;
break;
case -2:
reg |= 0x03;
break;
case -1:
reg |= 0x02;
break;
case 0:
reg |= 0x00; /* value 0x01 is 0.5 db, not used */
break;
default:
return -EINVAL;
}
mrf24j40_setreg(dev->spi, MRF24J40_RFCON3, reg);
dev->txpower = save_txpwr;
return OK;
}
/****************************************************************************
* Name: mrf24j40_setcca
*
* Description:
* Define the Clear Channel Assessement method.
*
****************************************************************************/
static int mrf24j40_setcca(FAR struct mrf24j40_radio_s *dev,
FAR struct ieee802154_cca_s *cca)
{
uint8_t mode;
if (!cca->use_ed && !cca->use_cs)
{
return -EINVAL;
}
if (cca->use_cs && cca->csth > 0x0f)
{
return -EINVAL;
}
mode = mrf24j40_getreg(dev->spi, MRF24J40_BBREG2);
mode &= 0x03;
if (cca->use_ed)
{
mode |= MRF24J40_BBREG2_CCAMODE_ED;
mrf24j40_setreg(dev->spi, MRF24J40_CCAEDTH, cca->edth);
}
if (cca->use_cs)
{
mode |= MRF24J40_BBREG2_CCAMODE_CS;
mode |= cca->csth << 2;
}
mrf24j40_setreg(dev->spi, MRF24J40_BBREG2, mode);
memcpy(&dev->cca, cca, sizeof(struct ieee802154_cca_s));
return OK;
}
/****************************************************************************
* Name: mrf24j40_regdump
*
* Description:
* Display the value of all registers.
*
****************************************************************************/
static int mrf24j40_regdump(FAR struct mrf24j40_radio_s *dev)
{
uint32_t i;
char buf[4+16*3+2+1];
int len = 0;
wlinfo("Short regs:\n");
for (i = 0; i < 0x40; i++)
{
if ((i & 15) == 0)
{
len=sprintf(buf, "%02x: ",i&0xFF);
}
len += sprintf(buf+len, "%02x ", mrf24j40_getreg(dev->spi, i));
if ((i & 15) == 15)
{
sprintf(buf+len, "\n");
wlinfo("%s", buf);
}
}
wlinfo("Long regs:\n");
for (i = 0x80000200; i < 0x80000250; i++)
{
if ((i & 15) == 0)
{
len=sprintf(buf, "%02x: ",i&0xFF);
}
len += sprintf(buf+len, "%02x ", mrf24j40_getreg(dev->spi, i));
if ((i & 15) == 15)
{
sprintf(buf+len, "\n");
wlinfo("%s", buf);
}
}
return 0;
}
/****************************************************************************
* Name: mrf24j40_energydetect
*
* Description:
* Measure the RSSI level for the current channel.
*
****************************************************************************/
static int mrf24j40_energydetect(FAR struct mrf24j40_radio_s *dev,
FAR uint8_t *energy)
{
uint8_t reg;
/* Manually enable the LNA*/
mrf24j40_pacontrol(dev, MRF24J40_PA_ED);
/* Set RSSI average duration to 8 symbols */
reg = mrf24j40_getreg(dev->spi, MRF24J40_TXBCON1);
reg |= 0x30;
mrf24j40_setreg(dev->spi, MRF24J40_TXBCON1, reg);
/* 1. Set RSSIMODE1 0x3E<7> Initiate RSSI calculation. */
mrf24j40_setreg(dev->spi, MRF24J40_BBREG6, 0x80);
/* 2. Wait until RSSIRDY 0x3E<0> is set to 1 RSSI calculation is
* complete.
*/
while(!(mrf24j40_getreg(dev->spi, MRF24J40_BBREG6) & 0x01));
/* 3. Read RSSI 0x210<7:0> The RSSI register contains the averaged RSSI
* received power level for 8 symbol periods.
*/
*energy = mrf24j40_getreg(dev->spi, MRF24J40_RSSI);
mrf24j40_setreg(dev->spi, MRF24J40_BBREG6, 0x40);
/* Back to automatic control */
mrf24j40_pacontrol(dev, MRF24J40_PA_AUTO);
return OK;
}
/****************************************************************************
* Name: mrf24j40_norm_setup
*
* Description:
* Setup a transaction in the normal TX FIFO
*
****************************************************************************/
static void mrf24j40_norm_setup(FAR struct mrf24j40_radio_s *dev,
FAR struct iob_s *frame, bool csma)
{
uint8_t reg;
/* Enable tx int */
reg = mrf24j40_getreg(dev->spi, MRF24J40_INTCON);
reg &= ~MRF24J40_INTCON_TXNIE;
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, reg);
/* Enable/Disable CSMA mode */
reg = mrf24j40_getreg(dev->spi, MRF24J40_TXMCR);
if (csma)
{
reg &= ~MRF24J40_TXMCR_NOCSMA;
}
else
{
reg |= MRF24J40_TXMCR_NOCSMA;
}
mrf24j40_setreg(dev->spi, MRF24J40_TXMCR, reg);
/* Setup the FIFO */
mrf24j40_setup_fifo(dev, frame->io_data, frame->io_len, MRF24J40_TXNORM_FIFO);
/* If the frame control field contains an acknowledgment request, set the
* TXNACKREQ bit. See IEEE 802.15.4/2003 7.2.1.1 page 112 for info.
*/
reg = mrf24j40_getreg(dev->spi, MRF24J40_TXNCON);
if (frame->io_data[0] & IEEE802154_FRAMECTRL_ACKREQ)
{
reg |= MRF24J40_TXNCON_TXNACKREQ;
}
else
{
reg &= ~MRF24J40_TXNCON_TXNACKREQ;
}
mrf24j40_setreg(dev->spi, MRF24J40_TXNCON, reg);
}
/****************************************************************************
* Name: mrf24j40_norm_trigger
*
* Description:
* Trigger the normal TX FIFO
*
****************************************************************************/
static inline void mrf24j40_norm_trigger(FAR struct mrf24j40_radio_s *dev)
{
uint8_t reg;
reg = mrf24j40_getreg(dev->spi, MRF24J40_TXNCON);
reg |= MRF24J40_TXNCON_TXNTRIG;
mrf24j40_setreg(dev->spi, MRF24J40_TXNCON, reg);
}
/****************************************************************************
* Name: mrf24j40_beacon_trigger
*
* Description:
* Trigger the beacon TX FIFO
*
****************************************************************************/
static inline void mrf24j40_beacon_trigger(FAR struct mrf24j40_radio_s *dev)
{
uint8_t reg;
reg = mrf24j40_getreg(dev->spi, MRF24J40_TXBCON0);
reg |= MRF24J40_TXBCON0_TXBTRIG;
mrf24j40_setreg(dev->spi, MRF24J40_TXBCON0, reg);
}
/****************************************************************************
* Name: mrf24j40_gts_setup
*
* Description:
* Setup a GTS transaction in one of the GTS FIFOs
*
****************************************************************************/
static void mrf24j40_gts_setup(FAR struct mrf24j40_radio_s *dev, uint8_t fifo,
FAR struct iob_s *frame)
{
}
/****************************************************************************
* Name: mrf24j40_setup_fifo
*
* Description:
*
****************************************************************************/
static void mrf24j40_setup_fifo(FAR struct mrf24j40_radio_s *dev,
FAR const uint8_t *buf, uint8_t length,
uint32_t fifo_addr)
{
int hlen = 3; /* Include frame control and seq number */
int i;
uint16_t frame_ctrl;
/* Analyze frame control to compute header length */
frame_ctrl = buf[0];
frame_ctrl |= (buf[1] << 8);
if ((frame_ctrl & IEEE802154_FRAMECTRL_DADDR)== IEEE802154_ADDRMODE_SHORT)
{
hlen += 2 + 2; /* Destination PAN + shortaddr */
}
else if ((frame_ctrl & IEEE802154_FRAMECTRL_DADDR) == IEEE802154_ADDRMODE_EXTENDED)
{
hlen += 2 + 8; /* Destination PAN + extaddr */
}
if (!(frame_ctrl & IEEE802154_FRAMECTRL_PANIDCOMP))
{
hlen += 2; /* No PAN compression, source PAN is different from dest PAN */
}
if ((frame_ctrl & IEEE802154_FRAMECTRL_SADDR)== IEEE802154_ADDRMODE_SHORT)
{
hlen += 2; /* Source saddr */
}
else if ((frame_ctrl & IEEE802154_FRAMECTRL_SADDR) == IEEE802154_ADDRMODE_EXTENDED)
{
hlen += 8; /* Ext saddr */
}
/* Header len, 0, TODO for security modes */
mrf24j40_setreg(dev->spi, fifo_addr++, hlen);
/* Frame length */
mrf24j40_setreg(dev->spi, fifo_addr++, length);
/* Frame data */
for (i = 0; i < length; i++)
{
mrf24j40_setreg(dev->spi, fifo_addr++, buf[i]);
}
}
/****************************************************************************
* Name: mrf24j40_irqwork_txnorm
*
* Description:
* Manage completion of packet transmission.
*
****************************************************************************/
static void mrf24j40_irqwork_txnorm(FAR struct mrf24j40_radio_s *dev)
{
uint8_t reg;
enum ieee802154_status_e status;
bool framepending;
/* Disable tx int */
reg = mrf24j40_getreg(dev->spi, MRF24J40_INTCON);
reg |= MRF24J40_INTCON_TXNIE;
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, reg);
/* Get the status from the device and copy the status into the tx desc.
* The status for the normal FIFO is represented with bit TXNSTAT where
* 0=success, 1= failure.
*/
reg = mrf24j40_getreg(dev->spi, MRF24J40_TXSTAT);
/* TXNSTAT = 0: Transmission was successful
* TXNSTAT = 1: Transmission failed, retry count exceeded
*/
if (reg & MRF24J40_TXSTAT_TXNSTAT)
{
/* The number of retries of the most recent transmission is contained in the
* TXNRETRY (TXSTAT 0x24<7:6>) bits. The CCAFAIL (TXSTAT 0x24<5>) bit = 1
* indicates if the failed transmission was due to the channel busy
* (CSMA-CA timed out).
*/
if (reg & MRF24J40_TXSTAT_CCAFAIL)
{
status = IEEE802154_STATUS_CHANNEL_ACCESS_FAILURE;
}
else
{
status = IEEE802154_STATUS_NO_ACK;
}
}
else
{
status = IEEE802154_STATUS_SUCCESS;
}
framepending = (mrf24j40_getreg(dev->spi, MRF24J40_TXNCON) &
MRF24J40_TXNCON_FPSTAT);
if (dev->txdelayed_busy)
{
/* Inform the next layer of the transmission success/failure */
dev->txdelayed_desc->conf->status = status;
dev->txdelayed_desc->framepending = framepending;
dev->radiocb->txdone(dev->radiocb, dev->txdelayed_desc);
dev->txdelayed_busy = false;
if (dev->reschedule_csma)
{
mrf24j40_norm_setup(dev, dev->csma_desc->frame, true);
mrf24j40_norm_trigger(dev);
dev->reschedule_csma = false;
}
}
else
{
/* Inform the next layer of the transmission success/failure */
dev->csma_desc->conf->status = status;
dev->csma_desc->framepending = framepending;
dev->radiocb->txdone(dev->radiocb, dev->csma_desc);
/* We are now done with the transaction */
dev->csma_busy = 0;
/* Must unlock the radio before calling poll */
sem_post(&dev->exclsem);
mrf24j40_dopoll_csma(dev);
while (sem_wait(&dev->exclsem) != 0) { }
}
}
/****************************************************************************
* Name: mrf24j40_irqwork_gts
*
* Description:
* Manage completion of packet transmission.
*
****************************************************************************/
static void mrf24j40_irqwork_txgts(FAR struct mrf24j40_radio_s *dev,
uint8_t gts)
{
uint8_t txstat;
/* Disable tx int */
txstat = mrf24j40_getreg(dev->spi, MRF24J40_INTCON);
txstat |= MRF24J40_INTCON_TXNIE;
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, txstat);
/* Get the status from the device and copy the status into the tx desc.
* The status for the normal FIFO is represented with bit TXNSTAT where
* 0=success, 1= failure.
*/
txstat = mrf24j40_getreg(dev->spi, MRF24J40_TXSTAT);
if (gts == 0)
{
dev->csma_desc->conf->status = txstat & MRF24J40_TXSTAT_TXG1STAT;
}
else if (gts == 1)
{
dev->csma_desc->conf->status = txstat & MRF24J40_TXSTAT_TXG2STAT;
}
/* Inform the next layer of the transmission success/failure */
dev->radiocb->txdone(dev->radiocb, dev->gts_desc[gts]);
/* We are now done with the transaction */
dev->gts_busy[gts]= 0;
mrf24j40_dopoll_gts(dev);
}
/****************************************************************************
* Name: mrf24j40_rxenable
*
* Description:
* Enable/Disable receiver.
*
****************************************************************************/
static int mrf24j40_rxenable(FAR struct ieee802154_radio_s *radio, bool enable)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)radio;
uint8_t reg;
dev->rxenabled = enable;
if (enable)
{
/* Disable packet reception. See pg. 109 of datasheet */
mrf24j40_setreg(dev->spi, MRF24J40_BBREG1, MRF24J40_BBREG1_RXDECINV);
/* Enable rx int */
reg = mrf24j40_getreg(dev->spi, MRF24J40_INTCON);
reg &= ~MRF24J40_INTCON_RXIE;
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, reg);
/* Purge the RX buffer */
reg = mrf24j40_getreg(dev->spi, MRF24J40_RXFLUSH);
reg |= MRF24J40_RXFLUSH_RXFLUSH;
mrf24j40_setreg(dev->spi, MRF24J40_RXFLUSH, reg);
/* Re-enable packet reception. See pg. 109 of datasheet */
mrf24j40_setreg(dev->spi, MRF24J40_BBREG1, 0);
}
else
{
/* Disable rx int */
reg = mrf24j40_getreg(dev->spi, MRF24J40_INTCON);
reg |= MRF24J40_INTCON_RXIE;
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, reg);
}
return OK;
}
/****************************************************************************
* Name: mrf24j40_irqwork_rx
*
* Description:
* Manage packet reception.
*
****************************************************************************/
static void mrf24j40_irqwork_rx(FAR struct mrf24j40_radio_s *dev)
{
FAR struct ieee802154_data_ind_s *ind;
uint32_t addr;
uint32_t index;
uint8_t reg;
wlinfo("RX interrupt\n");
/* Disable rx int */
reg = mrf24j40_getreg(dev->spi, MRF24J40_INTCON);
reg |= MRF24J40_INTCON_RXIE;
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, reg);
/* Disable packet reception. See pg. 109 of datasheet */
mrf24j40_setreg(dev->spi, MRF24J40_BBREG1, MRF24J40_BBREG1_RXDECINV);
/* Allocate a data_ind to put the frame in */
ind = ieee802154_ind_allocate();
if (ind == NULL)
{
wlerr("ERROR: Unable to allocate data_ind. Discarding frame\n");
goto done;
}
/* Read packet */
addr = MRF24J40_RXBUF_BASE;
ind->frame->io_len = mrf24j40_getreg(dev->spi, addr++);
for (index = 0; index < ind->frame->io_len; index++)
{
ind->frame->io_data[index] = mrf24j40_getreg(dev->spi, addr++);
}
ind->lqi = mrf24j40_getreg(dev->spi, addr++);
ind->rssi = mrf24j40_getreg(dev->spi, addr++);
/* Reduce len by 2, we only receive frames with correct crc, no check
* required.
*/
ind->frame->io_len -= 2;
/* Callback the receiver in the next highest layer */
dev->radiocb->rxframe(dev->radiocb, ind);
done:
/* Enable reception of next packet by flushing the fifo.
* This is an MRF24J40 errata (no. 1).
*/
mrf24j40_setreg(dev->spi, MRF24J40_RXFLUSH, 1);
/* Only enable RX interrupt if we are to be listening when IDLE */
if (dev->rxenabled)
{
/* Enable packet reception */
mrf24j40_setreg(dev->spi, MRF24J40_BBREG1, 0);
reg = mrf24j40_getreg(dev->spi, MRF24J40_INTCON);
reg &= ~MRF24J40_INTCON_RXIE;
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, reg);
}
}
/****************************************************************************
* Name: mrf24j40_irqworker
*
* Description:
* Perform interrupt handling logic outside of the interrupt handler (on
* the work queue thread).
*
* Parameters:
* arg - The reference to the driver structure (cast to void*)
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static void mrf24j40_irqworker(FAR void *arg)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)arg;
uint8_t intstat;
uint8_t reg;
DEBUGASSERT(dev);
DEBUGASSERT(dev->spi);
/* Get exclusive access to the driver */
while (sem_wait(&dev->exclsem) != 0) { }
/* Read and store INTSTAT - this clears the register. */
intstat = mrf24j40_getreg(dev->spi, MRF24J40_INTSTAT);
/* Do work according to the pending interrupts */
if ((intstat & MRF24J40_INTSTAT_HSYMTMRIF))
{
/* As of now the only use for the MAC timer is for delayed transactions.
* Therefore, all we do here is trigger the TX norm FIFO
*/
mrf24j40_norm_trigger(dev);
/* Timers are one-shot, so disable the interrupt */
reg = mrf24j40_getreg(dev->spi, MRF24J40_INTCON);
reg |= MRF24J40_INTCON_HSYMTMRIE;
mrf24j40_setreg(dev->spi, MRF24J40_INTCON, reg);
}
if ((intstat & MRF24J40_INTSTAT_RXIF) && dev->rxenabled)
{
/* A packet was received, retrieve it */
mrf24j40_irqwork_rx(dev);
}
if ((intstat & MRF24J40_INTSTAT_TXNIF))
{
/* A packet was transmitted or failed*/
mrf24j40_irqwork_txnorm(dev);
}
if ((intstat & MRF24J40_INTSTAT_TXG1IF))
{
/* A packet was transmitted or failed*/
mrf24j40_irqwork_txgts(dev, 0);
}
if ((intstat & MRF24J40_INTSTAT_TXG1IF))
{
/* A packet was transmitted or failed*/
mrf24j40_irqwork_txgts(dev, 1);
}
if ((intstat & MRF24J40_INTSTAT_SLPIF))
{
dev->radiocb->sfevent(dev->radiocb, IEEE802154_SFEVENT_ENDOFACTIVE);
/* Acknowledge the alert and put the device to sleep */
reg = mrf24j40_getreg(dev->spi, MRF24J40_SLPACK);
reg |= MRF24J40_SLPACK_SLPACK;
mrf24j40_setreg(dev->spi, MRF24J40_SLPACK, reg);
}
if ((intstat & MRF24J40_INTSTAT_WAKEIF))
{
#ifdef CONFIG_MAC802154_SFEVENT_VERBOSE
wlinfo("Wake Interrupt\n");
#endif
/* This is right before the beacon, we set the bsn here, since the MAC
* uses the SLPIF (end of active portion of superframe). to make any
* changes to the beacon. This assumes that any changes to the beacon
* be in by the time that this interrupt fires.
*/
mrf24j40_setreg(dev->spi, MRF24J40_BEACON_FIFO + 4, dev->bsn++);
mrf24j40_beacon_trigger(dev);
}
/* Unlock the radio device */
sem_post(&dev->exclsem);
/* Re-enable GPIO interrupts */
dev->lower->enable(dev->lower, true);
}
/****************************************************************************
* Name: mrf24j40_interrupt
*
* Description:
* Hardware interrupt handler
*
* Parameters:
* irq - Number of the IRQ that generated the interrupt
* context - Interrupt register state save info (architecture-specific)
*
* Returned Value:
* OK on success
*
* Assumptions:
*
****************************************************************************/
static int mrf24j40_interrupt(int irq, FAR void *context, FAR void *arg)
{
FAR struct mrf24j40_radio_s *dev = (FAR struct mrf24j40_radio_s *)arg;
DEBUGASSERT(dev != NULL);
/* In complex environments, we cannot do SPI transfers from the interrupt
* handler because semaphores are probably used to lock the SPI bus. In
* this case, we will defer processing to the worker thread. This is also
* much kinder in the use of system resources and is, therefore, probably
* a good thing to do in any event.
*/
DEBUGASSERT(work_available(&dev->irqwork));
/* Notice that further GPIO interrupts are disabled until the work is
* actually performed. This is to prevent overrun of the worker thread.
* Interrupts are re-enabled in enc_irqworker() when the work is completed.
*/
dev->lower->enable(dev->lower, false);
return work_queue(HPWORK, &dev->irqwork, mrf24j40_irqworker, (FAR void *)dev, 0);
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: mrf24j40_init
*
* Description:
* Return an mrf24j40 device for use by other drivers.
*
****************************************************************************/
FAR struct ieee802154_radio_s *mrf24j40_init(FAR struct spi_dev_s *spi,
FAR const struct mrf24j40_lower_s *lower)
{
FAR struct mrf24j40_radio_s *dev;
dev = kmm_zalloc(sizeof(struct mrf24j40_radio_s));
if (dev == NULL)
{
return NULL;
}
/* Attach irq */
if (lower->attach(lower, mrf24j40_interrupt, dev) != OK)
{
#if 0
free(dev);
#endif
return NULL;
}
/* Allow exclusive access to the privmac struct */
sem_init(&dev->exclsem, 0, 1);
dev->radio.bind = mrf24j40_bind;
dev->radio.reset = mrf24j40_reset;
dev->radio.getattr = mrf24j40_getattr;
dev->radio.setattr = mrf24j40_setattr;
dev->radio.txnotify = mrf24j40_txnotify;
dev->radio.txdelayed = mrf24j40_txdelayed;
dev->radio.rxenable = mrf24j40_rxenable;
dev->radio.beaconstart = mrf24j40_beaconstart;
dev->radio.beaconupdate = mrf24j40_beaconupdate;
dev->radio.beaconstop = mrf24j40_beaconstop;
dev->radio.sfupdate = mrf24j40_sfupdate;
dev->lower = lower;
dev->spi = spi;
mrf24j40_reset(&dev->radio);
dev->lower->enable(dev->lower, true);
return &dev->radio;
}