nuttx/Documentation/NuttX.html

4717 lines
179 KiB
HTML

<html>
<head>
<title>NuttX</title>
</head>
<body background="backgd.gif">
<hr><hr>
<table width ="100%">
<tr align="center" bgcolor="#e4e4e4">
<td>
<h1><big><font color="#3c34ec"><i>NuttX RTOS</i></font></big></h1>
<p>Last Updated: August 5, 2013</p>
</td>
</tr>
</table>
<hr><hr>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<h1>Table of Contents</h1>
</td>
</tr>
</table>
<center><table width ="80%">
<tr>
<td>
<table>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#overview">Overview</a>.<br>
What is NuttX? Look at all those files and features... How can it be a tiny OS?
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#group">NuttX Discussion Group</a>.<br>
Do you want to talk about NuttX features? Do you need some help? Problems? Bugs?
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#downloads">Downloads</a>.<br>
Where can I get NuttX? What is the current development status?
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#platforms">Supported Platforms</a>.<br>
What target platforms has NuttX been ported to?
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#environments">Development Environments</a>.<br>
What kinds of host cross-development platforms can be used with NuttX?
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#footprint">Memory Footprint</a>.<br>
Just how big is it? Do I have enough memory to use NuttX?
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#licensing">Licensing</a>.<br>
Are there any licensing restrictions for the use of NuttX? (Almost none)
Will there be problems if I link my proprietary code with NuttX? (No)
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#history">Release History</a><br>
What has changed in the last release of NuttX?
What unreleased changes are pending in GIT?
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#TODO">Bugs, Issues, <i>Things-To-Do</i></a>.<br>
Software is never finished nor ever tested well enough.
(Do you want to help develop NuttX? If so, send me an email).
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#documentation">Other Documentation</a>.<br>
What other NuttX documentation is available?
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#trademarks">Trademarks</a>.<br>
Some of the words used in this document belong to other people.
</td>
</tr>
</table>
</td>
</tr>
</table></center>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="overview"><h1>Overview</h1></a>
</td>
</tr>
</table>
<p>
<b>Goals</b>.
NuttX is a real timed embedded operating system (RTOS).
Its goals are:
<p>
<center><table width="90%">
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Small Footprint</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
Usable in all but the tightest micro-controller environments,
The focus is on the tiny-to-small, deeply embedded environment.
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Rich Feature OS Set</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
The goal is to provide implementations of most standard POSIX OS interfaces
to support a rich, multi-threaded development environment for deeply embedded
processors.
</p>
NON-GOALS: (1) It is not a goal to provide the level of OS features like those provided by Linux.
In order to work with smaller MCUs, small footprint must be more important than an extensive feature set.
But standard compliance is more important than small footprint.
Surely a smaller RTOS could be produced by ignoring standards.
Think of NuttX is a tiny Linux work-alike with a much reduced feature set.
(2) There is no MMU-based support for processes.
At present, NuttX assumes a flat address space.
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Highly Scalable</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
Fully scalable from tiny (8-bit) to moderate embedded (32-bit).
Scalability with rich feature set is accomplished with:
Many tiny source files, link from static libraries, highly configurable, use of
weak symbols when available.
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Standards Compliance</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
NuttX strives to achieve a high degree of standards compliance.
The primary governing standards are POSIX and ANSI standards.
Additional standard APIs from Unix and other common RTOS's are
adopted for functionality not available under these standards
or for functionality that is not appropriate for the deeply-embedded
RTOS (such as <code>fork()</code>).
</p>
<p>
Because of this standards conformance, software developed under other
standard OSs (such as Linux) should port easily to NuttX.
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Real-Time</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
Fully pre-emptible, fixed priority and round-robin scheduling.
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Totally Open</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
Non-restrictive BSD license.
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>GNU Toolchains</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
Compatible GNU toolchains based on <a href="http://buildroot.uclibc.org/">buildroot</a>
available for
<a href="https://sourceforge.net/projects/nuttx/files/">download</a>
to provide a complete development environment for many architectures.
</p>
</tr>
</table></center>
<p>
<b>Feature Set</b>.
Key features of NuttX include:
<p>
<center><table width="90%">
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Standards Compliant Core Task Management</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Fully pre-emptible.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Naturally scalable.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Highly configurable.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
Easily extensible to new processor architectures, SoC architecture, or board architectures.
A <a href="NuttxPortingGuide.html">Porting Guide</a> is available.
</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>FIFO and round-robin scheduling.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Realtime, deterministic, with support for priority inheritance</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>POSIX/ANSI-like task controls, named message queues, counting semaphores, clocks/timers, signals, pthreads, environment variables, filesystem.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>VxWorks-like task management and watchdog timers.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>BSD socket interface.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Extensions to manage pre-emption.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Optional tasks with address environments (<i>Processes</i>).</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Inheritable &quot;controlling terminals&quot; and I/O re-direction.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>On-demand paging.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<li>System logging.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>May be built either as an open, flat embedded RTOS or as a separately built, secure, monolithic kernel with a system call interface.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Well documented in the NuttX <a href="NuttxUserGuide.html">User Guide</a>.</li>
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>File system</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Tiny, in-memory, root pseudo-file-system.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Virtual file system supports drivers and mountpoints.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
Mount-able volumes. Bind mountpoint, filesystem, and block device driver.
</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Generic system logging (SYSLOG) support.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
FAT12/16/32 filesystem support with optional FAT long file name support<small><sup>1</sup></small>.
</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
NFS Client. Client side support for a Network File System (NFS, version 3, UDP).
</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
NXFFS. The tiny NuttX wear-leveling FLASH file system.
</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
SMART. FLASH file system from Ken Pettit.
</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>ROMFS filesystem support.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>BINFS pseudo-filesystem support.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
A <a href="NuttXBinfmt.html">binary loader</a> with support for the following formats:
<ul>
<li>Separately linked ELF modules.</li>
<li>
Separately linked <a href="NuttXNxFlat.html">NXFLAT</a> modules.
NXFLAT is a binary format that can be XIP from a file system.
</li>
<li>
&quot;Built-In&quot; applications.</li>
</li>
</ul>
</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>PATH variable support.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>File transfers via TFTP and FTP (<code>get</code> and <code>put</code>), HTML (<code>wget</code>), and Zmodem (<code>sz</code> and <code>rz</code>).</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p><small>
<sup>1</sup>
FAT long file name support may be subject to certain Microsoft patent restrictions if enabled.
See the top-level <code>COPYING</code> file for details.
</small></p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Device Drivers</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Supports character and block drivers as well as specialized driver interfaces.</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
Network, USB (host), USB (device), serial, CAN, ADC, DAC, PWM, Quadrature Encoder, Wireless, and watchdog timer driver architectures.
</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
RAMDISK, pipes, FIFO, <code>/dev/null</code>, <code>/dev/zero</code>, <code>/dev/random</code>, and loop drivers.
</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Generic driver for SPI-based or SDIO-based MMC/SD/SDH cards.</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Graphics: frambuffer drivers, graphic- and segment-LCD drivers.</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Audio subsystem: CODECs, audio input and output drivers.</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li><a href="NuttxPortingGuide.html#pwrmgmt">Power management</a> sub-system.</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>ModBus support provided by built-in <a href="http://freemodbus.berlios.de/">FreeModBus</a> version 1.5.0.</li>
</p>
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>C/C++ Libraries</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Standard C Library Fully integrated into the OS.</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Includes floating point support via a Standard Math Library.</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Add-on <a href="http://cxx.uclibc.org/">uClibc++</a> module provides Standard C++ Library (LGPL).</li>
</p>
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Networking</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>TCP/IP, UDP, ICMP, IGMPv2 (client) stacks.</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>SLIP</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>A port cJSON</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Small footprint (based on uIP).</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>BSD compatible socket layer.</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Networking utilities (DHCP server and client, SMTP client, TELNET client, FTP server and client, TFTP client, HTTP server and client). Inheritable TELNET sessions (as &quot;controlling terminal&quot;)</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
NFS Client. Client side support for a Network File System (NFS, version 3, UDP).
</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
A NuttX port of Jeff Poskanzer's <a href="http://acme.com/software/thttpd">THTTPD</a> HTTP server
integrated with the NuttX <a href="NuttXBinfmt.html">binary loader</a> to provide true, embedded CGI.
</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
UDP Network Discover (Contributed by Richard Cochran).
</li>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
XML RPC Server (Contributed by Richard Cochran).
</li>
</p>
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>FLASH Support</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li><i>MTD</i>-inspired interface for <i>M</i>emory <i>T</i>echnology <i>D</i>evices.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li><i>FTL</i>. Simple <i>F</i>lash <i>T</i>ranslation <i>L</i>ayer support file systems on FLASH.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>NXFFS. the NuttX wear-leveling FLASH file system.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Support for SPI-based FLASH and FRAM devices.</li>
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>USB Host Support</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>USB host architecture for USB host controller drivers and device-dependent USB class drivers.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>USB host controller drivers available for the NXP LPC17xx.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Device-dependent USB class drivers available for USB mass storage and HID keyboard.</li>
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>USB Device Support</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li><i>Gadget</i>-like architecture for USB device controller drivers and device-dependent USB class drivers.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>USB device controller drivers available for the PIC32, NXP LPC17xx, LPC214x, LPC313x, LPC43xx, STMicro STM32 and TI DM320.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Device-dependent USB class drivers available for USB serial (CDC/ACM and a PL2303 emulation), for USB mass storage, and for a composite CDC/ACM and mass storage device.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Built-in <a href="UsbTrace.html">USB trace</a> functionality for USB debug.</li>
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Graphics Support</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Framebuffer drivers.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Graphic LCD drivers for both parallel and SPI LCDs and OLEDs.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Segment LCD drivers.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
NX: A graphics library, tiny windowing system and tiny font support that works with either framebuffer or LCD drivers.
Documented in the <a href="NXGraphicsSubsystem.html">NX Graphics Subsystem</a>
manual.
</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Font management sub-system.</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
<a href="NxWidgets.html">NxWidgets</a>: NXWidgets is library of graphic objects, or &quot;widgets,&quot (labels, buttons, text boxes, images, sliders, progress bars, etc.). NXWidgets is written in C++ and integrates seamlessly with the NuttX NX graphics and font management subsystems.
</li>
</p>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>
<a href="NxWidgets.html">NxWM</a>: NxWM is the tiny NuttX window manager based on NX and NxWidgets.
</li>
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Input Devices</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Touchscreen, USB keyboard, GPIO-based buttons and keypads. </li>
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Analog Devices</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Support for Analog-to-Digital conversion (ADC), Digital-to-Analog conversion (DAC), multiplexers, and amplifiers.</li>
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Motor Control</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>Pulse width modulation (PWM) / Pulse count modulation.</li>
</p>
</tr>
</table></center>
<p>
<b>NuttX Add-Ons</b>.
The following packages are available to extend the basic NuttX feature set:
</p>
<center><table width="90%">
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>NuttShell (NSH)</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>A small, scalable, bash-like shell for NuttX with rich feature set and small footprint.
See the <a href="NuttShell.html">NuttShell User Guide</a>.</li>
</p>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Pascal Compiler with NuttX runtime P-Code interpreter add-on</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<li>The Pascal add-on is available for download from the
<a href="http://sourceforge.net/projects/nuttx/files/">SourceForge</a>
website.</li>
</p>
</td>
</tr>
</table></center>
<p>
<b>Look at all those files and features... How can it be a tiny OS?</b>.
The NuttX feature list (above) is fairly long and if you look at the NuttX
source tree, you will see that there are hundreds of source files comprising
NuttX. How can NuttX be a tiny OS with all of that?
</p>
<center><table width="90%">
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Lots of Features -- More can be smaller!</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
The philosophy behind that NuttX is that lots of features are great... <i>BUT</i>
also that if you don't use those features, then you should not have to pay a penalty
for the unused features.
And, with NuttX, you don't! If you don't use a feature, it will not
be included in the final executable binary.
You only have to pay the penalty of increased footprint for the features
that you actually use.
</p>
<p>
Using a variety of technologies, NuttX can scale from the very tiny to
the moderate-size system. I have executed NuttX with some simple applications
in as little as 32K <i>total</i> memory (code and data).
On the other hand, typical, richly featured NuttX builds require more like 64K
(and if all of the features are used, this can push 100K).
</p>
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Many, many files -- More really is smaller!</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
One may be intimidated by the size NuttX source tree. There are hundreds of source files!
How can that be a tiny OS?
Actually, the large number of files is one of the tricks to keep NuttX small and
as scalable as possible.
Most files contain only a single function.
Sometimes just one tiny function with only a few lines of code.
Why?
</p>
<ul>
<li>
<b>Static Libraries</b>.
Because in the NuttX build processed, objects are compiled and saved into
<i>static libraries</i> (<i>archives</i>).
Then, when the file executable is linked, only the object files that are needed
are extracted from the archive and added to the final executable.
By having many, many tiny source files, you can assure that no code that you do
not execute is ever included in the link.
And by having many, tiny source files you have better granularity --
if you don't use that tiny function of even just a few lines of code, it will
not be included in the binary.
</li>
</ul>
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Other Tricks</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
As mentioned above, the use of many, tiny source files and linking from static
libraries keeps the size of NuttX down.
Other tricks used in NuttX include:
</p>
<ul>
<li>
<b>Configuration Files</b>.
Before you build NuttX, you must provide a configuration file that specifies
what features you plan to use and which features you do not.
This configuration file contains a long list of settings that control
what is built into NuttX and what is not.
There are hundreds of such settings
(see the <a href="NuttXConfigVariables.html">Configuration Variable Documentation</a>
for a partial list that excludes platform specific settings).
These many, many configuration options allow NuttX to be highly tuned to
meet size requirements.
The downside to all of these configuration options is that it greatly
complicates the maintenance of NuttX -- but that is my problem, not yours.
</li>
<li>
<b>Weak Symbols</b>
The GNU toolchain supports <i>weak</i> symbols and these also help to keep
the size of NuttX down.
Weak symbols prevent object files from being drawn into the link even if they
are accessed from source code.
Careful use of weak symbols is another trick for keep unused code out of the
final binary.
</li>
</ul>
</td>
</tr>
</table></center>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="group"><h1>NuttX Discussion Group</h1></a>
</td>
</tr>
</table>
<p>
Most NuttX-related discussion occurs on the <a href="http://tech.groups.yahoo.com/group/nuttx/" target="_top"><i>Yahoo!</i> NuttX group</a>.
You are cordially invited to <a href="http://groups.yahoo.com/group/nuttx/join" target="_top">join</a>.
I make a special effort to answer any questions and provide any help that I can.
</p>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="downloads"><h1>Downloads</h1></a>
</td>
</tr>
</table>
<h2>NuttX-6.29 Release Notes</h2>
<p>
The 95<sup>th</sup> release of NuttX, Version 6.29, was made on July 31, 2013, and is available for download from the
<a href="http://sourceforge.net/projects/nuttx/files/">SourceForge</a> website.
Note that the release consists of two tarballs: <code>nuttx-6.29.tar.gz</code> and <code>apps-6.29.tar.gz</code>.
Both may be needed (see the top-level <code>nuttx/README.txt</code> file for build information)
The change log associated with the release is available <a href="#currentrelease">here</a>.
Unreleased changes after this release are available in GIT.
These unreleased changes are also listed <a href="#pendingchanges">here</a>.
</p>
<p>
<b>Additional new features and extended functionality</b>
</p>
<ul>
<li>
<p>
<b>Drivers</b>
</p>
<ul>
<li>
Generalized the SSD1306 driver and added support UG-2832HSWEG04 which is very similar to the existing support for the UG-2864HSWEG01.
<li>
Added support for a generic bit-bang SPI driver.
This includes
both a common &quot;upper half&quot; driver as well as a platform-specific &quot;lower half &quot; drivers based on a common &quot;template. &quot;
</li>
</ul>
</li>
<li>
<p>
<b>ARMv7-A, Cortex-A5</b>
</p>
<ul>
<li>
Added support for the ARMv7-A architecture and the Cortex-A5 in particular.
</li>
</ul>
</li>
<li>
<p>
<b>ARMv7-M, Cortex-M3/4</b>
</p>
<ul>
<li>
Modified how some registers are copied during a context switch (with &quot;lazy&quot; FPU register saving).
This should save some context switching time when the context switch is due to interrupt level processing.
</li>
</ul>
</li>
<li>
<p>
<b>STM32</b>
</p>
<ul>
<li>
Added support for a separate CCM memory heap.
This may be useful for segregating allocations for CCM memory (which cannot be used for DMA) from other allocations (that may be used used for DMA).
</li>
</ul>
</li>
<li>
<p>
<b>STM32 Drivers</b>
</p>
<ul>
<li>
DAC: Added support for DAC DMA (contributed by John Wharington).
<li>
I2C: An I2C driver for the STM32 F3 family (from John Wharington).
</li>
</ul>
</li>
<li>
<p>
<b>Atmel AT91 SAM/4</b>
</p>
<ul>
<li>
Add support for SAM3X and SAM3A chips
</li>
</ul>
</li>
<li>
<p>
<b>Atmel AT91 SAM/4 Drivers</b>
</p>
<ul>
<li>
Re-architect the SAM3/4 SPI driver so that is it compatible with the SPI drivers of other MCUs.
<li>
Added register definition file for the SAM4L LCD peripheral.
<li>
Added SAM4L PDCA register definition file
</li>
</ul>
</li>
<li>
<p>
<b>Atmel AT91 SAM/4 Boards</b>
</p>
<ul>
<li>
SAM4L-Xplained: Added support for the SPI-based SD card on the I/O1 module.
<li>
SAM4L-Xplained: Added a driver for the LED1 segment LCD module.
<li>
SAM4L-Xplained: Added support for the UG-2832HSWEG04 OLED on the SAM4L Xplained Pro's OLED1 module
<li>
SAM4S-Xplained: Added support for on-board 1MB SRAM.
<li>
Arduino Due: Basic support for the Arduino Due (SAM3X) is now included.
<li>
SAM3U-EK: The touchscreen is now functional.
</li>
</ul>
</li>
<li>
<p>
<b>Atmel AT91 SAMA5D3</b>
</p>
<ul>
<li>
Added support for the Atmel AT91SAMA5D3 Cortex-A5 chip family.
</li>
</ul>
</li>
<li>
<p>
<b>Atmel AT91 SAMA5D3 Boards</b>
</p>
<ul>
<li>
Added support for the Atmel SAMA5D3x-EK boards which use the AT91 SAMA5D3<i>x</i> chips (<i>x</i>=1,3,4,5).
</li>
</ul>
</li>
<li>
<p>
<b>Freescale KL25Z Drivers</b>
</p>
<ul>
<li>
Freescale KL25Z TSI register definitions and example TSI driver for the Freedom KL25Z board from Alan Carvalho de Assis.
<li>
Added SPI driver and register definitions for the Freescale KL25Z.
<li>
Added a framework for controlling SPI-related discrete inputs and outputs.
Taken from work by Alan Carvalho de Assis
</li>
</ul>
</li>
<li>
<p>
<b>Build System</b>
</p>
<ul>
<li>
New sub-directories to hold SPI-related files:
<code>includes/nuttx/spi.h</code> moved to <code>include/nuttx/spi/.</code>;
SPI-related configuration logic moved from <code>drivers/Kconfig</code> to <code>drivers/spi/kconfig</code>.
<li>
Finally... I changed the naming of configuration variables like <code>CONFIG_DRAM_</code> to <code>CONFIG_RAM_</code>.
This has bothered me for a long time since most boards don't have DRAM.
The more generic RAM naming should not produce so much <i>cognitive dissonance</i>.
</li>
</ul>
</li>
<li>
<p>
<b>Libraries</b>
</p>
<ul>
<li>
Added CRC16 support.
</li>
</ul>
</li>
<li>
<p>
<b>Applications</b>
</p>
<ul>
<li>
Added Zmodem file transfer support.
This may be used as an embedded library or may be built as <code>sz</code> and <code>rz</code> commands that can be executed from the NSH command line.
<li>
C++ initializers should be set once and, preferably, in the context of the task that uses any C++ statically initialized classes.
This only becomes an issue if <code>cxxtest</code> or <code>helloxx</code> are built as NSH builtin applications.
Then you want the initialization done in the context of <code>cxxtext</code> or <code>helloxx</code> tasks and not in the NSH task context(and certainly not twice).
Added configuration options to control who does the C++ initialization.
NSH now does not do C++ initialization be default and must be configured to do otherwise. Conversely, <code>cxxtest</code> and <code>helloxx</code> will always do C++ initialization unless configured do otherwise.
<li>
<code>examples/cxxtext</code>: Add an <code>ostream</code> test as provided by Michael.
<li>
NSH: Added a <code>cmp</code> command that can be used to compare two files for equivalence.
Returns an indication if the files differ.
Contributed by Andrew Tridgell (via Lorenz Meier).
</li>
</ul>
</li>
</ul>
<p>
<b>Efforts In Progress</b>.
The following are features that are partially implemented but present in this release.
They are not likely be be completed soon.
</p>
<ul>
<li>
<p>
<b>Audio System</b>
</p>
<ul>
<li>
A complete audio subsystem include CODECs, higher level management, interface definitions, and audio drivers was contributed by Ken Pettit.
This work has not been completely verified as of this release and so is categorized as a work-in-progress.
At present, progress is blocked due to issues interfacing with the VS1053 audio DAC on the Mikroe STM32F4 board.
</li>
</ul>
</li>
<li>
<p>
<b>kconfig-fronted Configuration</b>
</p>
<ul>
<li>
Conversion of old configurations to use the <code>kconfig-frontends</code> tool is an ongoing effort that will continue for some time.
At this time, only 45% of the configurations have been converted to use the <code>kconfig-frontends</code> tools.
</li>
</ul>
</li>
</ul>
<p>
<b>Bugfixes</b> (see the change log for details).
Some of these are very important:
</p>
<ul>
<li>
<p>
<b>File Systems</b>
</p>
<ul>
<li>
Fixed compilation error if no file systems are enabled: Change <code>error</code> to <code>ERROR</code>.
<li>
Read-Ahead/Write buffering: Correct typos that can cause failures in some configurations (From Chia Cheng Tsao).
</li>
</ul>
</li>
<li>
<p>
<b>Driver</b>
</p>
<ul>
<li>
Remove the wait for the touchscreen busy bit in the ADS7843E driver.
From my reading of the ADS7843 spec, it would not be appropriate to wait for the BUSY bit to de-asserted anyway (since it is only de-asserted when we read the data).
Most boards do not even bother to provide the BUSY bit.
<li>
MMC/SD SPI based driver:
Driver needs to make sure that the SPI mode and data width are correct.
<li>
ENC28J60: Change buffer ordering to work around Errata.
From Dave (ziggurat29).
</li>
</ul>
</li>
<li>
<p>
<b>USB Device Controller Drivers</b>
</p>
<ul>
<li>
Fixed a typo in the composite device driver unitialization logic.
<code>DEV1</code> should be <code>DEV2</code> in one case.
<li>
<code>usbdev.h</code>: Fix some typos that cause compiler errors when <code>CONFIG_USBDEV_DMA</code> and <code>CONFIG_USBDEV_DMAMEMORY </code>are selected (From Chia Cheng Tsao).
</li>
</ul>
</li>
<li>
<p>
<b>ARM9</b>
</p>
<ul>
<li>
Fix a bug (uninitialized register error) that crept in the ARM9 boot-up code several years ago.
Obviously no one has used the ARM9 NuttX port for years!
</li>
</ul>
</li>
<li>
<p>
<b>STM32 Drivers</b>
</p>
<ul>
<li>
Fix STM32 OTF FS endpoint allocation logic.
Apparently the same endpoint can be allocated as both an IN or an OUT endpoint.
The existing implementation only supported one allocation, either IN or OUT.
This resulted in failures to allocate endpoints when used with the CDC/ACM + MSC composite driver (From Chia Cheng Tsao).
<li>
SDIO: Add support for the data block end (<code>DBCKEND</code>) interrupt to terminate transfers (From Chia Cheng Tsao).
<li>
DAC: Fixed numerous DAC driver errors and added support for DAC DMA (contributed by John Wharington).
</li>
</ul>
</li>
<li>
<p>
<b>SAM3/4</b>
</p>
<ul>
<li>
SAM4S: Correct configuration of PIO pins for SAM4S B and C peripherals.
<li>
Need to disable write protection before configuring PIO pins.
<li>
GPIO configuration logic must protect against re-entrancy.
<li>
Clocking must be applied to the SMC module for the 3X and 3A family in order for the NFC SRAM to be functional.
<li>
Fixed some errors for interrupts on ports D-F.
</li>
</ul>
</li>
<li>
<p>
<b>SAM3/4 Drivers</b>
</p>
<ul>
<li>
Common SPI driver: Fix SPI mode setting.
In the SAM3/4 family, the clock phase control (<code>CPHA</code>) is inverted (<code>NPHA</code>).
Also fixed an incorrect pointer test.
It was checking if the wrong pointer was NULL.
</li>
</ul>
</li>
<li>
<p>
<b>SAM3/4 Boards</b>
</p>
<ul>
<li>
SAM3U-EK: Fix polarity of the <code>/PENIRQ</code> signal (it is active low).
The SAM3U-EK board now runs at 96MHz.
</li>
</ul>
</li>
<li>
<p>
<b>Applications</b>
</p>
<ul>
<li>
<code>apps/examples/nxhello</code>: Minor fix for compilation error when the display resolution is low (&lt; 8bpp) due to a typo that has been there for a long time.
Also Correct default colors when in Y1 code mode.
<li>
<code>apps/system/ramtest</code>: The RAM test was not correctly builtinto the configuration and build system.
<li>
<code>apps/examples/composite</code>: Change to prevent some false alarm debug assertions (From Chia Cheng Tao).
</li>
</ul>
</li>
</ul>
<p>
See the <a href="#currentrelease">ChangeLog</a> for additional, detailed changes.
</p>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="platforms"><h1>Supported Platforms</h1></a>
</td>
</tr>
</table>
<p><b>Supported Platforms by CPU core</b>.
The number of ports to this CPU follow in parentheses.
The state of the various ports vary from board-to-board.
Follow the links for the details:
</p>
<center><table width="90%">
<ul>
<tr>
<td bgcolor="#e4e4e4" valign="top" width="34%">
<li><a href="#linuxusermode">Linux/Cygwin user mode simulation</a> (1)</li>
<li>ARM
<ul>
<li><a href="#arm7tdmi">ARM7TDMI</b></a> (5)</li>
<li><a href="#arm920t">ARM920T</a> (1) </li>
<li><a href="#arm926ejs">ARM926EJS</a> (3) </li>
<li><a href="#armcortexa5">ARM Cortex-A5</a> (1) </li>
<li><a href="#armcortexm0">ARM Cortex-M0/M0+</a> (2)</li>
<li><a href="#armcortexm3">ARM Cortex-M3</a> (20)</li>
<li><a href="#armcortexm4">ARM Cortex-M4</a> (9)</li>
</ul>
<li>Atmel AVR
<ul>
<li><a href="#atmelavr">Atmel 8-bit AVR</a> (3) </li>
<li><a href="#atmelavr32">Atmel AVR32</a> (1) </li>
</ul>
</li>
</td>
<td bgcolor="#e4e4e4" valign="top" width="33%">
<li>Freescale
<ul>
<li><a href="#m68hcs12">M68HCS12</a> (2)</li>
</ul>
</li>
<li>Intel
<ul>
<li><a href="#80x52">Intel 80x52 Microcontroller</a> (1)</li>
<li><a href="#80x86">Intel 80x86</a> (2)</li>
</ul>
</li>
<li>MicroChip
<ul>
<li><a href="#pic32mips">PIC32MX</a> (MIPS) (4)</li>
</ul>
</li>
</td>
<td bgcolor="#e4e4e4" valign="top" width="33%">
<li>Renesas/Hitachi:
<ul>
<li><a href="#superh">Renesas/Hitachi SuperH</a> (1/2)</li>
<li><a href="#m16c">Renesas M16C/26</a> (1/2)</li>
</ul>
</li>
<li>ZiLOG
<ul>
<li><a href="#zilogz16f">ZiLOG Z16F</a> (1)</li>
<li><a href="#zilogez80acclaim">ZiLOG eZ80 Acclaim!</a> (1)</li>
<li><a href="#zilogz8encore">ZiLOG Z8Encore!</a> (2)</li>
<li><a href="#zilogz180">ZiLOG Z180</a> (1)</li>
<li><a href="#zilogz80">ZiLOG Z80</a> (2)</li>
</ul>
</li>
</td>
</tr>
</table></center>
<p><b>Supported Platforms by Manufacturer/MCU Family</b>.
CPU core type follows in parentheses.
The state of the various ports vary from MCU to MCU.
Follow the links for the details:
</p>
<center><table width="90%">
<ul>
<tr>
<td bgcolor="#e4e4e4" valign="top" width="34%">
<li>Atmel
<ul>
<li><a href="#avratmega128">AVR ATMega128</a> <small>(8-bit AVR)</small></li>
<li><a href="#avrat90usbxxx">AVR AT90USB64x and AT90USB6128x</a> <small>(8-bit AVR)</small></li>
<li><a href="#at32uc3bxxx">AVR32 AT32UC3BXXX</a> <small>(32-bit AVR32)</small></li>
<li><a href="#at91sam3u">Atmel AT91SAM3U</a> <small>(ARM Cortex-M3)</small></li>
<li><a href="#at91sam3x">Atmel AT91SAM3X</a> <small>(ARM Cortex-M3)</small></li>
<li><a href="#at91sam4l">Atmel AT91SAM4L</a> <small>(ARM Cortex-M4)</small></li>
<li><a href="#at91sam4s">Atmel AT91SAM4S</a> <small>(ARM Cortex-M4)</small></li>
<li><a href="#at91sama5d3">Atmel AT91SAMA5D3</a> <small>(ARM Cortex-A5)</small></li>
</ul>
</li>
<li>Freescale
<ul>
<li><a href="#m68hcs12">M68HCS12</a></li>
<li><a href="#freescaleimx1">Freescale i.MX1</a> <small>(ARM920-T)</small></li>
<li><a href="#freescalekl25z">FreeScale KL25Z</a> <small>(ARM Cortex-M0+)</small></li>
<li><a href="#kinetisk40">FreeScale Kinetis K40</a> <small>(ARM Cortex-M4)</small></li>
<li><a href="#kinetisk60">FreeScale Kinetis K60</a> <small>(ARM Cortex-M4)</small></li>
</ul>
</li>
<li>Host PC based simulations
<ul>
<li><a href="#linuxusermode">Linux/Cygwin user mode simulation</a></li>
</ul>
</li>
<li>Intel
<ul>
<li><a href="#80x52">Intel 80x52</a></li>
<li><a href="#80x86">Intel 80x86</a></li>
</ul>
</li>
<li>MicroChip
<ul>
<li><a href="#pic32mx2xx">PIC32MX2xx Family</a> <small>(Modified MIPS32)</small></li>
<li><a href="#pic32mx4xx">PIC32MX4xx Family</a> <small>(Modified MIPS32)</small></li>
<li><a href="#pic32mx7xx">PIC32MX7xx Family</a> <small>(Modified MIPS32)</small></a>
</ul>
</li>
</td>
<td bgcolor="#e4e4e4" valign="top" width="33%">
<li>nuvoTon
<ul>
<li><a href="#nuvotonnu120">nuvoTon NUC120</a> <small>(ARM Cortex-M0)</small></li>
</ul>
</li>
<li>NXP
<ul>
<li><a href="#nxplpc214x">NXP LPC214x</a> <small>(ARM7TDMI)</small></li>
<li><a href="#nxplpc2378">NXP LPC2378</a> <small>(ARM7TDMI)</small></li>
<li><a href="#nxplpc3131">NXP LPC3131</a> <small>(ARM9E6JS)</small></li>
<li><a href="#nxplpc315x">NXP LPC315x</a> <small>(ARM9E6JS)</small></li>
<li><a href="#nxplpc176x">NXP LPC176x</a> <small>(ARM Cortex-M3)</small></li>
<li><a href="#nxplpc178x">NXP LPC178x</a> <small>(ARM Cortex-M3)</small></li>
<li><a href="#nxplpc43xx">NXP LPC43xx</a> <small>(ARM Cortex-M4)</small></li>
</ul>
</li>
<li>Renesas/Hitachi:
<ul>
<li><a href="#superh">Renesas/Hitachi SuperH</a></li>
<li><a href="#m16c">Renesas M16C/26</a></li>
</ul>
</li>
<li>STMicroelectronics
<ul>
<li><a href="#str71x">STMicro STR71x</a> <small>(ARM7TDMI)</small></li>
<li><a href="#stm32l152">STMicro STM32L152</a> <small>(STM32 L &quot;EnergyLite&quot; Line, ARM Cortex-M3)</small></li>
<li><a href="#stm32f100x">STMicro STM32F100x</a> <small>(STM32 F1 &quot;Value Line&quot;Family, ARM Cortex-M3)</small></li>
<li><a href="#stm32f103cx">STMicro STM32F103C4/C8</a> <small>(STM32 F1 &quot;Low- and Medium-Density Line&quot; Family, ARM Cortex-M3)</small></li>
<li><a href="#stm32f103x">STMicro STM32F103x</a> <small>(STM32 F1 Family, ARM Cortex-M3)</small></li>
<li><a href="#stm32f107x">STMicro STM32F107x</a> <small>(STM32 F1 &quot;Connectivity Line&quot; family, ARM Cortex-M3)</small></li>
<li><a href="#stm32f207x">STMicro STM32F207x</a> <small>(STM32 F2 family, ARM Cortex-M3)</small></li>
<li><a href="#stm32303x">STMicro STM32F303x <small>(STM32 F3 family, ARM Cortex-M4)</small></b>.</a></li>
<li><a href="#stm32f407x">STMicro STM32F407x</a> <small>(STM32 F4 family, ARM Cortex-M4)</small></li>
<li><a href="#stm32f427x">STMicro STM32 F427/437</a> <small>(STM32 F4 family, ARM Cortex-M4)</small></li>
</ul>
</li>
</td>
<td bgcolor="#e4e4e4" valign="top" width="33%">
<li>Texas Instruments (some formerly Luminary)
<ul>
<li><a href="#tms320c5471">TI TMS320-C5471</a> <small>(ARM7TDMI)</small></li>
<li><a href="#ticalypso">TI Calypso</a> <small>(ARM7TDMI)</small></li<>
<li><a href="#titms320dm320">TI TMS320-DM320</a> <small>(ARM9E6JS)</small></li>
<li><a href="#tilms6432">TI/Stellaris LM3S6432</a> <small>(ARM Cortex-M3)</small></li>
<li><a href="#tilm3s6432s2e">TI/Stellaris LM3S6432S2E</a> <small>(ARM Cortex-M3)</small></li>
<li><a href="#tilms6918">TI/Stellaris LM3S6918</a> <small>(ARM Cortex-M3)</small></li>
<li><a href="#tilms6965">TI/Stellaris LM3S6965</a> <small>(ARM Cortex-M3)</small></li>
<li><a href="#tilms8962">TI/Stellaris LM3S8962</a> <small>(ARM Cortex-M3)</small></li>
<li><a href="#tilms9b96">TI/Stellaris LM3S9B96</a> <small>(ARM Cortex-M3)</small></li>
<li><a href="#tilm4f120x">TI/Stellaris LM4F120x</a> <small>(ARM Cortex-M4)</small></li>
</ul>
</li>
<li>ZiLOG
<ul>
<li><a href="#zilogz16f">ZiLOG Z16F</a></li>
<li><a href="#zilogez80acclaim">ZiLOG eZ80 Acclaim!</a></li>
<li><a href="#zilogz8encore">ZiLOG Z8Encore!</a></li>
<li><a href="#zilogz180">ZiLOG Z180</a></li>
<li><a href="#zilogz80">ZiLOG Z80</a></li>
</ul>
</li>
</td>
<td bgcolor="#e4e4e4" valign="top">
</td>
<td bgcolor="#e4e4e4" valign="top">
</td>
</tr>
</table></center>
<p>
<b>Details</b>.
The details, caveats and fine print follow.
For even more information see the <i>README</i> files that can be found <a href="README.html">here</a>.
</p>
<center><table width="90%">
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="linuxusermode"><b>Linux User Mode</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
A user-mode port of NuttX to the x86 Linux/Cygwin platform is available.
The purpose of this port is primarily to support OS feature development.
</p>
<ul>
<p>
<b>STATUS:</b>
Does not support interrupts but is otherwise fully functional.
Refer to the NuttX <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/sim/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="arm7tdmi"><b>ARM7TDMI</b></a>.
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="tms320c5471"><b>TI TMS320C5471</b></a>
(also called <b>C5471</b> or <b>TMS320DA180</b> or <b>DA180</b>).
NuttX operates on the ARM7 of this dual core processor.
This port uses the <a href="http://www.spectrumdigital.com/">Spectrum Digital</a>
evaluation board with a GNU arm-nuttx-elf toolchain* under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port is complete, verified, and included in the initial NuttX release.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/c5471evm/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="ticalypso"><b>TI Calypso</b>.</a>
This port supports the TI &quot;Calypso&quot; MCU used in various cell phones (and, in particular,
by the <a href="http://bb.osmocom.org/trac/">Osmocom-bb project</a>).
Like the c5471, NuttX operates on the ARM7 of this dual core processor.
Board support is available for the Motorola C155 and W220 phones and for the Pirelli DP-L10 phone.
</p>
<ul>
<p>
<b>STATUS:</b>
This port was contributed by Denis Carilki and includes the work of Denis Carikli, Alan Carvalho de Assis, and Stefan Richter.
Calypso support first appeared in NuttX-6.17 with LCD drivers.
Support for the Calypso keyboard was added in NuttX-6.24 by Denis Carilki.
Refer to the NuttX board README files for the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/compal_e88/README.txt">Compal E88</a>, <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/compal_e99/README.txt">Compal E99</a> and <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/pirelli_dpl10/README.txt">Pirelli DP-L10</a> phones for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="nxplpc214x"><b>NXP LPC214x</b>.</a>
Support is provided for the NXP LPC214x family of processors. In particular,
support is provided for (1) the mcu123.com lpc214x evaluation board (LPC2148)
and (1) the The0.net ZPA213X/4XPA development board (with the The0.net UG-2864AMBAG01 OLED)
This port also used the GNU arm-nuttx-elf toolchain* under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port boots and passes the OS test (apps/examples/ostest).
The port is complete and verified. As of NuttX 0.3.17, the port includes:
timer interrupts, serial console, USB driver, and SPI-based MMC/SD card
support. A verified NuttShell (<a href="NuttShell.html">NSH</a>)
configuration is also available.
Refer to the NuttX board README files for the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/mcu123-lpc214x/README.txt">mcu123.com</a> and for the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/zp214xpa/README.txt">ZPA213X/4XPA</a> boards for further information.
</p>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin/MSYS with Cygwin GNU toolchain, 3) Cygwin/MSYS
with Windows native toolchain (CodeSourcery or devkitARM), or 4) Native Windows. A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a>
package.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="nxplpc2378"><b>NXP LPC2378</b></a>.
Support is provided for the NXP LPC2378 MCU. In particular,
support is provided for the Olimex-LPC2378 development board.
This port was contributed by Rommel Marcelo is was first released in NuttX-5.3.
This port also used the GNU arm-nuttx-elf toolchain* under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port boots and passes the OS test (apps/examples/ostest) and includes a
working implementation of the NuttShell (<a href="NuttShell.html">NSH</a>).
The port is complete and verified.
As of NuttX 5.3, the port includes only basic timer interrupts and serial console support.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/olimex-lpc2378/README.txt">README</a> file for further information.
</p>
<p>
<b>Development Environments:</b> (Same as for the NXP LPC214x).
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="str71x"><b>STMicro STR71x</b>.</a>
Support is provided for the STMicro STR71x family of processors. In particular,
support is provided for the Olimex STR-P711 evaluation board.
This port also used the GNU arm-nuttx-elf toolchain* under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
Integration is complete on the basic port (boot logic, system time, serial console).
Two configurations have been verified: (1) The board boots and passes the OS test
with console output visible on UART0, and the NuttShell (<a href="NuttShell.html">NSH</a>)
is fully functional with interrupt driven serial console. An SPI driver is available
but only partially tested. Additional features are needed: USB driver, MMC integration,
to name two (the slot on the board appears to accept on MMC card dimensions; I have only
SD cards).
An SPI-based ENC28J60 Ethernet driver for add-on hardware is available and
but has not been fully verified on the Olimex board (due to issues powering the ENC28J60 add-on board).
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/olimex-strp711/README.txt">README</a> file for further information.
</p>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin/MSYS with Cygwin GNU toolchain, 3) Cygwin/MSYS
with Windows native toolchain (CodeSourcery or devkitARM), or 4) Native Windows. A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a>
package.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="arm920t"><b>ARM920T</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="freescaleimx1"><b>Freescale MC9328MX1</b> or <b>i.MX1</b>.</a>
This port uses the Freescale MX1ADS development board with a GNU arm-nuttx-elf toolchain*
under either Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port has stalled due to development tool issues.
Coding is complete on the basic port (timer, serial console, SPI).
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/mx1ads/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="arm926ejs"><b>ARM926EJS</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="titms320dm320"><b>TI TMS320DM320</b></a>
(also called <b>DM320</b>).
NuttX operates on the ARM9 of this dual core processor.
This port uses the
<a href="http://wiki.neurostechnology.com/index.php/Developer_Welcome">Neuros OSD</a>
with a GNU arm-nuttx-elf toolchain* under Linux or Cygwin.
The port was performed using the OSD v1.0, development board.
</p>
<ul>
<p>
<b>STATUS:</b>
The basic port (timer interrupts, serial ports, network, framebuffer, etc.) is complete.
All implemented features have been verified with the exception of the USB device-side
driver; that implementation is complete but untested.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/ntosd-dm320/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<a name="nxplpc3131"><b>NXP LPC3131</b>.</a>
The port for the NXP <a href="http://ics.nxp.com/products/lpc3000/lpc313x.lpc314x.lpc315x/">LPC3131</a> on the <a href="http://www.embeddedartists.com/products/kits/lpc3131_kit.php">Embedded Artists EA3131</a>
development board was first released in NuttX-5.1 with a GNU arm-nuttx-elf or arm-eabi toolchain* under Linux or Cygwin
(but was not functional until NuttX-5.2).
</p>
<ul>
<p>
<b>STATUS:</b>
The basic EA3131 port is complete and verified in NuttX-5.2
This basic port includes basic boot-up, serial console, and timer interrupts.
This port was extended in NuttX 5.3 with a USB high speed driver contributed by David Hewson.
David also contributed I2C and SPI drivers plus several important LPC313x USB bug fixes
that appear in the NuttX 5.6 release.
This port has been verified using the NuttX OS test, USB serial and mass storage
tests and includes a working implementation of the NuttShell (<a href="NuttShell.html">NSH</a>).
</p>
<p>
Support for <a href="NuttXDemandPaging.html">on-demand paging</a> has been developed for the EA3131.
That support would all execute of a program in SPI FLASH by paging code sections out of SPI flash as needed.
However, as of this writing, I have not had the opportunity to verify this new feature.
</p>
<p>
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/ea3131/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<a name="nxplpc315x"><b>NXP LPC315x</b>.</a>
Support for the NXP <a href="http://ics.nxp.com/products/lpc3000/lpc313x.lpc314x.lpc315x/">LPC315x</a> family has been incorporated into the code base as of NuttX-6.4.
Support has added for the Embedded Artists EA3152 board in NuttX-6.11.
</p>
<ul>
<p>
<b>STATUS:</b>
Basic support is in place for both the LPC3152 MCU and the EA3152 board.
Verification of the port was deferred due to tool issues
However, because of the high degree of compatibility between the LPC313x and LPC315x family, it
is very likely that the support is in place (or at least very close).
At this point, verification of the EA3152 port has been overcome by events and
may never happen.
However, the port is available for anyone who may want to use it.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/ea3152/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="armcortexa5"><b>ARM Cortex-A5</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="at91sama5d3"><b>Atmel SAMA5D3</b>.</a>
This is the port of NuttX to the Atmel SAMA5D3<i>x</i>-EK development boards (where <i>x</i>=1,3,4, or 5).
These boards feature the Atmel SAMA5D3<i>x</i> microprocessors.
Four different SAMA5D3<i>x</i>-EK kits are available
</p>
<ul>
<li>SAMA5D31-EK with the <a href="http://www.atmel.com/devices/sama5d31.aspx">ATSAMA5D31</a></li>
<li>SAMA5D33-EK with the <a href="http://www.atmel.com/devices/sama5d33.aspx">ATSAMA5D33</a></li>
<li>SAMA5D34-EK with the <a href="http://www.atmel.com/devices/sama5d34.aspx">ATSAMA5D34</a></li>
<li>SAMA5D35-EK with the <a href="http://www.atmel.com/devices/sama5d35.aspx">ATSAMA5D35</a></li>
</ul>
<p>
The each kit consist of an identical base board with different plug-in modules for each CPU.
All four boards are supported by NuttX with a simple reconfiguration of the processor type.
</p>
<ul>
<p>
<b>STATUS</b>.
Initial support for the SAMA5D3x-EK was released in NuttX-6.29.
This initial support is very minimal:
There are simple test configurations that run out of internal SRAM and two configurations that run out of the on-boar NOR FLASH:
(1) An OS test configuration that verifies the correct port of NuttX to the part and
(2) a NuttShell (<a href="NuttShell.html">NSH</a>) configuration that might be the basis for further application development.
Develop continues.
Support of DMA and PIO interrupts and drivers for SPI, AT25 Serial Flash, and HSMCI memory cards included in NuttX-6.30.
More device drivers are needed to make this a more complete port, particularly USB and networking.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/sama5d3x-ek/README.txt">README</a> file for further information.
</p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin/MSYS with Cygwin GNU toolchain, 3) Cygwin/MSYS with Windows native toolchain, or 4) Native Windows.
All testing has been perfomed with the CodeSourcery toolchain (GCC version 4.7.3) in the Cygwin environment under Windows.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="armcortexm0"><b>ARM Cortex-M0</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="nuvotonnu120"><b>nuvoTon NUC120</b>.</a>
This is a port of NuttX to the nuvoTon NuTiny-SDK-NUC120 that features the NUC120LE3AN MCU.
</p>
<ul>
<p>
<b>STATUS</b>.
Initial support for the NUC120 was released in NuttX-6.26.
This initial support is very minimal:
There is an OS test configuration that verifies the correct port of NuttX to the part and
a NuttShell (<a href="NuttShell.html">NSH</a>) configuration that might be the basis for an application development.
As of this writing, more device drivers are needed to make this a more complete port.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/nutiny-nuc120/README.txt">README</a> file for further information.
</p>
<p>
<b>Memory Usage</b>.
For a full-featured RTOS such as NuttX, providing support in a usable and meaningful way within the tiny memories of the NUC120 demonstrates the scalability of NuttX. The NUC120LE2AN comes in a 48-pin package and has 128KB FLASH and 16KB of SRAM.
When running the NSH configuration (itself a full up application), there is still more than 90KB of FLASH and 10KB or SRAM available for further application development).
</p>
<p>
Static memory usage can be shown with <code>size</code> command:
</p>
<ul><pre>
$ size nuttx
text data bss dec hex filename
35037 106 1092 36235 8d8b nuttx
</pre></ul>
<p>
NuttX, the NSH application, and GCC libraries use 34.2KB of FLASH leaving 93.8KB of FLASH (72%) free from additional application development.
Static SRAM usage is about 1.2KB (&lt;4%) and leaves 14.8KB (86%) available for heap at runtime.
SRAM usage at run-time can be shown with the NSH <code>free</code> command:
</p>
<ul><pre>
NuttShell (NSH) NuttX-6.26
nsh> free
total used free largest
Mem: 14160 3944 10216 10216
nsh>
</pre></ul>
<p>
You can see that 10.0KB (62%) is available for further application development.
</p>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin/MSYS with Cygwin GNU toolchain, 3) Cygwin/MSYS
with Windows native toolchain, or 4) Native Windows.
A DIY toolchain for Linux or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a> package.
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="freescalekl25z"><b>FreeScale Freedom KL25Z</b>.</a>
This is a port of NuttX to the Freedom KL25Z board that features the MKL25Z128 Cortex-M0+ MCU, 128KB of FLASH and 16KB of SRAM.
See the <a href="http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL25Z&tid=vanFRDM-KL25Z">Freescale</a> website for further information about this board.
</p>
<ul>
<p>
<b>STATUS</b>.
This is the work of Alan Carvalho de Assis.
Verified, initial, minimal support for the Freedom KL25Z is in place in NuttX 6.27 and 6.28:
There is a working OS test configuration that verifies the correct port of NuttX to the part and a working NuttShell (<a href="NuttShell.html">NSH</a>) configuration that might be the basis for an application development.
As of NuttX-6.28 more device driver development would be needed to make this a complete port, particularly to support USB OTG.
A TSI and a SPI driver were added in NuttX-6.29.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/freedom-kl25z/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="armcortexm3"><b>ARM Cortex-M3</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="tilms6432"><b>TI/Stellaris LM3S6432</b>.</a>
This is a port of NuttX to the Stellaris RDK-S2E Reference Design Kit and the MDL-S2E Ethernet to Serial module
(contributed by Mike Smith).
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="tilm3s6432s2e"><b>TI/Stellaris LM3S6432S2E</b>.</a>
This port uses Serial-to-Ethernet Reference Design Kit (<a href="http://www.ti.com/tool/rdk-s2e">RDK-S2E</a>) and has similar support as for the other Stellaris family members.
Configurations are available for the OS test and for the NuttShell (NSH)
(see the <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH User Guide</a>).
The NSH configuration including networking support with a Telnet NSH console.
This port was contributed by Mike Smith.
</p>
<ul>
<p>
<b>STATUS:</b>
This port was was released in NuttX 6.14.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/lm3s6432-s2e/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="tilms6918"><b>TI/Stellaris LM3S6918</b>.</a>
This port uses the <a href=" http://www.micromint.com/">Micromint</a> Eagle-100 development
board with a GNU arm-nuttx-elf toolchain* under either Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
The initial, release of this port was included in NuttX version 0.4.6.
The current port includes timer, serial console, Ethernet, SSI, and microSD support.
There are working configurations the NuttX OS test, to run the <a href="NuttShell.html">NuttShell
(NSH)</a>, the NuttX networking test, and the uIP web server.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/eagle100/README.txt">README</a> file for further information.
</p>
</ul>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin/MSYS with Cygwin GNU toolchain, 3) Cygwin/MSYS
with Windows native toolchain (CodeSourcery or devkitARM), or 4) Native Windows. A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a>
package.
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="tilms6965"><b>TI/Stellaris LM3S6965</b>.</a>
This port uses the Stellaris LM3S6965 Ethernet Evalution Kit with a GNU arm-nuttx-elf toolchain*
under either Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port was released in NuttX 5.5.
Features are the same as with the Eagle-100 LM3S6918 described above.
The apps/examples/ostest configuration has been successfully verified and an
NSH configuration with Telnet support is available.
MMC/SD and Networking support was not been thoroughly verified:
Current development efforts are focused on porting the NuttX window system (NX)
to work with the Evaluation Kits OLED display.
</p>
<p><small>
<b>NOTE</b>: As it is configured now, you MUST have a network connected.
Otherwise, the NSH prompt will not come up because the Ethernet
driver is waiting for the network to come up.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/lm3s6965-ek/README.txt">README</a> file for further information.
</small></p>
</ul>
<p>
<b>Development Environments:</b> See the Eagle-100 LM3S6918 above.
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="tilms8962"><b>TI/Stellaris LM3S8962</b>.</a>
This port uses the Stellaris EKC-LM3S8962 Ethernet+CAN Evalution Kit with a GNU arm-nuttx-elf toolchain*
under either Linux or Cygwin.
Contributed by Larry Arnold.
</p>
<ul>
<p>
<b>STATUS:</b>
This port was released in NuttX 5.10.
Features are the same as with the Eagle-100 LM3S6918 described above.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/lm3s8962-ek/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="tilms9b96"><b>TI/Stellaris LM3S9B96</b>.</a>
Header file support was contributed by Tiago Maluta for this part.
Jose Pablo Rojas V. is used those header file changes to port NuttX to the TI/Stellaris EKK-LM3S9B96.
That port was available in the NuttX-6.20 release.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/ekk-lm3s9b96/README.txt">README</a> file for further information.
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="stm32l152"><b>STMicro STM32L152 (STM32L &quot;EnergyLite&quot; Line)</b>.</a>
This is a port of NuttX to the STMicro STM32L-Discovery development board.
The STM32L-Discovery board is based on the STM32L152RBT6 MCU (128KB FLASH and 16KB of SRAM).
</p>
<ul>
<p>
The STM32L-Discovery and 32L152CDISCOVERY kits are functionally equivalent.
The difference is the internal Flash memory size (STM32L152RBT6 with 128 Kbytes or STM32L152RCT6 with 256 Kbytes).
Both boards feature:
</p>
<ul>
<li>An ST-LINK/V2 embedded debug tool interface,</li>
<li>LCD (24 segments, 4 commons),</li>
<li>LEDs,</li>
<li>Pushbuttons,</li>
<li>A linear touch sensor, and</li>
<li>Four touchkeys.</li>
</ul>
<p>
<b>STATUS</b>.
Initial support for the STM32L-Discovery was released in NuttX-6.28.
This initial support includes a configuration using the NuttShell (<a href="NuttShell.html">NSH</a>) that might be the basis for an application development.
A driver for the on-board segment LCD is included as well as an option to drive the segment LCD from an NSH &quot;built-in&quot; command.
As of this writing, a few more things are needed to make this a more complete port: 1) Verfication of more device drivers (timers, quadrature encoders, PWM, etc.), and 2) logic that actually uses the low-power consumption modes of the EnergyLite part.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/stm32ldiscovery/README.txt">README</a> file for further information.
</p>
<p>
<b>Memory Usage</b>.
For a full-featured RTOS such as NuttX, providing support in a usable and meaningful way within the tiny memories of the STM32L152RBT6 demonstrates the scalability of NuttX. The STM32L152RBT6 comes in a 64-pin package and has 128KB FLASH and 16KB of SRAM.
</p>
<p>
Static memory usage can be shown with <code>size</code> command:
</p>
<ul><pre>
$ size nuttx
text data bss dec hex filename
39664 132 1124 40920 9fd8 nuttx
</pre></ul>
<p>
NuttX, the NSH application, and GCC libraries use 38.7KB of FLASH leaving 89.3B of FLASH (70%) free from additional application development.
Static SRAM usage is about 1.2KB (&lt;4%) and leaves 14.8KB (86%) available for heap at runtime.
</p>
SRAM usage at run-time can be shown with the NSH <code>free</code> command:
<ul><pre>
NuttShell (NSH) NuttX-6.27
nsh> free
total used free largest
Mem: 14096 3928 10168 10168
nsh>
</pre></ul>
<p>
You can see that 9.9KB (62%) of SRAM heap is staill available for further application development while NSH is running.
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="stm32f100x"><b>STMicro STM32F100x (STM32 F1 &quot;Value Line&quot;Family)</b>.</a>
Chip support for these STM32 &quot;Value Line&quot; family was contributed by Mike Smith and users have reported that they have successful brought up NuttX on there proprietary boards using this logic.
This logic was extended to support the <i>high density</i> STM32F100RC chips by Freddie Chopin
However, there is <i>no</i> specific board support for this chip families in the NuttX source tree.
There is, however, <i>generic</i> support for STM32F100RC boards.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/stm32f100rc_generic/README.txt">README</a> file for further information.
</p>
</tr>
<li><a href="#stm32f103cx">STMicro STM32F103C48</a> <small>(STM32 F1 &quot;Low- and Medium-Density Line&quot;Family, ARM Cortex-M3)</small></li>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="stm32f103cx"><b>STMicro STM32F103C4/8 (STM32 F1 Low- and Medium-Density Family)</b>.</a>
This port is for &quot;STM32 Tiny&quot; development board.
This board is available from several vendors on the net, and may be sold under different names.
It is based on a STM32 F103C8T6 MCU, and is bundled with a nRF24L01 wireless communication module.
</p>
<ul>
<p>
<b>STATUS:</b>
The basic STM32F103C8 port was released in NuttX version 6.28.
This work was contributed by Laurent Latil.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/stm32_tiny/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="stm32f103x"><b>STMicro STM32F103x (STM32 F1 Family)</b>.</a>
Support for four MCUs and four board configurations are available.
MCU support includes all of the high density and connectivity line families.
Board supported is available specifically for: STM32F103ZET6, STM32F103RET6, STM32F103VCT, and STM32F103VET6.
Boards supported include:
</p>
<ol>
<li>
A port for the <a href=" http://www.st.com/">STMicro</a> STM3210E-EVAL development board that
features the STM32F103ZET6 MCU.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/stm3210e-eval/README.txt">README</a> file for further information.
</li>
<li>
The ISOTEL NetClamps VSN V1.2 ready2go sensor network platform based on the
STMicro STM32F103RET6. Contributed by Uros Platise.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/vsn/README.txt">README</a> file for further information.
</li>
<li>
A port for the HY-Mini STM32v board. This board is based on the
STM32F103VCT chip. Contributed by Laurent Latil.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/hymini-stm32v/README.txt">README</a> file.
</li>
<li>
The M3 Wildfire development board (STM32F103VET6), version 2.
See <a href="http://firestm32.taobao.com">http://firestm32.taobao.com</a> (the current board is version 3).
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/fire-stm32v2/README.txt">README</a> file for further information.
</li>
</ol>
<p>
These ports uses a GNU arm-nuttx-elf toolchain* under either Linux or Cygwin (with native Windows GNU tools or Cygwin-based GNU tools).
</p>
<ul>
<p>
<b>STATUS:</b>
</p>
<ul>
<li><b>Basic Support/Drivers</b>.
The basic STM32 port was released in NuttX version 0.4.12. The basic port includes boot-up
logic, interrupt driven serial console, and system timer interrupts.
The 0.4.13 release added support for SPI, serial FLASH, and USB device.;
The 4.14 release added support for buttons and SDIO-based MMC/SD and verifed DMA support.
Verified configurations are available for NuttX OS test, the NuttShell (NSH) example,
the USB serial device class, and the USB mass storage device class example.
</li>
<li><b>NetClamps VSN</b>.
Support for the NetClamps VSN was included in version 5.18 of NuttX.
Uros Platise added support for timers, RTC, I2C, FLASH, extended power management
and other features.
</li>
<li><b>Additional Drivers</b>.
Additional drivers and configurations were added in NuttX 6.13 and later releases for the STM32 F1 and F4.
F1 compatible drivers include an Ethernet driver, ADC driver, DAC driver, PWM driver, IWDG, WWDG, and CAN drivers.
</li>
<li><b>M3 Wildfire</b>.
Support for the Wildfire board was included in version 6.22 of NuttX.
The board port is basically functional.
Not all features have been verified.
Support for FAT file system on an an SD card had been verified.
The ENC28J60 network is functional (but required lifting the chip select pin on the W25x16 part).
Customizations for the v3 version of the Wildfire board are selectable (but untested).
</li>
</ul>
</ul>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin/MSYS with Cygwin GNU toolchain, 3) Cygwin/MSYS
with Windows native toolchain (RIDE7, CodeSourcery or devkitARM), or 4) Native Windows. A DIY toolchain or Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a>
package.
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="stm32f107x"><b>STMicro STM32F107x (STM32 F1 &quot;Connectivity Line&quot; family)</b>.</a>
Chip support for the STM32 F1 &quot;Connectivity Line&quot; family has been present in NuttX for some time and users have reported that they have successful brought up NuttX on there proprietary boards using this logic.
</p>
<p>
<b>Olimex STM32-P107</b>
Support for the <a href="https://www.olimex.com/dev/stm32-p107.html">Olimex STM32-P107</a> was contributed by Max Holtzberg and first appeared in NuttX-6.21. That port features the STMicro STM32F107VC MCU.
<ul>
<b>STATUS:</b>
Configurations for the basic OS test and NSH are available and verified.
Networking is functional.
</ul>
</p>
<p>
<b>Shenzhou IV</b>
Work is underway as of this writing to port NuttX to the Shenzhou IV development board (See <a href="http://www.armjishu.com">www.armjishu.com</a>) featuring the STMicro STM32F107VCT MCU.
If all goes according to plan, this port should be verified and available in NuttX-6.22.
<ul>
<p>
<b>STATUS:</b>
In progress.
The following have been verified:
(1) Basic Cortex-M3 port,
(2) Ethernet,
(3) On-board LEDs.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/shenzhou/README.txt">README</a> file for further information.
</p>
</ul>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="stm32f207x"><b>STMicro STM32F207IG (STM32 F2 family)</b>.</a>
Support for the STMicro STM3220G-EVAL development board was contributed by Gary Teravskis and first released in NuttX-6.16.
</p>
<ul>
<b>STATUS:</b>
The peripherals of the STM32 F2 family are compatible with the STM32 F4 family.
See discussion of the STM3240G-EVAL board below for further information.
Refer also to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/stm3220g-eval/README.txt">README</a> file for further information.
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="at91sam3u"><b>Atmel AT91SAM3U</b>.</a>
This port uses the <a href="http://www.atmel.com/">Atmel</a> SAM3U-EK
development board that features the AT91SAM3U4E MCU.
This port uses a GNU arm-nuttx-elf or arm-nuttx-eabi toolchain* under either Linux or Cygwin (with native Windows GNU tools or Cygwin-based GNU tools).
</p>
<ul>
<p>
<b>STATUS:</b>
The basic SAM3U-EK port was released in NuttX version 5.1. The basic port includes boot-up
logic, interrupt driven serial console, and system timer interrupts.
That release passes the NuttX OS test and is proven to have a valid OS implementation.
A configuration to support the NuttShell is also included.
NuttX version 5.4 adds support for the HX8347 LCD on the SAM3U-EK board.
This LCD support includes an example using the
<a href=" http://www.nuttx.org/Documentation/NXGraphicsSubsystem.html">NX graphics system</a>.
NuttX version 6.10 adds SPI support.
Touchscreen support was added in NuttX-6.29.
</p>
<p>
Subsequent NuttX releases will extend this port and add support for the SDIO-based SD cards and
USB device.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/sam3u-ek/README.txt">README</a> file for further information about this port.
</p>
</ul>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin/MSYS with Cygwin GNU toolchain, 3) Cygwin/MSYS
with Windows native toolchain (CodeSourcery or devkitARM), or 4) Native Windows. A DIY toolchain for inux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a>
package.
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="at91sam3x"><b>Atmel AT91SAM3X</b>.</a>
This port uses the <a href="http://arduino.cc//">Arduino</a> Due development board that features the ATSAM3X8E MCU running at 84MHz.
See the <a href="http://arduino.cc/en/Main/arduinoBoardDue">Arduino Due</a> page for more information.
</p>
<ul>
<p>
<b>STATUS:</b>
As of this writing, the basic port is code complete and fully verified configurations exist for the basic NuttX OS test and for the NuttShell <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH</a>).
The first fully functional Arduino Due port was released in NuttX-6.29.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/arduino-due/README.txt">README</a> file for further information.
</p>
</ul>
<p>
<b>Development Environments:</b>
See the Atmel AT91SAM3U discussion <a href="#at91sam3u">above.</a>
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="nxplpc176x"><b>NXP LPC1766, LPC1768, and LPC1769</b>.</a>
Drivers are available for CAN, DAC, Ethernet, GPIO, GPIO interrupts, I2C, UARTs, SPI, SSP, USB host, and USB device.
Verified LPC17xx onfigurations are available for three boards.
<ul>
<li>
The Nucleus 2G board from <a href="http://www.2g-eng.com/">2G Engineering</a> (LPC1768),
</li>
<li>
The mbed board from <a href="http://mbed.org">mbed.org</a> (LPC1768, Contributed by Dave Marples), and
</li>
<li>
The LPC1766-STK board from <a href="http://www.olimex.com/">Olimex</a> (LPC1766).
</li>
<li>
The Embedded Artists base board with NXP LPCXpresso LPC1768.
</li>
<li>
Zilogic's ZKIT-ARM-1769 board.
</li>
<li>
The <a href="http://micromint.com/">Micromint</a> Lincoln60 board with an NXP LPC1769.
</li>
</ul>
</p>
<p>
The Nucleus 2G board, the mbed board, and the LPCXpresso all feature the NXP LPC1768 MCU;
the Olimex LPC1766-STK board features an LPC1766.
All use a GNU arm-nuttx-elf or arm-eabi toolchain* under either Linux or Cygwin (with native Windows GNU tools or Cygwin-based GNU tools).
</p>
<ul>
<p>
<b>STATUS:</b>
The following summarizes the features that has been developed and verified on individual LPC17xx-based boards.
These features should, however, be common and available for all LPC17xx-based boards.
</p>
<ol>
<li>
<p><b>Nucleus2G LPC1768</b></p>
<ul>
<li>
Some initial files for the LPC17xx family were released in NuttX 5.6, but
</li>
<li>
The first functional release for the NXP LPC1768/Nucleus2G occured with NuttX 5.7 with
Some additional enhancements through NuttX-5.9.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/nucleus2g/README.txt">README</a> file for further information.
</li>
</ul>
</p>
<p>
That initial, 5.6, basic release included <i>timer</i> interrupts and a <i>serial console</i> and was
verified using the NuttX OS test (<code>apps/examples/ostest</code>).
Configurations available include include a verified NuttShell (NSH) configuration
(see the <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH User Guide</a>).
The NSH configuration supports the Nucleus2G's microSD slot and additional configurations
are available to exercise the USB serial and USB mass storage devices.
However, due to some technical reasons, neither the SPI nor the USB device drivers are fully verified.
(Although they have since been verfiied on other platforms; this needs to be revisited on the Nucleus2G).
</p>
</li>
<li>
<p><b>mbed LPC1768</b></p>
<ul>
<li>
Support for the mbed board was contributed by Dave Marples and released in NuttX-5.11.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/mbed/README.txt">README</a> file for further information.
</li>
</ul>
</p>
<p>
This port includes a NuttX OS test configuration (see <code>apps/examples/ostest</code>).
</p>
</li>
<li>
<p><b>Olimex LPC1766-STK</b></p>
<ul>
<li>
Support for that Olimex-LPC1766-STK board was added to NuttX 5.13.
</li>
<li>
The NuttX-5.14 release extended that support with an <i>Ethernet driver</i>.
</li>
<li>
The NuttX-5.15 release further extended the support with a functional <i>USB device driver</i> and <i>SPI-based micro-SD</i>.
</li>
<li>
The NuttX-5.16 release added a functional <i>USB host controller driver</i> and <i>USB host mass storage class driver</i>.
</li>
<li>
The NuttX-5.17 released added support for low-speed USB devicers, interrupt endpoints, and a <i>USB host HID keyboard class driver</i>.
</li>
<li>
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/olimex-lpc1766stk/README.txt">README</a> file for further information.
</li>
</ul>
</p>
<p>
Verified configurations are now available for the NuttX OS test,
for the NuttShell with networking and microSD support(NSH, see the <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH User Guide</a>),
for the NuttX network test, for the <a href="http://acme.com/software/thttpd">THTTPD</a> webserver,
for USB serial deive and USB storage devices examples, and for the USB host HID keyboard driver.
Support for the USB host mass storage device can optionally be configured for the NSH example.
A driver for the <i>Nokia 6100 LCD</i> and an NX graphics configuration for the Olimex LPC1766-STK have been added.
However, neither the LCD driver nor the NX configuration have been verified as of the NuttX-5.17 release.
</p>
</li>
<li>
<p><b>Embedded Artists base board with NXP LPCXpresso LPC1768</b></p>
<p>
An fully verified board configuration is included in NuttX-6.2.
The Code Red toolchain is supported under either Linux or Windows.
Verifed configurations include DHCPD, the NuttShell (NSH), NuttX graphis (NX), the NuttX OS test, THTTPD, and USB mass storage device.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/lpcxpresso-lpc1768/README.txt">README</a> file for further information.
</p>
</li>
<li>
<p><b>Zilogic's ZKIT-ARM-1769 board</b></p>
<p>
Zilogic System's ARM development Kit, ZKIT-ARM-1769.
This board is based on the NXP LPC1769.
The initial release was included NuttX-6.26.
The Nuttx Buildroot toolchain is used by default.
This is still a port under development.
Verifed configurations include the &quot;Hello, World!&quot; example application and a THTTPD demonstration.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/zkit-arm-1769/README.txt">README</a> file for further information.
</p>
</li>
<li>
<p><b>Micromint Lincoln60 board with an NXP LPC1769</b></p>
<p>
This board configuration was contributed and made available in NuttX-6.20.
As contributed board support, I am unsure of what all has been verfied and what has not.
See the Microment website <a href="http://micromint.com/Products/lincoln60.html">Lincoln60</a> board and the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/lincoln60/README.txt">README</a> file for further information about the Lincoln board.
</p>
</li>
</ol>
</ul>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin/MSYS with Cygwin GNU toolchain, 3) Cygwin/MSYS
with Windows native toolchain (CodeSourcery devkitARM or Code Red), or 4) Native Windows. A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a> package.
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="nxplpc178x"><b>NXP LPC1788</b>.</a>
The port of NuttX to the WaveShare Open1788 is a collaborative effort between Rommel Marcelo and myself
(with Rommel being the leading contributor and I claiming only a support role).
You can get more information at the Open1788 board from the WaveShare <a href="http://www.wvshare.com/product/Open1788-Standard.htm">website</a>.
</p>
<ul>
<b>STATUS:</b>
Initial Open1788 support appeared in NuttX-6.26 with the first verified configurations in NuttX-6.27.
In NuttX-6.27 there is a working basic port with OS verification, Nuttshell (<a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH</a>) configurations, and a graphics test configuration.
SDRAM and GPDMA are working.
The NSH configuration includes verfied support for a DMA-based SD card interface.
The frame-buffer LCD driver is functional and uses the SDRAM for frame-buffer memory.
A touchscreen interface has been developed but there appears to be a hardware issue with the WaveShare implementation of the XPT2046 touchscreen controller.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/open1788/README.txt">README</a> file for further information.
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="armcortexm4"><b>ARM Cortex-M4</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="kinetisk40"><b>FreeScale Kinetis K40</b>.</a>
This port uses the Freescale Kinetis KwikStik K40.
Refer to the <a href="http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=KWIKSTIK-K40">Freescale web site</a> for further information about this board.
The Kwikstik is used with the FreeScale Tower System (mostly just to provide a simple UART connection)
</p>
<ul>
<p>
<b>STATUS:</b>
The unverified KwikStik K40 first appeared in NuttX-6.8
As of this writing, the basic port is complete but I accidentally locked my board during the initial bringup.
Further development is stalled unless I learn how to unlock the device (or until I get another K40).
Additional work remaining includes, among other things: (1) complete the basic bring-up,
(2) bring up the NuttShell NSH, (3) develop support for the SDHC-based SD card,
(4) develop support for USB host and device, and (2) develop an LCD driver.
NOTE: Some of these remaining tasks are shared with the K60 work described below.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/kwikstik-k40/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="kinetisk60"><b>FreeScale Kinetis K60</b>.</a>
This port uses the Freescale Kinetis TWR-K60N512 tower system.
Refer to the <a href="http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=TWR-K60N512-KIT">Freescale web site</a> for further information about this board.
The TWR-K60N51 includes with the FreeScale Tower System which provides (among other things) a DBP UART connection.
</p>
<ul>
<p>
<b>STATUS:</b>
As of this writing, the basic port is complete and passes the NuttX OS test.
An additional, validated configuration exists for the NuttShell (NSH, see the
<a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH User Guide</a>).
This basic TWR-K60N512 first appeared in NuttX-6.8.
Ethernet and SD card (SDHC) drivers also exist:
The SDHC driver is partially integrated in to the NSH configuration but has some outstanding issues;
the Ethernet driver is completely untested.
Additional work remaining includes: (1) integrate the Ethernet and SDHC drivers, and (2) develop support for USB host and device.
NOTE: Most of these remaining tasks (excluding the Ethernet driver) are the same as the pending K40 tasks described above.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/twr-k60n512/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="stm32303x"><b>STMicro STM32F3-Discovery (STM32 F3 family)</b>.</a>
This port uses the STMicro STM32F3-Discovery board featuring the STM32F303VCT6 MCU (STM32 F3 family).
Refer to the <a href="http://www.st.com/internet/evalboard/product/254044.jsp">STMicro web site</a> for further information about this board.
</p>
<ul>
<p>
<b>STATUS:</b>
The basic port for the STM32F3-Discover was first released in NuttX-6.26.
Many of the drivers previously released for the STM32 F1, Value Line, and F2 and F4 may be usable on this plaform as well.
New drivers will be required for ADC and I2C which are very different on this platform.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/stm32f3discovery/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="stm32f407x"><b>STMicro STM32407x (STM32 F4 family)</b>.</a>
<p>
<ul>
<p>
<b>STMicro STM3240G-EVAL</b>.
This port uses the STMicro STM3240G-EVAL board featuring the STM32F407IGH6 MCU.
Refer to the <a href="http://www.st.com/internet/evalboard/product/252216.jsp">STMicro web site</a> for further information about this board.
</p>
<p>
<b>STATUS:</b>
<ul>
<li><b>NuttX-6.12</b>
The basic port is complete and first appeared in NuttX-6.12.
The initial port passes the NuttX OS test and includes a validated configuration for the NuttShell (NSH, see the
<a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH User Guide</a>) as well as several other configurations.
</li>
<li><b>NuttX-6.13-6.16</b>
Additional drivers and configurations were added in NuttX 6.13-6.16.
Drivers include an Ethernet driver, ADC driver, DAC driver, PWM driver, CAN driver, F4 RTC driver, Quadrature Encoder, DMA, SDIO with DMA
(these should all be compatible with the STM32 F2 family and many should also be compatible with the STM32 F1 family as well).
</li>
<li><b>NuttX-6.16</b>
The NuttX 6.16 release also includes and logic for saving/restoring F4 FPU registers in context switches.
Networking intensions include support for Telnet NSH sessions and new configurations for DHPCD and the networking test (nettest).
</li>
<li><b>NuttX-6.17</b>
The USB OTG device controller driver, and LCD driver and a function I2C driver were added in NuttX 6.17.
</li>
<li><b>NuttX-6.18</b>
STM32 IWDG and WWDG watchdog timer drivers were added in NuttX 6.18 (should be compatible with F1 and F2).
An LCD driver and a touchscreen driver for the STM3240G-EVAL based on the STMPE811 I/O expander were also added in NuttX 6.18.
</li>
<li><b>NuttX-6.21</b>
A USB OTG host controller driver was added in NuttX 6.21.
</li>
<li>
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/stm3240g-eval/README.txt">README</a> file for further information.
</li>
</ul>
</p>
<p>
<b>STMicro STM32F4-Discovery</b>.
This port uses the STMicro STM32F4-Discovery board featuring the STM32F407VGT6 MCU.
The STM32F407VGT6 is a 168MHz Cortex-M4 operation with 1Mbit Flash memory and 128kbytes.
The board features:
</p>
<ul>
<li>On-board ST-LINK/V2 for programming and debugging,</li>
<li>LIS302DL, ST MEMS motion sensor, 3-axis digital output accelerometer,</li>
<li>MP45DT02, ST MEMS audio sensor, omni-directional digital microphone,</li>
<li>CS43L22, audio DAC with integrated class D speaker driver,</li>
<li>Eight LEDs and two push-buttons,</li>
<li>USB OTG FS with micro-AB connector, and</li>
<li>Easy access to most MCU pins.</li>
</ul>
<p>
Refer to the <a href="http://www.st.com/internet/evalboard/product/252419.jsp">STMicro web site</a> for further information about this board and to
</p>
<ul>
<p>
<b>STATUS:</b>
The basic port for the STM32F4-Discovery was contributed by Mike Smith and was first released in NuttX-6.14.
All drivers listed for the STM3240G-EVAL are usable on this plaform as well.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/stm32f4discovery/README.txt">README</a> file for further information.
</p>
</ul>
<p>
<b>MikroElektronika Mikromedia for STM32F4</b>.
This is another board supported by NuttX that uses the same STM32F407VGT6 MCU as does the STM32F4-Discovery board.
This board, however, has very different on-board peripherals than does the STM32F4-Discovery:
</p>
<ul>
<li>TFT display with touch panel,</li>
<li>VS1053 stereo audio codec with headphone jack,</li>
<li>SD card slot,</li>
<li>Serial FLASH memory,</li>
<li>USB OTG FS with micro-AB connector, and</li>
<li>Battery connect and batter charger circuit.</li>
</ul>
<p>
See the <a href="http://www.mikroe.com/mikromedia/stm32-m4/">Mikroelektronika</a> website for more information about this board and the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/mikroe-stm32f4/README.txt">README</a> file for further information about the NuttX port.
</p>
<ul>
<p>
<b>STATUS:</b>
The basic port for the Mikromedia STM32 M4 was contributed by Ken Petit and was first released in NuttX-6.128.
All drivers for the STM32 F4 family may be used with this board as well.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="stm32f427x"><b>STMicro STM32 F427/437</b>.</a>
General architectural support was provided for the F427/437 family in NuttX 4.27.
Specific support includes the STM32F427I, STM32F427Z, and STM32F427V chips.
This is <i>architecture-only</i> support, meaning that support for the boards with these chips is available, but not support for any publically available boards is included..
This support was contributed by Mike Smith.
</p>
<p>
The F427/f37 port adds (1) additional SPI ports, (2) additional UART ports, (3) analog and digital noise filters on the I2C ports, (4) up to 2MB of flash, (5) an additional lower-power mode for the internal voltage regulator, (6) a new prescaling option for timer clock, (7) a larger FSMSC write FIFO, and (8) additional crypto modes (F437 only).
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="nxplpc43xx"><b>NXG Technologies LPC4330-Xplorer</b>.</a>
This NuttX port is for the LPC4330-Xplorer board from NGX Technologies featuring the NXP LPC4330FET100 MCU.
See the <a href="http://shop.ngxtechnologies.com/product_info.php?cPath=21_37&products_id=104">NXG website</a> for further information about this board.
</p>
<p>
<b>STATUS:</b>
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/lpc4330-xplorer/README.txt">README</a> file for more detailed information about this port.
</p>
<ul>
<li>
<p><b>NuttX-6.20</b>
The basic port is complete.
The OS test configuration and the basic NSH configurations are present and fully verified.
This includes verified support for: SYSTICK system time, pin and GPIO configuration, and a serial console.
</p>
<p>
Several drivers have been copied from the related LPC17xx port but require integration into the LPC43xx: ADC, DAC, GPDMA, I2C, SPI, and SSP.
The registers for these blocks are the same in both the LPC43xx and the LPC17xx and they should integrate into the LPC43xx very easily by simply adapting the clocking and pin configuration logic.
</p>
<p>
Other LPC17xx drivers were not brought into the LPC43xx port because these peripherals have been completely redesigned: CAN, Ethernet, USB device, and USB host.
</p>
<p>
So then there is no support for the following LPC43xx peripherals: SD/MMC, EMC, USB0,USB1, Ethernet, LCD, SCT, Timers 0-3, MCPWM, QEI, Alarm timer, WWDT, RTC, Event monitor, and CAN.
</p>
<p>
Some of these can be leveraged from other MCUs that appear to support the same peripheral IP:
<ul>
<li>
The LPC43xx USB0 peripheral appears to be the same as the USB OTG peripheral for the LPC31xx.
The LPC31xx USB0 device-side driver has been copied from the LPC31xx port but also integration into the LPC43xx (clocking and pin configuration).
It should be possible to complete poriting of this LPC31xx driver with a small porting effort.
</li>
<li>
The Ethernet block looks to be based on the same IP as the STM32 Ethernet and, as a result, it should be possible to leverage the NuttX STM32 Ethernet driver with a little more effort.
</li>
</ul>
</p>
</li>
<li>
<p><b>NuttX-6.21</b>
Added support for a SPIFI block driver and for RS-485 option to the serial driver.
</li>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="tilm4f120x"><b>TI Stellaris LM4F120</b>.</a>
This port uses the TI Stellaris LM4F120 LaunchPad.
Jose Pablo Carballo and I are doing this port.
</p>
<ul>
<p>
<b>STATUS:</b>
As of this writing, the basic port is code complete and fully verified configurations exist for the basic NuttX OS test and for the NuttShell <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH</a>).
The first fully functional LM4F120 LaunchPad port was released in NuttX-6.27.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="at91sam4l"><b>Atmel AT91 SAM4L</b>.</a>
This port uses the Atmel SAM4L Xplained Pro development board.
This board features the ATSAM4LC4C MCU running at 48MHz with 256KB of FLASH and 32KB of internal SRAM.
</p>
<ul>
<p>
<b>STATUS:</b>
As of this writing, the basic port is code complete and fully verified configurations exist for the basic NuttX OS test and for the NuttShell <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH</a>).
The first fully functional SAM4L Xplained Pro port was released in NuttX-6.28.
Support for the SAM4L Xplained modules was added in NuttX-6.29:
</p>
<ul>
<li>
Support for the SPI-based SD card on the I/O1 module.
</li>
<li>
Driver for the LED1 segment LCD module.
</li>
<li>
Support for the UG-2832HSWEG04 OLED on the SAM4L Xplained Pro's OLED1 module
</li>
</ul>
</p>
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/sam4l-xplained/README.txt">README</a> file for further information.
</p>
<p>
<b>Memory Usage</b>.
The ATSAM4LC4C comes in a 100-pin package and has 256KB FLASH and 32KB of SRAM.
Below is the current memory usage for the NSH configuration (June 9, 2013).
This is <i>not</i> a minimal implementation, but a full-featured NSH configuration.
</p>
<p>
Static memory usage can be shown with <code>size</code> command:
</p>
<ul><pre>
$ size nuttx
text data bss dec hex filename
43572 122 2380 46074 b3fa nuttx
</pre></ul>
<p>
NuttX, the NSH application, and GCC libraries use 42.6KB of FLASH leaving 213.4B of FLASH (83.4%) free from additional application development.
Static SRAM usage is about 2.3KB (&lt;7%) and leaves 29.7KB (92.7%) available for heap at runtime.
</p>
SRAM usage at run-time can be shown with the NSH <code>free</code> command.
This runtime memory usage includes the static memory usage <i>plus</i> all dynamic memory allocation for things like stacks and I/O buffers:
<ul><pre>
NuttShell (NSH) NuttX-6.28
nsh> free
total used free largest
Mem: 29232 5920 23312 23312
</pre></ul>
<p>
You can see that 22.8KB (71.1%) of the SRAM heap is staill available for further application development while NSH is running.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="at91sam4s"><b>Atmel AT91SAM4S</b>.</a>
This port uses the Atmel SAM4S Xplained development board.
This board features the ATSAM4S16C MCU running at 120MHz with 1MB of FLASH and 128KB of internal SRAM.
</p>
<ul>
<p>
<b>STATUS:</b>
As of this writing, the basic port is code complete and fully verified configurations exist for the basic NuttX OS test and for the NuttShell <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH</a>).
The first fully functional SAM4S Xplained port was released in NuttX-6.28.
Support for the on-board 1MB SRAM was added in NuttX-6.29.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/sam4s-xplained/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin/MSYS with Cygwin GNU Cortex-M3 or 4 toolchain, 3) Cygwin/MSYS with Windows native GNU Cortex-M3 or M4 toolchain (CodeSourcery or devkitARM), or 4) Native Windows. A DIY toolchain for Linux or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a> package.
I use FreeScale's <i>CodeWarrior</i> IDE only to work with the JTAG debugger built into the Kinetis boards.
I use the <i>Code Red</i> IDE with the some of the NXP parts and the <i>Atollic</i> toolchain with some of the STMicroelectronics parts.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="atmelavr"><b>Atmel AVR</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="avratmega128"><b>SoC Robotics ATMega128</b>.</a>
This port of NuttX to the Amber Web Server from <a href="http://www.soc-robotics.com/index.htm">SoC Robotics</a>
is partially completed.
The Amber Web Server is based on an Atmel ATMega128.
</p>
<ul>
<p>
<b>STATUS:</b>
Work on this port has stalled due to toolchain issues. Complete, but untested
code for this port appears in the NuttX 6.5 release.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/amber/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="avrat90usbxxx"><b>AVR AT90USB64x</b> and <b>AT90USB6128x</b>.</a>
</p>
<ul>
<p>
<b>Micropendous 3 AT90USB64x</b> and <b>AT90USB6128x</b>.
This port of NuttX to the Opendous Micropendous 3 board. The Micropendous3 is
may be populated with an AT90USB646, 647, 1286, or 1287. I have only the AT90USB647
version for testing. This version have very limited memory resources: 64K of
FLASH and 4K of SRAM.
</p>
<ul>
<p>
<b>STATUS:</b>
The basic port was released in NuttX-6.5. This basic port consists only of
a &quot;Hello, World!!&quot; example that demonstrates initialization of the OS,
creation of a simple task, and serial console output.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/micropendous3/README.txt">README</a> file for further information.
</p>
</ul>
<p>
<b>PJRC Teensy++ 2.0 AT90USB1286</b>.
This is a port of NuttX to the PJRC Teensy++ 2.0 board.
This board was developed by <a href="http://pjrc.com/teensy/">PJRC</a>.
The Teensy++ 2.0 is based on an Atmel AT90USB1286 MCU.
</p>
<ul>
<p>
<b>STATUS:</b>
The basic port was released in NuttX-6.5. This basic port consists of
a &quot;Hello, World!!&quot; example that demonstrates initialization of the OS,
creation of a simple task, and serial console output as well as a somewhat
simplified NuttShell (NSH) configuration (see the
<a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH User Guide</a>).
</p>
<p>
An SPI driver and a USB device driver exist for the AT90USB as well
as a USB mass storage configureation. However, this configuration is not
fully debugged as of the NuttX-6.5 release.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/teensy/README.txt">README</a> file for further information.
</p>
</ul>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p><b>AVR-Specific Issues</b>.
The basic AVR port is solid and biggest issue for using AVR is its tiny SRAM memory and its Harvard architecture.
Because of the Harvard architecture, constant data that resides to flash is inaccessible using &quot;normal&quot; memory reads and writes (only SRAM data can be accessed &quot;normally&quot;).
Special AVR instructions are available for accessing data in FLASH, but these have not been integrated into the normal, general purpose OS.
</p>
<p>
Most NuttX test applications are console-oriented with lots of strings used for printf and debug output.
These strings are all stored in SRAM now due to these data accessing issues and even the smallest console-oriented applications can quickly fill a 4-8K memory.
So, in order for the AVR port to be useful, one of two things would need to be done:
</p>
<ol>
<li>
Don't use console applications that required lots of strings.
The basic AVR port is solid and your typical deeply embedded application should work fine.
Or,
</li>
<li>
Create a special version of printf that knows how to access strings that reside in FLASH (or EEPROM).
</li>
</ol>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin/MSYS with Cygwin GNU toolchain, 3) Cygwin/MSYS with Windows native toolchain, or 4) Native Windows.
All testing, however, has been performed using the NuttX DIY toolchain for Linux or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a> package.
As a result, that toolchain is recommended.
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><br></td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="atmelavr32"><b>Atmel AVR32</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="at32uc3bxxx"><b>AV32DEV1</b>.</a>
This port uses the www.mcuzone.com AVRDEV1 board based on the Atmel AT32UC3B0256 MCU.
This port requires a special GNU avr32 toolchain available from atmel.com website.
This is a windows native toolchain and so can be used only under Cygwin on Windows.
</p>
<ul>
<p>
<b>STATUS:</b>
This port is has completed all basic development, but there is more that needs to be done.
All code is complete for the basic NuttX port including header files for all AT32UC3* peripherals.
The untested AVR32 code was present in the 5.12 release of NuttX.
Since then, the basic RTOS port has solidified:
</p>
<ul>
<li>
The port successfully passes the NuttX OS test (apps/examples/ostest).
</li>
<li>
A NuttShell (NSH) configuration is in place (see the <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH User Guide</a>).
Testing of that configuration has been postponed (because it got bumped by the Olimex LPC1766-STK port).
Current Status: I think I have a hardware problem with my serial port setup.
There is a good chance that the NSH port is complete and functional, but I am not yet able to demonstrate that.
At present, I get nothing coming in the serial RXD line (probably because the pins are configured wrong or I have the MAX232 connected wrong).
</li>
</ul>
<p>
The basic, port (including the verified apps/examples/ostest configuration) was be released in NuttX-5.13.
A complete port will include drivers for additional AVR32 UC3 devices -- like SPI and USB --- and will be available in a later release,
time permitting.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/avr32dev1/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="m68hcs12"><b>Freescale M68HCS12</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>MC9S12NE64</b>.
Support for the MC9S12NE64 MCU and two boards are included:
</p>
<ul>
<li>
The Freescale DEMO9S12NE64 Evaluation Board, and
</li>
<li>
The Future Electronics Group NE64 /PoE Badge board.
</li>
</ul>
<p>
Both use a GNU arm-nuttx-elf toolchain* under Linux or Cygwin.
The NuttX <a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a> provides a properly patched GCC 3.4.4 toolchain that is highly optimized for the m9s12x family.
</p>
<ul>
<p>
<b>STATUS:</b>
Coding is complete for the MC9S12NE64 and for the NE64 Badge board.
However, testing has not yet begun due to issues with BDMs, Code Warrior, and
the paging in the build process.
Progress is slow, but I hope to see a fully verified MC9S12NE64 port in the near future.
Refer to the NuttX board README files for <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/demo9s12ne64/README.txt">DEMO9S12NE64</a> and for the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/ne64badge/README.txt">NE64 /PoE Badge</a> for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="80x52"><b>Intel 80C52 Microcontroller</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>PJRC 87C52 Development Board</b>.
This port uses the <a href="http://www.pjrc.com/">PJRC</a> 87C52 development system
and the <a href="http://sdcc.sourceforge.net/">SDCC</a> toolchain under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port is complete but not stable with timer interrupts enabled.
There seems to be some issue when the stack pointer enters into the indirect IRAM
address space during interrupt handling.
This architecture has not been built in some time will likely have some compilation
problems because of SDCC compiler differences.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/pjrc-8051/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="80x86"><b>Intel 80x86</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>QEMU/Bifferboard i486</b>.
This port uses the <a href="http://wiki.qemu.org/Main_Page">QEMU</a> i486 and the native
Linux, Cywgin, MinGW the GCC toolchain under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
The basic port was code-complete in NuttX-5.19 and verifed in NuttX-6.0.
The port was verified using the OS and NuttShell (NSH) examples under QEMU.
The port is reported to be functional on the <a href="http://bifferos.bizhat.com">Bifferboard</a> as well.
This is a great, stable starting point for anyone interest in fleshing out the x86 port!
Refer to the NuttX <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/qemu-i486/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>RGMP</b>.
RGMP stands for RTOS and GPOS on Multi-Processor.
RGMP is a project for running GPOS and RTOS simultaneously on multi-processor platforms
You can port your favorite RTOS to RGMP together with an unmodified Linux to form a hybrid operating system.
This makes your application able to use both RTOS and GPOS features.
</p>
<p>
See the <a href="http://rgmp.sourceforge.net/wiki/index.php/Main_Page">RGMP Wiki</a> for further information about RGMP.
</p>
<ul>
<p>
<b>STATUS:</b>
This initial port of NuttX to RGMP was provided in NuttX-6.3.
This initial RGP port provides only minimal driver support and does not use the native NuttX interrupt system.
This is a great, stable starting point for anyone interest in working with NuttX under RGMP!
Refer to the NuttX <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/rgmp/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="pic32mips"><b>MicroChip PIC32 (MIPS)</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="pic32mx2xx"><b>PIC32MX250F128D</b>.</a>
A port is in progress from the DTX1-4000L &quot;Mirtoo&quot; module from <a href="http://www.dimitech.com/" >Dimitech</a>.
This module uses MicroChip PIC32MX250F128D and the Dimitech DTX1-4000L EV-kit1 V2.
See the <a href="http://www.dimitech.com/">Dimitech</a> website for further information.
</p>
<ul>
<p>
<b>STATUS:</b>
The basic port is code complete.
Two configurations are available:
(1) An OS test configuration and a (2) configuration that support the NuttShell (NSH).
The OS test configuration is fully functional and proves that we have a basically healthy NuttX port to the Mirtoo.
The NSH configuration includes support for a serial console and for the SST25 serial FLASH and the PGA117 amplifier/multiplexer on board the module.
The NSH configuration is set up to use the NuttX wear-leveling FLASH file system (NXFFS).
The PGA117, however, is not yet fully integrated to support ADC sampling.
See the <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH User Guide</a> for further information about NSH.
The first verified port to the Mirtoo module was available with the NuttX 6.20 release.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/mirtoo/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="pic32mx4xx"><b>PIC32MX4xx Family</b>.</a>
</p>
<ul>
<p>
<b>PIC32MX440F512H</b>.
This port uses the &quot;Advanced USB Storage Demo Board,&quot; Model DB-DP11215, from <a href="http://www.sureelectronics.net">Sure Electronics</a>.
This board features the MicroChip PIC32MX440F512H.
See the <a href="http://www.sureelectronics.net/goods.php?id=1168">Sure website</a> for further information about the DB-DP11215 board.
(I believe that that the DB-DP11215 may be obsoleted now but replaced with the very similar, DB-DP11212.
The DB-DP11212 board differs, I believe, only in its serial port configuration.)
</p>
<ul>
<p>
<b>STATUS:</b>
This NuttX port is code complete and has considerable test testing.
The port for this board was completed in NuttX 6.11, but still required a few bug fixes before it will be ready for prime time.
The fully verified port first appeared in NuttX 6.13.
Available configurations include the OS test and the NuttShell (NSH - see the <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH User Guide</a>).
An untested USB device-side driver is available in the source tree.
A more complete port would include support of the USB OTG port and of the LCD display on this board.
Those drivers are not yet available as of this writing.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/sure-pic32mx/README.txt">README</a> file for further information.
</p>
</ul>
<p>
<b>PIC32MX460F512L</b>.
There one two board ports using this chip:
</p>
<ul>
<li><b>PIC32MX Board from PCB Logic Design Co</b>.
This port is for the PIC32MX board from PCB Logic Design Co. and used the PIC32MX460F512L.
The board is a very simple -- little more than a carrier for the PIC32 MCU plus voltage regulation, debug interface, and an OTG connector.
</li>
<p>
<b>STATUS:</b>
The basic port is code complete and fully verified in NuttX 6.13.
Available configurations include the OS test and the NuttShell (NSH - see the <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH User Guide</a>).
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/pcblogic-pic32mx/README.txt">README</a> file for further information.
</p>
<li><b>UBW32 Board from Sparkfun</b>
This is the port to the Sparkfun UBW32 board.
This port uses the <a href="http://www.sparkfun.com/products/8971">original v2.5</a> board which is based on the MicroChip PIC32MX460F512L.
This older version has been replaced with this <a href="http://www.sparkfun.com/products/9713">newer board</a>.
See also the <a href="http://www.schmalzhaus.com/UBW32/">UBW32</a> web site.
</li>
<p>
<b>STATUS:</b>
The basic port is code complete and fully verified in NuttX 6.18.
Available configurations include the OS test and the NuttShell (NSH - see the <a href="http://www.nuttx.org/Documentation/NuttShell.html">NSH User Guide</a>).
USB has not yet been fully tested but on first pass appears to be functional.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/ubw32/README.txt">README</a> file for further information.
</p>
</ul>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<a name="pic32mx7xx"><b>PIC32MX795F512L</b>.</a>
There one two board ports using this chip:
</p>
<ul>
<li><b>Microchip PIC32 Ethernet Starter Kit</b>.
This port uses the Microchip PIC32 Ethernet Starter Kit (DM320004) with the Expansion I/O board.
See the <a href="http://ww.microchip.com">Microchip website</a> for further information.
</li>
<p>
<b>STATUS:</b>
This port was started and then shelved for some time until I received the Expansion I/O board.
The basic Starter Kit (even with the Multimedia Expansion Board, MEB, DM320005)) has no serial port and most NuttX test configurations depend heavily on console output.
</p>
<p>
Verified configurations for the OS test and the NuttShel (NSH) appeared in NuttX-6.16.
Board support includes a verified USB (device-side) driver.
Also included are a a verified Ethernet driver, a partially verified USB device controller driver, and an unverifed SPI driver.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/pic32-starterkit/README.txt">README</a> file for further information.
</p>
<li><b>Mikroelektronika PIC32MX7 Mulitmedia Board (MMB)</b>.
A port has been completed for the Mikroelektronika PIC32MX7 Multimedia Board (MMB).
See http://www.mikroe.com/ for further information about this board.
</li>
<p>
<b>STATUS:</b>
Two verified configurations are available:
(1) The basic OS test configuration that verfies the correctness port of NuttX, and (2) an extensive <a href="NuttShell.html">NuttShell (NSH)</a> configuration.
The NSH configuration includes:
(1) Full network support,
(2) Verified SPI driver,
(3) SPI-based SD Card support,
(4) USB device support (including configuration options for the USB mass storage device and the CDC/ACM serial class), and
(5) Support for the MIO873QT2 LCD on the PIC32MX7 MMB.
</p>
</p>
The PIC32MX7 MMB's touchscreen is connected directly to the MCU via ADC pins.
A touchscreen driver has been developed using the PIC32's ADC capabilities and can be enabled in the NSH configuration.
However, additional verification and tuning of this driver is required.
Further display/touchscreen verification would require C++ support (for NxWidgets and NxWM).
Since I there is no PIC32 C++ is the free version of the MPLAB C32 toolchain, further graphics development is stalled.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/pic32mx7mmb/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Development Environment:</b>
These ports uses either:
</p>
<ol>
<li>
The <i>LITE</i> version of the PIC32MX toolchain available
for download from the <a href="http://www.microchip.com">MicroChip</a> website, or
</li>
<li>
The Pinguino MIPS ELF toolchain avaiable from the Pinquino <a href="http://code.google.com/p/pinguino32/downloads/list">website</a>.
</li>
</ol>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="superh"><b>Renesas/Hitachi SuperH</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>SH-1 SH7032</b>.
This port uses the Hitachi SH-1 Low-Cost Evaluation Board (SH1_LCEVB1), US7032EVB,
with a GNU ELF toolchain* under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port is available as of release 0.3.18 of NuttX. The port is basically complete
and many examples run correctly. However, there are remaining instabilities that
make the port un-usable. The nature of these is not understood; the behavior is
that certain SH-1 instructions stop working as advertised. This could be a silicon
problem, some pipeline issue that is not handled properly by the gcc 3.4.5 toolchain
(which has very limit SH-1 support to begin with), or perhaps with the CMON debugger.
At any rate, I have exhausted all of the energy that I am willing to put into this cool
old processor for the time being.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/us7032evb1/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="m16c"><b>Renesas M16C/26</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Renesas M16C/26 Microcontroller</b>.
This port uses the Renesas SKP16C26 Starter kit and the GNU M32C toolchain.
The development environment is either Linux or Cygwin under WinXP.
</p>
<ul>
<p>
<b>STATUS:</b>
Initial source files released in nuttx-0.4.2.
At this point, the port has not been integrated; the target cannot be built
because the GNU <code>m16c-nuttx-elf-ld</code> link fails with the following message:
</p>
<ul>
<code>m32c-nuttx-elf-ld: BFD (GNU Binutils) 2.19 assertion fail /home/Owner/projects/nuttx/buildroot/toolchain_build_m32c/binutils-2.19/bfd/elf32-m32c.c:482</code>
</ul>
<p>Where the reference line is:</p>
<ul><pre>
/* If the symbol is out of range for a 16-bit address,
we must have allocated a plt entry. */
BFD_ASSERT (*plt_offset != (bfd_vma) -1);
</pre></ul>
<p>
No workaround is known at this time. This is a show stopper for M16C.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/skp16c26/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="zilogz16f"><b>Zilog Z16F</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Zilog z16f Microcontroller</b>.
This port use the Zilog z16f2800100zcog development kit and the Zilog
ZDS-II Windows command line tools.
The development environment is either Windows native or Cygwin under Windows.
</p>
<ul>
<p>
<b>STATUS:</b>
The initial release of support for the z16f was made available in NuttX version 0.3.7.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/z16f2800100zcog/README.txt">README</a> file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="zilogez80acclaim"><b>Zilog eZ80 Acclaim!</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Zilog eZ80Acclaim! Microcontroller</b>.
There are two eZ80Acclaim! ports:
</p>
<ul>
<li>One uses the ZiLOG ez80f0910200kitg development kit, and
<li>The other uses the ZiLOG ez80f0910200zcog-d development kit.
</ul>
<p>
Both boards are based on the eZ80F091 part and both use the Zilog ZDS-II
Windows command line tools.
The development environment is either Windows native or Cygwin under Windows.
</p>
<ul>
<p>
<b>STATUS:</b>
Integration and testing of NuttX on the ZiLOG ez80f0910200zcog-d is complete.
The first integrated version was released in NuttX version 0.4.2 (with important early bugfixes
in 0.4.3 and 0.4.4).
As of this writing, that port provides basic board support with a serial console, SPI, and eZ80F91 EMAC driver.
Refer to the NuttX board README files for the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/ez80f910200kitg/README.txt">ez80f0910200kitg</a> and <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/ez80f910200zco/README.txt">ez80f910200zco</a>file for further information.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="zilogz8encore"><b>Zilog Z8Encore!</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Zilog Z8Encore! Microcontroller</b>.
This port uses the either:
</p>
<ul>
<li>Zilog z8encore000zco development kit, Z8F6403 part, or</li>
<li>Zilog z8f64200100kit development kit, Z8F6423 part</li>
</ul>
<p>
and the Zilog ZDS-II Windows command line tools.
The development environment is either Windows native or Cygwin under Windows.
</p>
<ul>
<p>
<b>STATUS:</b>
This release has been verified only on the ZiLOG ZDS-II Z8Encore! chip simulation
as of nuttx-0.3.9.
Refer to the NuttX board README files for the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/z8encore000zco/README.txt">z8encore000zco</a> and for the<a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/z8f64200100kit/README.txt">z8f64200100kit</a> for further information.
</p>
<ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="zilogz180"><b>Zilog Z180</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>P112</b>.
The P112 is a hobbyist single board computer based on a 16MHz Z80182 with up to 1MB of memory, serial,
parallel and diskette IO, and realtime clock, in a 3.5-inch drive form factor..
The P112 computer originated as a commercial product of &quot;D-X Designs Pty Ltd&quot[ of Australia.
</p>
</p>
Dave Brooks was successfully funded through Kickstarter for and another run of P112 boards in November of 2012.
In addition Terry Gulczynski makes additional P112 derivative hobbyist home brew computers.
</p>
<ul>
<p>
<b>STATUS:</b>
Most of the NuttX is in port for both the Z80182 and for the P112 board.
Boards from Kickstarter project will not be available, however, until the third quarter of 2013.
So it will be some time before this port is verified on hardware.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/p112/README.txt">README</a> file for further information.
</p>
<ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<a name="zilogz80"><b>Zilog Z80</b>.</a>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Z80 Instruction Set Simulator</b>.
This port uses the <a href="http://sdcc.sourceforge.net/">SDCC</a> toolchain
under Linux or Cygwin (verified using version 2.6.0).
This port has been verified using only a Z80 instruction simulator.
That simulator can be found in the NuttX GIT
<a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/misc/sims/z80sim/">here</a>.
</p>
<ul>
<p>
<b>STATUS:</b>
This port is complete and stable to the extent that it can be tested
using an instruction set simulator.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/z80sim/README.txt">README</a> file for further information.
</p>
<ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>XTRS: TRS-80 Model I/III/4/4P Emulator for Unix</b>.
A very similar Z80 port is available for <a href="http://www.tim-mann.org/xtrs.html">XTRS</a>,
the TRS-80 Model I/III/4/4P Emulator for Unix.
That port also uses the <a href="http://sdcc.sourceforge.net/">SDCC</a> toolchain
under Linux or Cygwin (verified using version 2.6.0).
</p>
<ul>
<p>
<b>STATUS:</b>
Basically the same as for the Z80 instruction set simulator.
This port was contributed by Jacques Pelletier.
Refer to the NuttX board <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/configs/xtrs/README.txt">README</a> file for further information.
</p>
<ul>
</td>
</tr>
</table></center>
<blockquote>* A highly modified <a href="http://buildroot.uclibc.org/">buildroot</a>
is available that may be used to build a NuttX-compatible ELF toolchain under
Linux or Cygwin. Configurations are available in that buildroot to support ARM, Cortex-M3,
avr, m68k, m68hc11, m68hc12, m9s12, blackfin, m32c, h8, and SuperH ports.</blockquote>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="environments"><h1>Development Environments</h1></a>
</td>
</tr>
</table>
<center><table width="90%">
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Linux + GNU <code>make</code> + GCC/binutils for Linux</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
The is the most natural development environment for NuttX.
Any version of the GCC/binutils toolchain may be used.
There is a highly modified <a href="http://buildroot.uclibc.org/">buildroot</a>
available for download from the
<a href="http://sourceforge.net/projects/nuttx/files/">NuttX SourceForge</a>
page.
This download may be used to build a NuttX-compatible ELF toolchain under Linux or Cygwin.
That toolchain will support ARM, m68k, m68hc11, m68hc12, and SuperH ports.
The buildroot GIT may be accessed in the
<a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/misc/buildroot/">NuttX GIT</a>.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Linux + GNU <code>make</code> + SDCC for Linux</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
Also very usable is the Linux environment using the
<a href="http://sdcc.sourceforge.net/">SDCC</a> compiler.
The SDCC compiler provides support for the 8051/2, z80, hc08, and other microcontrollers.
The SDCC-based logic is less well exercised and you will likely find some compilation
issues if you use parts of NuttX with SDCC that have not been well-tested.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Windows with Cygwin + GNU <code>make</code> + GCC/binutils (custom built under Cygwin)</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
This combination works well too.
It works just as well as the native Linux environment except that compilation and build times are a little longer.
The custom NuttX <a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a> referenced above may be build in the Cygwin environment as well.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Windows with Cygwin + GNU <code>make</code> + SDCC (custom built under Cygwin)</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
I have never tried this combination, but it would probably work just fine.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Windows with Cygwin + GNU <code>make</code> + Windows Native Toolchain</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
This is a tougher environment.
In this case, the Windows native toolchain is unaware of the
Cygwin <i>sandbox</i> and, instead, operates in the native Windows environment.
The primary difficulties with this are:
</p>
<ul>
<li>
<b>Paths</b>.
Full paths for the native toolchain must follow Windows standards.
For example, the path <code>/home/my\ name/nuttx/include</code> my have to be
converted to something like <code>'C:\cygwin\home\my name\nuttx\include'</code>
to be usable by the toolchain.
</li>
<p>
Fortunately, this conversion is done simply using the <code>cygpath</code> utility.
</p>
<li>
<b>Symbolic Links</b>
NuttX depends on symbolic links to install platform-specific directories in the build system.
On Linux, true symbolic links are used.
On Cygwin, emulated symbolic links are used.
Unfortunately, for native Windows applications that operate outside of the
Cygwin <i>sandbox</i>, these symbolic links cannot be used.
</li>
<p>
The NuttX make system works around this limitation by copying the platform
specific directories in place.
These copied directories make work a little more complex, but otherwise work well.
</p>
<p><small>
NOTE: In this environment, it should be possible to use the NTFS <code>mklink</code> command to create links.
This should only require a minor modification to the build scripts (see <code>tools/copydir.sh</code> script).
</small></p>
<li>
<b>Dependencies</b>
NuttX uses the GCC compiler's <code>-M</code> option to generate make dependencies. These
dependencies are retained in files called <code>Make.deps</code> throughout the system.
For compilers other than GCC, there is no support for making dependencies in this way.
For Windows native GCC compilers, the generated dependencies are windows paths and not
directly usable in the Cygwin make. By default, dependencies are surpressed for these
compilers as well.
</li>
<p><small>
NOTE: dependencies are suppress by setting the make variable <code>MKDEPS</code> to point
to the do-nothing dependency script, <code>tools/mknulldeps.sh</code>.
</small></p>
</ul>
<p>
<b>Supported Windows Native Toolchains</b>.
At present, the following Windows native toolchains are in use:
<ol>
<li>GCC built for Windows (such as CodeSourcery, Atollic, devkitARM, etc.),</li>
<li>SDCC built for Windows,</li>
<li> the ZiLOG XDS-II toolchain for Z16F, z8Encore, and eZ80Acclaim parts.</li>
</ol>
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Windows Native (<code>CMD.exe</code>) + GNUWin32 (including GNU <code>make</code>) + MinGW Host GCC compiler + Windows Native Toolchain</b>
</td>
</tr>
<td><br></td>
<td>
<p>
Build support has been added to support building natively in a Windows console rather than in a POSIX-like environment.
</p>
<p>
This build:
</p>
<ol>
<li>Uses all Windows style paths</li>
<li>Uses primarily Windows batch commands from cmd.exe, with</li>
<li>A few extensions from GNUWin32</li>
</ol>
<p>
This capability first appeared in NuttX-6.24 and should still be considered a work in progress because: (1) it has not been verfied on all targets and tools, and (2) still lacks some of the creature-comforts of the more mature environments.
The windows native build logic initiatiated if <code>CONFIG_WINDOWS_NATIVE=y</code> is defined in the NuttX configuration file:
</p>
<p>
At present, this build environment also requires:
</p>
<ul>
<li>
<b>Windows Console</b>.
The build must be performed in a Windows console window.
This may be using the standard <code>CMD.exe</code> terminal that comes with Windows.
I prefer the ConEmu terminal which can be downloaded from:
http://code.google.com/p/conemu-maximus5/
</li>
<li>
<b>GNUWin32</b>.
The build still relies on some Unix-like commands.
I usethe GNUWin32 tools that can be downloaded from http://gnuwin32.sourceforge.net/.
See the top-level <code>nuttx/README.txt</code> file for some download, build, and installation notes.
</li>
<li>
<b>MinGW-GCC</b>.
MinGW-GCC is used to compiler the C tools in the <code>nuttx/tools</code> directory that are neede by the build.
MinGW-GCC can be downloaded from http://www.mingw.org/.
If you are using GNUWin32, then it is recommendedthe you not install the optional MSYS components as there may be conflicts.
</li>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Wine + GNU <code>make</code> + Windows Native Toolchain</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
I've never tried this one, but I off the following reported by an ez80 user using the ZiLOG ZDS-II Windows-native toolchain:
</p>
<blockquote>
<p>
&quot;I've installed ZDS-II 5.1.1 (IDE for ez80-based boards) on wine (windows emulator for UNIX) and to my surprise, not many changes were needed to make GIT snapshot of NuttX buildable...
I've tried nsh profile and build process completed successfully.
One remark is necessary: NuttX makefiles for ez80 are referencing <code>cygpath</code> utility.
Wine provides similar thing called <code>winepath</code> which is compatible and offers compatible syntax.
To use that, <code>winepath</code> (which itself is a shell script) has to be copied as <code>cygpath</code> somewhere in <code>$PATH</code>, and edited as in following patch:
</p>
<ul><pre>
# diff -u `which winepath` `which cygpath`
--- /usr/bin/winepath 2011-05-02 16:00:40.000000000 +0200
+++ /usr/bin/cygpath 2011-06-22 20:57:27.199351255 +0200
@@ -20,7 +20,7 @@
#
# determine the app Winelib library name
-appname=`basename "$0" .exe`.exe
+appname=winepath.exe
# first try explicit WINELOADER
if [ -x "$WINELOADER" ]; then exec "$WINELOADER" "$appname" "$@"; fi
</pre></ul>
<p>
&quot;Better solution would be replacing all <code>cygpath</code> references in <code>Makefiles </code> with <code>$(CONVPATH)</code> (or <code>${CONVPATH}</code> in shell scripts) and setting <code>CONVPATH</code> to <code>cygpath</code> or <code>winepath</code> regarding to currently used environment.
</p>
</blockquote>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Other Environments?</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Environment Dependencies</b>.
The primary environmental dependency of NuttX are (1) GNU make,
(2) bash scripting, and (3) Linux utilities (such as cat, sed, etc.).
If you have other platforms that support GNU make or make
utilities that are compatible with GNU make, then it is very
likely that NuttX would work in that environment as well (with some
porting effort). If GNU make is not supported, then some significant
modification of the Make system would be required.
</p>
<p>
<b>MSYS</b>.
I have not used MSYS but what I gather from talking with NuttX users is that MSYS can be used as an alternative to Cygwin in any of the above Cygwin environments.
This is not surprising since MSYS is based on an older version of Cygwin (cygwin-1.3).
MSYS has been modified, however, to interoperate in the Windows environment better than Cygwin and that may be of value to some users.
</p>
<p>
MSYS, however, cannot be used with the native Windows NuttX build because it will invoke the MSYS bash shell instead of the <code>CMD.exe</code> shell.
Use GNUWin32 in the native Windows build envionment.
</p>
</td>
</tr>
</table></center>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="footprint"><h1>Memory Footprint</h1></a>
</td>
</tr>
</table>
<ul>
<p><b>C5471 (ARM7)</b>
The build for this ARM7 target that includes most of the OS features and
a broad range of OS tests. The size of this executable as given by the
Linux <tt>size</tt> command is (3/9/07):
</p>
<pre>
text data bss dec hex filename
53272 428 3568 57268 dfb4 nuttx
</pre>
<p><b>DM320 (ARM9)</b>
This build for the ARM9 target includes a significant subset of OS
features, a filesystem, Ethernet driver, full TCP/IP, UDP and (minimal)
ICMP stacks (via uIP) and a small network test application: (11/8/07,
configuration netconfig, apps/examples/nettest)
</p>
<pre>
text data bss dec hex filename
49472 296 3972 53740 d1ec nuttx
</pre>
<p>
Another build for the ARM9 target includes a minimal OS feature
set, Ethernet driver, full TCP/IP and (minimal) ICMP stacks, and
a small webserver: (11/20/07, configuration uipconfig, apps/examples/uip)
</p>
<pre>
text data bss dec hex filename
52040 72 4148 56260 dbc4 nuttx
</pre>
<p><b>87C52</b>
A reduced functionality OS test for the 8052 target requires only
about 18-19K:
</p>
<pre>
Stack starts at: 0x21 (sp set to 0x20) with 223 bytes available.
Other memory:
Name Start End Size Max
---------------- -------- -------- -------- --------
PAGED EXT. RAM 0 256
EXTERNAL RAM 0x0100 0x02fd 510 7936
ROM/EPROM/FLASH 0x2100 0x6e55 19798 24384
</pre>
</ul>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="licensing"><h1>Licensing</h1></a>
</td>
</tr>
</table>
<ul>
<p>
NuttX is available under the highly permissive
<a href="http://en.wikipedia.org/wiki/BSD_license">BSD license</a>.
Other than some fine print that you agree to respect the copyright
you should feel absolutely free to use NuttX in any environment and
without any concern for jeopardizing any proprietary software that
you may link with it.
</p>
</ul>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="history"><h1>Release History</h1></a>
</td>
</tr>
</table>
<ul>
<p>
ChangeLog snapshots associated with the previous, current, and future release are available below.
</p>
</ul>
<center><table width ="80%">
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="ChangeLog.txt">Change logs for previous NuttX releases</a><br>
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#currentrelease">ChangeLog for the current NuttX releases</a><br>
</td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#pendingchanges">Unreleased changes</a>
</td>
</tr>
</table></center>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="currentrelease">ChangeLog for the Current Release</a>
</td>
</tr>
</table>
<ul><pre>
6.29 2013-07-31 Gregory Nutt &lt;gnutt@nuttx.org&gt;
* arch/arm/src/sam34/chip/sam4l_pinmap.h: Change naming of some pin
configurations to match names used with other SAM part (2013-6-15).
* arch/arm/src/sam34/sam4l_clockconfig.c: Corrected some typos
(2013-6-15).
* configs/sam4l-xplained/src/sam_buttons.c: Eliminate a warning
(2013-6-15).
* configs/sam4l-xplained/src/sam_mmcsd.c, sam_nsh.c, sam_spi.c,
sam3u-ek.h, Kconfig, Makefile, sam4l-xplained.h,
configs/sam4l-xplained/README.txt, and
configs/sam4l-xplained/include/board.h: Add support for the SPI-
based SD card on the I/O1 module (2013-6-15).
* arch/arm/src/sam34/sam_spi.c: Re-architect the SAM3/4 SPI driver
so that is it compatible with the SPI drivers of other MCUs
(2013-6-16).
* configs/sam3u-ek/src/up_touchscreen.c and configs/sam4l-xplained/src/sam_mmcsd.c:
Changed needed because of the above change to the SAM3/4 SPI
interface (2013-6-16).
* drivers/input/ads7843e.c: Remove the wait for the touchscreen busy
bit. I don't see the busy bit changing on the SAM3U-EK board. But
maybe it is not supposed to. From my reading of the ADS7843 spec, it
would not be appropriate to wait for the BUSY bit to de-asserted
anyway (since it is only de-asserted when we read the data)
(2013-6-16).
* configs/sam3u-ek/src/up_touchscreen.c: Fix polarity of the /PENIRQ
signal (it is active low) (2013-6-16).
* configs/sam3u-ek/include/board.h: The SAM3U-EK board now runs at
96MHz. This might have broken some things? (2013-6-17).
* drivers/mmcsd/mmcsd-spi.c: Driver need to make sure that the SPI mode
and data width are correct (2013-6-17).
* arch/arm/src/kinetis/kinetis_tsi.h: Corrections to the Kinetis
(2013-6-18)
* arch/arm/src/sam34/sam_spi.c: Fix SPI mode setting. In the SAM3/4
family, the clock phase control (CPHA) is inverted (NPHA) (2013-6-18).
* arch/arm/src/kl/chip/kl_tsi.h: Freescale KL25Z TSI register
definitions from Alan Carvalho de Assis (2013-6-18).
* configs/freedom-kl25z/src/kl_tsi.c: Example TSI driver for the
Freedom KL25Z board from Alan Carvalho de Assis (2013-6-18).
* arch/arm/src/sam34/sam_spi.c: Correct an incorrect pointer test.
Was checking if the wrong pointer was NULL (2013-6-18).
* arch/arm/src/kl/kl_spi.c and chip/kl_spi.h: Add SPI driver and
register definitions for the Freescale KL25Z (2013-6-19).
* arm/src/sam34/chip/sam4l_lcdca.h: Register definition file for
the SAM4L LCD peripheral (2013-6-19).
* arm/src/sam34/chip/sam_spi.h: SPI register definition file updated
to include a few differences for the SAM4L (2013-6-19)
* arm/src/sam34/chip/sam4l_pdca.h: Add SAM4L PDCA register definition
file; also renamed sam_dmac.* files to sam3u_dmac.* to identify
them as SAM4U/4S only files (2013-6-19).
* configs/freedom-lk25z/src/kl_spi.c: Add the framework for
controlling SPI-related discrete inputs and outputs. Taken from
work by Alan Carvalho de Assis (2013-6-20).
* arch/arm/src/kl/kl_dumpgpio.c: Now compiles (2013-6-20).
* configs/: Several defconfig files were changed that had
CONFIG_HAVE_CXXINITIALIZE=y. Because of recent changes to
apps/examples, these configurations may need to have
CONFIG_EXAMPLES_NSH_CXXINITIALIZE=y so that they behave as they did
before, i.e., so that C++ initializers will be called when NSH starts
up (2013-6-21).
* configs/sam4l-xplained/src/sam_slcd.c: Beginning of a driver for the
LED1 segment LCD module. This driver is incomplete on initial check-
in (2013-6-21).
* drivers/net/enc28j60.c: Change buffer ordering to work around Errata
#5. From Dave (ziggurat29, 2013-6-22).
* configs/sam4l-xplained/src/sam_slcd.c: LED1 segment LCD module is now
functional (2013-6-23).
* drivers/lcd/ssd1306.c and include/nuttx/lcd/ssd1306.h. Renamed
ug-2864hsweg01.c and .h to ssd1306.c and .h. Extended to support the
UG-2832HSWEG04 which is very similar and also based on the SSD1306
controller (2013-6-23).
* configs/sam4l-xplained/src/sam_ug2832hsweg04.c: Add support for the
UG-2832HSWEG04 OLED on the SAM4L Xplained Pro's OLED1 module
(2013-6-23).
* include/debug.h: Added macro DEBUGPANIC for forces crashes when debug
is enabled.
* drivers/lcd/ssd1306.c: Driver now appears to be function for the
UG-2832HSWEG04 in landscape mode (2013-6-24).
* drivers/lcd/ug-2864ambag01.c and ug-9664hswag01.c: Add/updated
support for reverse portrait mode from lessons learned with the
UG-2832HSWEG04. Untested changes! (2013-6-24).
* arch/arm/src/stm32/stm32_ccm.c and .h: Add support for a seperate CCM
heap. This may be useful for segregating allocations for CCM (which
cannot be used for DMA) from other allocations (that may be used used
for DMA) (2013-6-25).
* arch/arm/src/sam32/sam3u_gpio.h: Correct configuration of PIO pins
for SAM4S B and C peripherals (2013-6-26)
* configs/sam4s-xplained/src/sam_sram.c: Added support for on-board
1MB SRAM (2013-6-26).
* arch/arm/include/sam34/chip.h and sam3x_irq.h: Add support for
SAM3X and SAM3A chips (2013-6-26).
* arch/arm/src/sam34/chip/sam3x_vectors.h: Add support for SAM3X/3A
interrupt vectors (2013-6-26).
* arch/arm/src/sam34/sam3x_periphclks.h: Add peripheral clock
controls for the SAM3X/3A (2013-6-26).
* arch/arm/src/sam34/chip/sam3x_memorymap.h: Add SAM3X/3A memory map
(2013-6-26).
* arch/arm/src/sam34/chip/sam3x_pinmap.h: Add SAM3X/3A pin
multi-plexing definitions (2013-6-26).
* arch/arm/src/sam34/sam3x_gpio.h: Add SAM3X/3A gpio encoding
macros. These differ from the SAM3U only in because of the
6 PIOs: PIOA-PIOF (2013-6-26).
* configs/arduino-due: This is an empty directory now with only
a README file in it but this directory will eventually hold a port
for the Arduino Due (2013-6-26).
* arch/arm/src/sam34/Kconfig: Add SAM3X/3A peripherals to the SAM3/4
configuration logic (2013-6-26).
* arch/arm/src and include/ and configs/sam*/: Large rename of all
references to SPI with SPI0. This is because all other SAMs have
only SPI but the 3X/3A have SPI0 and SPI1 (2013-6-26).
* configs/arduino-due: Complete the basic board configuration and
integrate this into the configuration and build system. The Arduino
Due is now ready to begin test (2013-6-17).
* configs/arduino-due/nsh: Add an NSH configuration for the Arduino
Due. Both the OS test and NSH configuration are now functional
(2013-6-28).
* configs/arduino-due/src: Add support for the &quot;L&quot; LED (2013-6-28).
* arch/arm/src/sam34/sam_allocateheap.c: Clocking must be applied
to the SMC module for the 3X and 3A family in order for the NFC
SRAM to be functional (2013-6-28).
* arch/arm/src/sam34/sam3u_gpio.c: Need to disable write
protection before configuring PIO pins.
* configs/sam3u-ek/nsh: The touchscreen is now functional. The above
fix to the sam3u_gpio.c write protection also fixed the touchscreen
problem (2013-6-28).
* confgis/sam3u_ek/nxwm: Created a configuration for the NxWM
window manager for the SAM3U-EK board (2013-6-29).
* drivers/spi and include/nuttx/spi: New sub-directories to hold
SPI-related files. includes/nuttx/spi.h moved to include/nuttx/spi/.;
SPI-related Kconfig info moved from drivers/Kconfig to drivers/spi/kconfig
(2013-7-1).
* drivers/spi/spi_bitbang.c and include/nuttx/spi/spi_bitbang.h: Add
support for a generic bit-bang SPI driver. This checkout is the
common upper-half logic. Still missing the lower half (2013-7-1).
* include/nuttx/spi/spi_bitbang.c: This is the common lower-half bit-
bang SPI logic (2013-7-1).
* configs/arduino-due/src/sam_nsh.c and sam_mmcsd.c: Add NSH customize
initialization. If so configured, initialize the SPI bit bang
interface to the MMC/SD slot on the ITEAD shield (2013-7-1).
* fs/fs_mount.c: Fix compilation error if no file systems are enabled:
Change error to ERROR (2013-7-3).
* arch/arm/src/sam34/sam_gpioirq.c: Fix some errors for interrupts
on ports D-F (2013-7-3).
* /drivers/usbdev/composite.c: Fix a typo in the composite device
driver unitialization logic. DEV1 should be DEV2 in one case
(2013-7-4).
* arch/arm/src/sam34/sam3u_gpio.c: sam_configgpio() must protect
against re-entrancy (2013-7-5).
* libc/misc/lib_crc16.c and include/crc16.h: Add CRC16 support
(2013-7-7).
* arch/arm/src/stm32/stm32_otgfsdev.c: SourceForge bug #16: Fix
to the endpoint allocation logic. Apparently the same endpoint can
be allocated as both an IN or an OUT endpoint. The existing
implementation only supported one allocation, either IN or OUT. This
resulted in failures to allocate enpoints when used with the CDC/ACM +
MSC composite driver (From Chia Cheng Tsao, 2013-7-8).
* arch/arm/src/stm32/stm32_sdio.c: SourceForge bug #17: Add
support for the data block end (DBCKEND) interrupt to terminate
transfers (From Chia Cheng Tsao, 2013-7-8)
* drivers/rwbuffer.c: SourceForge bug #17: Correct typos that can cause
failures in some configurations (From Chia Cheng Tsao, 2013-7-8).
* include/nuttx/usb/usbdev.h: Fix some typos that cause compiler errors
when CONFIG_USBDEV_DMA and CONFIG_USBDEV_DMAMEMORY are selected (From
Chia Cheng Tsao, 2013-7-12).
* nuttx/configs/olimex-lpc1766stk/zmodem: Add a new configuration to
test the Zmodem sz and rz commands (which don't actually exist yet,
but will). (2013-7-12).
* arch/arm/include/armv7-a and src/armv7-a: Beginning to add support
for the ARMv7-A, the Cortex-A5 in particular. The initial checkin
is only fragmentary: A few header files and some copied ARM9
assembly files. More to come (2013-7-18).
* arch/arm/include/sama5, arch/arm/src/sama5, and configs/sama5d3x-e:
Add a directory framework to support the Atmel AT91SAMA5D3 family and
the SAMA5D3x-EK board(s) in particular. There is very little here on
the first check-in, this structure is being used now primarily to
create the Cortex-A5 support (2013-7-19).
* arch/arm/src/armv7-a/arm_cache.S: Cortex-A5 cache operations
(2013-7-20).
* /arch/arm/src/armv7-a/arm_fpuconfig.S and fpu.h: A few more files for
the ARMv7-A/Cortex-A5 port (2013-7-21).
* arch/arm/src/sama5/sam_boot.c, sam_clockconfig.h, sam_lowputc.h, and
sam_timerisr.c: A few more files for the SAMA5D3 port (2013-7-21).
* configs/sama5d3x-ek/src/sam_autoleds.c: A few more files for the port
to the SAMA5D3x-EK board (2013-7-21).
* arch/arm/src/sama5/sam_irq.c: SAMA5 interrupt handling logic
(2013-7-22).
* arch/arm/src/sama5/sam_clockconfig.c: Add SAMA5 PLL configuration
logic (plus associated header files). Initiali checkin is for the
SAM3U which is very similar but needs to be verified (2013-7-22).
* arch/arm/src/sama5/sam_periphclks.h: Add macros to enable and
disable SAMA5 peripheral clocks (2013-7-22).
* arch/arm/src/sama5/sam_lowputc.c and sam_serial.c: Add support
for SAMA5 UARTs. Does not even compile as of initial checkin.
(2013-7-22).
* arch/arm/src/sama5/sam_gpio.c: Add GPIO configuration support
for the SAMA5. Still compilation issues. (2013-7-22).
* arch/arm/src/sama5/chip/sama5d3x_pinmap.h: Add pin multiplexing
definitions for the SAMA5D3 (2013-7-23).
* arch/arm/src/sama5/chip/: New header files for SAMA5 AXI Matrix
SFR, and BSC blocks (2013-7-23).
* arch/arm/src/armv7-a/arm_vectors.S: Force 8-byte stack alignment
in interrupt handlers before calling C code. Other ARM
architectures need to do this as well (2013-7-23).
* arm/src/armv7-m/up_copyarmstate.c and armv7-a/up_copyarmstate.c:
Added a new form of the register copy function that should save quit a
bit of time for armv7-m (without common vectors) and with armv7-a
(2013-7-23).
* arch/arm/src/armv7-a/arm_restorefpu.S, arm_savefpu.S, arm_doirq.c,
arm_fullcontextrestore.S, arm_saveusercontext.S: Add hardware
floating point register save/restore logic for the Cortex-A5\
(2013-7-23).
* arch/Kconfig: Attempt at generic external memory configuration is not
flexible enough, especially for the SAMA5. Move external memory
configuration options from arch/Kconfig to
arch/arm/src/lpc17xx/Kconfig, lpc31xx/Kconfig, sam34/Kconfig, and
sama5/Kconfig and renamed each from CONFIG_ARCH_ to, for example,
CONFIG_LPC31_. This renaming also affect many defconfig files
(2013-7-24).
* arch/arm/src/sama5/Kconfig and sam_allocateheap.c: Set up
configuration options for SAMA5 external memory regions; add a custom
sam_allocateheap.c to add the various configured memory regions to the
heap (2013-7-24).
* configs/sama5d3x-ek/src/sam_buttons.c, sam_userleds.c, and
sam_autoleds.c: Add support for the buttons and LEDs on-board the
SAMA5D3x-EK (2013-7-24).
* configs/sama5d3x-ek/ostest/defconfig: Switch console to USART1
(2013-7-4).
* arch/arm/src/sam34/Kconfig and drivers/serial/Kconfig: All serial
configuration logic for USARTs needs to depend on if the USART is
configured as a UART or not. And this is for all CPUS, not just
SAM3/4 (2013-7-24).
* arch/arm/src/arm/up_head.S and arch/arm/src/armv7-a/arm_head.S:
Fix a bug (uninitialized register error) that crept in the ARM9
boot-up code several years ago and was cloned into the Cortex-A5
code. Obviously no one has used the ARM9 NuttX port for years!
* Many files: Finally... I changed the naming of configuration
variables like CONFIG_DRAM_ to CONFIG_RAM_. This has bothered
me for a long time since most boards don't have DRAM. The more
generic RAM naming should not produce so much cognitive dissonance
(2013-7-26).
* configs/sama5d3x-ek/hello: Added a tiny hello world configuration
to simplify bring up of the SAMA5 (it will probably be removed
later) (2013-7-26).
* The sama5d3x-ek/hello now runs correctly (2013-7-28).
* configs/sama5d3x-ek/ostest/: This configuration has been modified
to run out NOR flash. More work is still needed to reconfigure the
SMC so that the NOR flash can work with the high clock (2013-7-28).
* arch/arm/src/sama5/sam_clockconfig.c/h and
configs/sama5d3x-ek/src/sam_norflash.c: Add a file structure that
will (eventually) support reconfiguration of NOR flash when NuttX
boots from NOR FLASH (2013-7-29).
* arch/arm/src/sama5/chip/sam_hsmc/h: SAMA5 HSMC register
defintion file (2013-7-29)
* configs/sama5d3x-ek/src/sam_norflash.c: Add board specific
logic to re-configure the SAMA5D3x-EK NOR FLASH before while
running out of NOR FLASH. We need to change the NOR FLASH
timing BEFORE increasing the main clock (2013-7-29).
* configs/sama5d3-ek/norboot and src/nor_main.c: The norboot
configuration to help debug NuttX in NOR flash. It runs
out of ISRAM, configures NOR FLASH, then waits for you to
break in with a debugger to start the program in NOR FLASH
(2013-7-29).
* arch/arm/src/armv7-a/arm_cache.S: Separate the bigger cache
operations into separater files (2013-7-29).
* arch/arm/src/stm32/stm32_dac.c: Fixed numerous DAC driver
errors and added support for DAC DMA (contributed by John
Wharington, 2013-7-30).
* arch/arm/src/stm32/stm32f30xx_i2c.c: An I2C driver for
the STM32 F3 family from John Wharington (2013-7-30).
* arch/arm/include/armv7-m: Add irqdisable() (2013-7-30);
* configs/sama5d3-ek/src/nor_main.c: Now disables interrupts
before jumping to NOR flash (2013-7-30).
* configs/sama5d3-ek/nsh: Add an NSH configuration for the
SAMA5D3x-EK (2013-7-31)
* configs/sama5d3-ek/src/sam_cxxinitialize.c: Add C++ support
(2013-7-31).
apps-6.29 2013-07-31 Gregory Nutt &lt;gnutt@nuttx.org&gt;
* apps/examples/nsh, cxxtest, and helloxx: C++ initializers should be
set once and, preferably, in the context of the task that uses any C++
statically initialized classes. These only becomes an issue if cxxtest
or helloxx are built as NSH builtin applications. Then you want the
initialization done in cxxtext or helloxx and not in NSH (and certainly
not twice). Added configuration options to control who does the C++
initialization. NSH now does not do C++ initialization be default and
must be configured to do otherwise. Converely, cxxtest and helloxx
will do C++ initialization unless configured do otherwise (2013-6-21).
* apps/examples/cxxtext: Add ostream test as provided by Michael
(2013-6-21).
* apps/examples/nxhello: Minor fix for compilation error when the
display resolution is low (&lt; 8bpp) due to a typo that has been there
for a long time (2013-6-23).
* apps/examplex/nxhello: Correct default colors when in Y1 code mode.
(2013-6-24).
* apps/system/Make.defs and Kconfig: The RAM test was not correctly built
into the configuration and build system (2013-6-26).
* apps/examples/composite/composite_main.c: SourceForge But Ticket #19.
Change to prevent some false alarm debug assertions (From Chia Cheng
Tao, 2013-7-9).
* apps/system/zmodem: Add configuration support and a build framework
for the Zmodem sz and rz command (which exist but have not yet been
checked in) (2013-7-12).
* apps/system/zmodem: The 'sz' command is now complete and seems
functional (given on light testing). The rz command logic exists but
is still untested and not yet checked in (2013-7-13).
* apps/system/zmodem: The 'rz' command is now complete and functional
under certain conditaions. There are, however, some data overrun
issues that I am still uncertain how should be handled (2012-7-15).
* apps/system/zmodem/Makefile.host and host/: The Zmodem utilities
can now be built to execute on a Linux host.
* apps/nshlib/nsh_fscmds.c: Add a 'cmp' command that can be used to
compare two files for equivalence. Returns an indication if the files
differ. Contributed by Andrew Tridgell (via Lorenz Meier) (2013-7-18).
NxWidgets-1.8 2013-06-14 Gregory Nutt &lt;gnutt@nuttx.org&gt;
* NxWM::CMediaPlayer: shell application for an MP3 Media Player with
Kconfig settings to enable it. I plan to write this app to help
develop and test the MP3 codec chip driver. It really doesn't do
anything yet except display a text box saying &quot;Coming soon&quot;, and I
need to minimize the icon size a bit. From Ken Pettit (2013-5-11).
* NxWidgets/nxwm/src/glyph_mediaplayer.cxx: Smaller version of the
media player glyph. From Ken Pettit (2013-5-12).
* NxWidgets/nxwm/include/ccalibration.hxx and src/ccalibration.cxx:
Fix a race condition that would cause the calibration screen
to fail to come up when its icon was touched (From Ken Pettit,
2013-5-12).
* Kconfig: Default priorities for NxWidget and NxWM threads
should be 100, not 50, to be consistent with other default priorities.
* NxWidgets::CGlyphSliderHorizontal and NxWidgets::CGlyphSliderHorizontalGrip:
New widgets added by Ken Pettit (2013-5-15).
* NxWidgets/UnitTests/CGlyphSliderHorizontal: Addes a unit test for the
NxWidgets::CGlyphSliderHorizontal class. From Ken Pettit (2013-5-17) .
* NxWidgets::CGlyphSliderHorizontal: Fix a drawing error. From Ken
Pettit (2013-5-17).
* UnitTests/*/Makefile and .gitignore: Update the way that NSH
the Unit Tests are registered as built-in NSH applications (2013-5-30).
* NxWidgets::CImage: Allow a NULL pointer for a bitmap. Add protection
to prevent dereferencing the NULL pointer. From Petteri Aimonen
(2013-6-4).
* NxWidgets::CNumericEdit: Delay before auto-incrementing now varies:
A longer delay is required to start auto-incrementing and speed increases
while pressed. From Petteri Aimonen (2013-6-4).
* NxWM::CTaskbar: Add a method to redraw the taskbar and the current
application. This should only be necessary if the display loses
state due to e.g. powerdown or other manual intervention. From
Petteri Aimonen (2013-6-4).
uClibc++-1.0 2011-11-05 &lt;gnutt@nuttx.org&gt;
* The initial release of the uClibc++ implementation of the standard
C++ library for NuttX. This package was contributed ay Qiang Yu and
David for the RGMP team.
buildroot-1.12 2011-13-15 &lt;gnutt@nuttx.org&gt;
* Fix typo toolchain/gdb/Config.in that prevented GDB 7.4 from building
(from Ken Bannister).
* Add support for a Cortex-M0 toolchain based on GCC 4.6.3.
pascal-3.0 2011-05-15 Gregory Nutt &lt;gnutt@nuttx.org&gt;
* nuttx/: The Pascal add-on module now installs and builds under the
apps/interpreters directory. This means that the pascal-2.1 module is
incompatible with will all releases of NuttX prior to nuttx-6.0 where the
apps/ module was introduced.
</pre></ul>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="pendingchanges">Unreleased Changes</a>
</td>
</tr>
</table>
<ul>
<li><b>nuttx</b>.
The ChangeLog for the not-yet-released version of NuttX is available at the bottom of the ChangeLog file that can viewed in the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/ChangeLog">SourceForge GIT</a>.
</li>
<li><b>apps</b>.
The ChangeLog for the not-yet-released version of apps is available at the bottom of the ChangeLog file that can viewed in the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/apps/ChangeLog.txt">SourceForge GIT</a>.
</li>
<li><b>NxWidgets</b>.
The ChangeLog for the not-yet-released version of NxWidgets is available at the bottom of the ChangeLog file that can viewed in the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/NxWidgets/ChangeLog">SourceForge GIT</a>.
</li>
<li><b>pascal</b>.
The ChangeLog for the not-yet-released version of pascal is available at the bottom of the ChangeLog file that can viewed in the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/misc/pascal/ChangeLog">SourceForge GIT</a>.
</li>
<li><b>buildroot</b>.
The ChangeLog for the not-yet-released version of buildroot is available at the bottom of the ChangeLog file that can viewed in the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/misc/buildroot/ChangeLog">SourceForge GIT</a>.
</li>
</ul>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="TODO"><h1>Bugs, Issues, <i>Things-To-Do</i></h1></a>
</td>
</tr>
</table>
<ul>
<p>
The current list of NuttX <i>Things-To-Do</i> in GIT <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/TODO">here</a>.
A snapshot of the <i>To-Do</i> list associated with the current release are available <a href="TODO.txt">here</a>.
</p>
</ul>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="documentation"><h1>Other Documentation</h1></a>
</td>
</tr>
</table>
<ul><table>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="NuttXGettingStarted.html">Getting Started</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="NuttxUserGuide.html">User Guide</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="NuttxPortingGuide.html">Porting Guide</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="NuttXConfigVariables.html">Configuration Variables</a><sup>1</sup></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="NuttShell.html">NuttShell (NSH)</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="NuttXBinfmt.html">NuttX Binary Loader</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="NuttXNxFlat.html">NXFLAT Binary Format</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="NXGraphicsSubsystem.html">NX Graphics Subsystem</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="NxWidgets.html">NxWidgets</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="NuttXDemandPaging.html">Demand Paging</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="README.html">NuttX README Files</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="ChangeLog.txt">Change Log</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="TODO.txt">To-Do List</a></td>
</tr>
<tr>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="UsbTrace.html">USB Device Driver Tracing</a></td>
</tr>
</table></ul>
<small><blockquote>
<sup>1</sup>
This configuration variable document is auto-generated using the <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/tools/kconfig2html.c">kconfig2html</a> tool
That tool analyzes the NuttX <code>Kconfig</code> files and generates the HTML document.
As a consequence, this file may not be present at any given time but can be regenerated following the instructions in <code>tools</code> directory <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/nuttx/tools/README.txt">README</a> file.
</blockquote></small>
<small>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="trademarks"><h1>Trademarks</h1></a>
</td>
</tr>
</table>
<ul>
<li>ARM, ARM7 ARM7TDMI, ARM9, ARM920T, ARM926EJS Cortex-M3 are trademarks of Advanced RISC Machines, Limited.</li>
<li>Cygwin is a trademark of Red Hat, Incorporated.</li>
<li>Linux is a registered trademark of Linus Torvalds.</li>
<li>Eagle-100 is a trademark of <a href=" http://www.micromint.com/">Micromint USA, LLC</a>.
<li>EnergyLite is a trademark of STMicroelectronics.</li>
<li>LPC2148 is a trademark of NXP Semiconductors.</li>
<li>TI is a tradename of Texas Instruments Incorporated.</li>
<li>UNIX is a registered trademark of The Open Group.</li>
<li>VxWorks is a registered trademark of Wind River Systems, Incorporated.</li>
<li>ZDS, ZNEO, Z16F, Z80, and Zilog are a registered trademark of Zilog, Inc.</li>
</ul>
<p>
NOTE: NuttX is <i>not</i> licensed to use the POSIX trademark.
NuttX uses the POSIX standard as a development guideline only.
</p>
</small>
</body>
</html>