8b4ecac6c2
to prepare the support of other implementation e.g.: https://github.com/JuliaMath/openlibm https://gitlab.com/gtd-gmbh/libmcs Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
336 lines
8.7 KiB
C
336 lines
8.7 KiB
C
/****************************************************************************
|
|
* libs/libm/libm/lib_gamma.c
|
|
*
|
|
* Ported to NuttX from FreeBSD by Alan Carvalho de Assis:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/* "A Precision Approximation of the Gamma Function"
|
|
* - Cornelius Lanczos (1964)
|
|
* "Lanczos Implementation of the Gamma Function"
|
|
* - Paul Godfrey (2001)
|
|
* "An Analysis of the Lanczos Gamma Approximation"
|
|
* - Glendon Ralph Pugh (2004)
|
|
*
|
|
* Approximation method:
|
|
*
|
|
* (x - 0.5) S(x)
|
|
* Gamma(x) = (x + g - 0.5) * ----------------
|
|
* exp(x + g - 0.5)
|
|
*
|
|
* with
|
|
* a1 a2 a3 aN
|
|
* S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ]
|
|
* x + 1 x + 2 x + 3 x + N
|
|
*
|
|
* with a0, a1, a2, a3,.. aN constants which depend on g.
|
|
*
|
|
* for x < 0 the following reflection formula is used:
|
|
*
|
|
* Gamma(x)*Gamma(-x) = -pi/(x sin(pi x))
|
|
*
|
|
* most ideas and constants are from boost and python
|
|
*/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
#include <nuttx/compiler.h>
|
|
|
|
#include <sys/types.h>
|
|
#include <math.h>
|
|
|
|
#ifdef CONFIG_HAVE_DOUBLE
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
|
|
#define FORCE_EVAL(x) \
|
|
do \
|
|
{ \
|
|
if (sizeof(x) == sizeof(float)) \
|
|
{ \
|
|
volatile float __x; \
|
|
UNUSED(__x); \
|
|
__x = (x); \
|
|
} \
|
|
else if (sizeof(x) == sizeof(double)) \
|
|
{ \
|
|
volatile double __x; \
|
|
UNUSED(__x); \
|
|
__x = (x); \
|
|
} \
|
|
else \
|
|
{ \
|
|
volatile long double __x; \
|
|
UNUSED(__x); \
|
|
__x = (x); \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
#define N 12
|
|
|
|
/****************************************************************************
|
|
* Private Data
|
|
****************************************************************************/
|
|
|
|
static const double pi = 3.141592653589793238462643383279502884;
|
|
|
|
static const double g_gmhalf = 5.524680040776729583740234375;
|
|
static const double g_snum[N + 1] =
|
|
{
|
|
23531376880.410759688572007674451636754734846804940,
|
|
42919803642.649098768957899047001988850926355848959,
|
|
35711959237.355668049440185451547166705960488635843,
|
|
17921034426.037209699919755754458931112671403265390,
|
|
6039542586.3520280050642916443072979210699388420708,
|
|
1439720407.3117216736632230727949123939715485786772,
|
|
248874557.86205415651146038641322942321632125127801,
|
|
31426415.585400194380614231628318205362874684987640,
|
|
2876370.6289353724412254090516208496135991145378768,
|
|
186056.26539522349504029498971604569928220784236328,
|
|
8071.6720023658162106380029022722506138218516325024,
|
|
210.82427775157934587250973392071336271166969580291,
|
|
2.5066282746310002701649081771338373386264310793408,
|
|
};
|
|
|
|
static const double g_sden[N + 1] =
|
|
{
|
|
0, 39916800, 120543840, 150917976, 105258076, 45995730, 13339535,
|
|
2637558, 357423, 32670, 1925, 66, 1,
|
|
};
|
|
|
|
/* n! for small integer n */
|
|
|
|
static const double g_fact[] =
|
|
{
|
|
1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0,
|
|
479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0,
|
|
20922789888000.0, 355687428096000.0, 6402373705728000.0,
|
|
121645100408832000.0, 2432902008176640000.0, 51090942171709440000.0,
|
|
1124000727777607680000.0,
|
|
};
|
|
|
|
/* S(x) rational function for positive x */
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
/* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */
|
|
|
|
static double sinpi(double x)
|
|
{
|
|
int n;
|
|
|
|
/* argument reduction: x = |x| mod 2 */
|
|
|
|
/* spurious inexact when x is odd int */
|
|
|
|
x = x * 0.5;
|
|
x = 2 * (x - floor(x));
|
|
|
|
/* reduce x into [-.25,.25] */
|
|
|
|
n = 4 * x;
|
|
n = (n + 1) / 2;
|
|
x -= n * 0.5;
|
|
|
|
x *= pi;
|
|
switch (n)
|
|
{
|
|
default: /* case 4 */
|
|
case 0:
|
|
return __sin(x, 0, 0);
|
|
|
|
case 1:
|
|
return __cos(x, 0);
|
|
|
|
case 2:
|
|
return __sin(-x, 0, 0);
|
|
|
|
case 3:
|
|
return -__cos(x, 0);
|
|
}
|
|
}
|
|
|
|
static double s(double x)
|
|
{
|
|
double num = 0;
|
|
double den = 0;
|
|
int i;
|
|
|
|
/* to avoid overflow handle large x differently */
|
|
|
|
if (x < 8)
|
|
{
|
|
for (i = N; i >= 0; i--)
|
|
{
|
|
num = num * x + g_snum[i];
|
|
den = den * x + g_sden[i];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i <= N; i++)
|
|
{
|
|
num = num / x + g_snum[i];
|
|
den = den / x + g_sden[i];
|
|
}
|
|
}
|
|
|
|
return num / den;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
double tgamma(double x)
|
|
{
|
|
union
|
|
{
|
|
double f;
|
|
uint64_t i;
|
|
} u;
|
|
|
|
u.f = x;
|
|
|
|
double absx;
|
|
double y;
|
|
double dy;
|
|
double z;
|
|
double r;
|
|
uint32_t ix = u.i >> 32 & 0x7fffffff;
|
|
int sign = u.i >> 63;
|
|
|
|
/* special cases */
|
|
|
|
if (ix >= 0x7ff00000)
|
|
{
|
|
/* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */
|
|
|
|
return x + INFINITY;
|
|
}
|
|
|
|
if (ix < (0x3ff - 54) << 20)
|
|
{
|
|
/* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
|
|
|
|
return 1 / x;
|
|
}
|
|
|
|
/* integer arguments */
|
|
|
|
/* raise inexact when non-integer */
|
|
|
|
if (x == floor(x))
|
|
{
|
|
if (sign)
|
|
{
|
|
return NAN;
|
|
}
|
|
|
|
if (x <= sizeof g_fact / sizeof *g_fact)
|
|
{
|
|
return g_fact[(int)x - 1];
|
|
}
|
|
}
|
|
|
|
/* x >= 172: tgamma(x)=inf with overflow */
|
|
|
|
/* x =< -184: tgamma(x)=+-0 with underflow */
|
|
|
|
if (ix >= 0x40670000)
|
|
{
|
|
/* |x| >= 184 */
|
|
|
|
if (sign)
|
|
{
|
|
FORCE_EVAL((float)(ldexp(1.0, -126) / x));
|
|
|
|
if (floor(x) * 0.5 == floor(x * 0.5))
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
return -0.0;
|
|
}
|
|
|
|
x *= 0x1p1023;
|
|
return x;
|
|
}
|
|
|
|
absx = sign ? -x : x;
|
|
|
|
/* handle the error of x + g - 0.5 */
|
|
|
|
y = absx + g_gmhalf;
|
|
if (absx > g_gmhalf)
|
|
{
|
|
dy = y - absx;
|
|
dy -= g_gmhalf;
|
|
}
|
|
else
|
|
{
|
|
dy = y - g_gmhalf;
|
|
dy -= absx;
|
|
}
|
|
|
|
z = absx - 0.5;
|
|
r = s(absx) * exp(-y);
|
|
if (x < 0)
|
|
{
|
|
/* reflection formula for negative x */
|
|
|
|
/* sinpi(absx) is not 0, integers are already handled */
|
|
|
|
r = -pi / (sinpi(absx) * absx * r);
|
|
dy = -dy;
|
|
z = -z;
|
|
}
|
|
|
|
r += dy * (g_gmhalf + 0.5) * r / y;
|
|
z = pow(y, 0.5 * z);
|
|
y = r * z * z;
|
|
|
|
return y;
|
|
}
|
|
|
|
double gamma(double x)
|
|
{
|
|
return tgamma(x);
|
|
}
|
|
#endif
|