2555 lines
64 KiB
C
2555 lines
64 KiB
C
/****************************************************************************
|
|
* libc/time/lib_localtime.c
|
|
*
|
|
* Re-released as part of NuttX under the 3-clause BSD license:
|
|
*
|
|
* Copyright (C) 2014 Gregory Nutt. All rights reserved.
|
|
* Ported to NuttX by Max Neklyudov
|
|
* Style updates by Gregory Nutt
|
|
*
|
|
* With these notes:
|
|
*
|
|
* This file is in the public domain, so clarified as of
|
|
* 1996-06-05 by Arthur David Olson.
|
|
*
|
|
* Leap second handling from Bradley White.
|
|
* POSIX-style TZ environment variable handling from Guy Harris.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
/* Configuration ************************************************************/
|
|
/* Time zone object file directory */
|
|
|
|
#ifdef CONFIG_LIBC_TZDIR
|
|
# define TZDIR CONFIG_LIBC_TZDIR
|
|
#else
|
|
# define TZDIR "/etc/zoneinfo"
|
|
#endif
|
|
|
|
/* Time definitions *********************************************************/
|
|
|
|
/* Time zone files */
|
|
|
|
#define TZ_MAGIC "TZif"
|
|
#define TZDEFAULT "localtime"
|
|
#define TZDEFRULES "posixrules"
|
|
|
|
/* In the current implementation, "tzset()" refuses to deal with files that
|
|
* exceed any of the limits below.
|
|
*/
|
|
|
|
#define TZ_MAX_CHARS 50 /* Maximum number of abbreviation characters */
|
|
#define TZ_MAX_LEAPS 50 /* Maximum number of leap second corrections */
|
|
|
|
#define SECSPERMIN 60
|
|
#define MINSPERHOUR 60
|
|
#define HOURSPERDAY 24
|
|
#define DAYSPERWEEK 7
|
|
#define DAYSPERNYEAR 365
|
|
#define DAYSPERLYEAR 366
|
|
#define SECSPERHOUR (SECSPERMIN * MINSPERHOUR)
|
|
#define SECSPERDAY ((int_fast32_t) SECSPERHOUR * HOURSPERDAY)
|
|
#define MONSPERYEAR 12
|
|
|
|
#define TM_SUNDAY 0
|
|
#define TM_MONDAY 1
|
|
#define TM_TUESDAY 2
|
|
#define TM_WEDNESDAY 3
|
|
#define TM_THURSDAY 4
|
|
#define TM_FRIDAY 5
|
|
#define TM_SATURDAY 6
|
|
|
|
#define TM_JANUARY 0
|
|
#define TM_FEBRUARY 1
|
|
#define TM_MARCH 2
|
|
#define TM_APRIL 3
|
|
#define TM_MAY 4
|
|
#define TM_JUNE 5
|
|
#define TM_JULY 6
|
|
#define TM_AUGUST 7
|
|
#define TM_SEPTEMBER 8
|
|
#define TM_OCTOBER 9
|
|
#define TM_NOVEMBER 10
|
|
#define TM_DECEMBER 11
|
|
|
|
#define TM_YEAR_BASE 1900
|
|
|
|
#define EPOCH_YEAR 1970
|
|
#define EPOCH_WDAY TM_THURSDAY
|
|
|
|
#define isleap(y) (((y) % 4) == 0 && (((y) % 100) != 0 || ((y) % 400) == 0))
|
|
|
|
/* Since everything in isleap is modulo 400 (or a factor of 400), we know that
|
|
* isleap(y) == isleap(y % 400)
|
|
* and so
|
|
* isleap(a + b) == isleap((a + b) % 400)
|
|
* or
|
|
* isleap(a + b) == isleap(a % 400 + b % 400)
|
|
*
|
|
* This is true even if % means modulo rather than Fortran remainder (which
|
|
* is allowed by C89 but not C99). We use this to avoid addition overflow
|
|
* problems.
|
|
*/
|
|
|
|
#define isleap_sum(a, b) isleap((a) % 400 + (b) % 400)
|
|
|
|
#define GRANDPARENTED "Local time zone must be set--see zic manual page"
|
|
#define TYPE_BIT(type) (sizeof (type) * CHAR_BIT)
|
|
#define TYPE_SIGNED(type) (((type) -1) < 0)
|
|
|
|
#define YEARSPERREPEAT 400 /* years before a Gregorian repeat */
|
|
|
|
/* The Gregorian year averages 365.2425 days, which is 31556952 seconds. */
|
|
|
|
#define AVGSECSPERYEAR 31556952L
|
|
#define SECSPERREPEAT ((int_fast64_t) YEARSPERREPEAT * (int_fast64_t) AVGSECSPERYEAR)
|
|
#define SECSPERREPEAT_BITS 34 /* ceil(log2(SECSPERREPEAT)) */
|
|
|
|
#define TZ_ABBR_MAX_LEN 16
|
|
#define TZ_ABBR_CHAR_SET \
|
|
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
|
|
#define TZ_ABBR_ERR_CHAR '_'
|
|
|
|
/* Unlike <ctype.h>'s isdigit, this also works if c < 0 | c > UCHAR_MAX. */
|
|
|
|
#define is_digit(c) ((unsigned)(c) - '0' <= 9)
|
|
#define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
|
|
#define MY_TZNAME_MAX 255
|
|
#define GMT "GMT"
|
|
#define GMTLEN 3
|
|
|
|
#define JULIAN_DAY 0 /* Jn = Julian day */
|
|
#define DAY_OF_YEAR 1 /* n = day of year */
|
|
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d = month, week, day of week */
|
|
|
|
/* Someone might make incorrect use of a time zone abbreviation:
|
|
* 1. They might reference tzname[0] before calling tzset (explicitly
|
|
* or implicitly).
|
|
* 2. They might reference tzname[1] before calling tzset (explicitly
|
|
* or implicitly).
|
|
* 3. They might reference tzname[1] after setting to a time zone
|
|
* in which Daylight Saving Time is never observed.
|
|
* 4. They might reference tzname[0] after setting to a time zone
|
|
* in which Standard Time is never observed.
|
|
*
|
|
* What's best to do in the above cases is open to debate;
|
|
* for now, we just set things up so that in any of the five cases
|
|
* WILDABBR is used. Another possibility: initialize tzname[0] to the
|
|
* string "tzname[0] used before set", and similarly for the other cases.
|
|
* And another: initialize tzname[0] to "ERA", with an explanation in the
|
|
* manual page of what this "time zone abbreviation" means (doing this so
|
|
* that tzname[0] has the "normal" length of three characters).
|
|
*/
|
|
|
|
#define WILDABBR " "
|
|
|
|
/* The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
|
|
* We default to US rules as of 1999-08-17.
|
|
* POSIX 1003.1 section 8.1.1 says that the default DST rules are
|
|
* implementation dependent; for historical reasons, US rules are a
|
|
* common default.
|
|
*/
|
|
|
|
#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
|
|
|
|
/****************************************************************************
|
|
* Private Types
|
|
****************************************************************************/
|
|
|
|
/* Time file file header.
|
|
* Each time zone file begins with a time zone header followed by:
|
|
*
|
|
* tzh_timecnt (char [4])s coded transition times a la time(2)
|
|
* tzh_timecnt (unsigned char)s types of local time starting at above
|
|
* tzh_typecnt repetitions of
|
|
* one (char [4]) coded UT offset in seconds
|
|
* one (unsigned char) used to set tm_isdst
|
|
* one (unsigned char) that's an abbreviation list index
|
|
* tzh_charcnt (char)s '\0'-terminated zone abbreviations
|
|
* tzh_leapcnt repetitions of
|
|
* one (char [4]) coded leap second transition times
|
|
* one (char [4]) total correction after above
|
|
* tzh_ttisstdcnt (char)s indexed by type; if TRUE, transition
|
|
* time is standard time, if FALSE,
|
|
* transition time is wall clock time
|
|
* if absent, transition times are
|
|
* assumed to be wall clock time
|
|
* tzh_ttisgmtcnt (char)s indexed by type; if TRUE, transition
|
|
* time is UT, if FALSE,
|
|
* transition time is local time
|
|
* if absent, transition times are
|
|
* assumed to be local time
|
|
*
|
|
* If tzh_version is '2' or greater, the above is followed by a second
|
|
* instance of tzhead_s and a second instance of the data in which each
|
|
* coded transition time uses 8 rather than 4 chars, then a
|
|
* POSIX-TZ-environment-variable-style string for use in handling instants
|
|
* after the last transition time stored in the file (with nothing between
|
|
* the newlines if there is no POSIX representation for such instants).
|
|
*
|
|
* If tz_version is '3' or greater, the above is extended as follows.
|
|
* First, the POSIX TZ string's hour offset may range from -167 through
|
|
* 167 as compared to the POSIX-required 0 through 24. Second, its DST
|
|
* start time may be January 1 at 00:00 and its stop time December 31 at
|
|
* 24:00 plus the difference between DST and standard time, indicating DST
|
|
* all year.
|
|
*/
|
|
|
|
struct tzhead_s
|
|
{
|
|
char tzh_magic[4]; /* TZ_MAGIC */
|
|
char tzh_version[1]; /* '\0' or '2' or '3' as of 2013 */
|
|
char tzh_reserved[15]; /* reserved; must be zero */
|
|
char tzh_ttisgmtcnt[4]; /* coded number of trans. time flags */
|
|
char tzh_ttisstdcnt[4]; /* coded number of trans. time flags */
|
|
char tzh_leapcnt[4]; /* coded number of leap seconds */
|
|
char tzh_timecnt[4]; /* coded number of transition times */
|
|
char tzh_typecnt[4]; /* coded number of local time types */
|
|
char tzh_charcnt[4]; /* coded number of abbr. chars */
|
|
};
|
|
|
|
struct ttinfo_s
|
|
{ /* Time type information */
|
|
int_fast32_t tt_gmtoff; /* UT offset in seconds */
|
|
int tt_isdst; /* Used to set tm_isdst */
|
|
int tt_abbrind; /* Abbreviation list index */
|
|
int tt_ttisstd; /* True if transition is std time */
|
|
int tt_ttisgmt; /* True if transition is UT */
|
|
};
|
|
|
|
struct lsinfo_s
|
|
{ /* Leap second information */
|
|
time_t ls_trans; /* Transition time */
|
|
int_fast64_t ls_corr; /* Correction to apply */
|
|
};
|
|
|
|
struct state_s
|
|
{
|
|
int leapcnt;
|
|
int timecnt;
|
|
int typecnt;
|
|
int charcnt;
|
|
int goback;
|
|
int goahead;
|
|
time_t ats[TZ_MAX_TIMES];
|
|
unsigned char types[TZ_MAX_TIMES];
|
|
struct ttinfo_s ttis[TZ_MAX_TYPES];
|
|
char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, GMTLEN), (2 * (MY_TZNAME_MAX + 1)))];
|
|
struct lsinfo_s lsis[TZ_MAX_LEAPS];
|
|
int defaulttype; /* For early times or if no transitions */
|
|
};
|
|
|
|
struct rule_s
|
|
{
|
|
int r_type; /* type of rule; see below */
|
|
int r_day; /* day number of rule */
|
|
int r_week; /* week number of rule */
|
|
int r_mon; /* month number of rule */
|
|
int_fast32_t r_time; /* transition time of rule */
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Private Data
|
|
****************************************************************************/
|
|
|
|
/* The minimum and maximum finite time values. */
|
|
|
|
static time_t const time_t_min =
|
|
(TYPE_SIGNED(time_t)
|
|
? (time_t) -1 << (CHAR_BIT * sizeof (time_t) - 1)
|
|
: 0);
|
|
|
|
static time_t const time_t_max =
|
|
(TYPE_SIGNED(time_t)
|
|
? - (~ 0 < 0) - ((time_t) -1 << (CHAR_BIT * sizeof (time_t) - 1))
|
|
: -1);
|
|
|
|
static const char wildabbr[] = WILDABBR;
|
|
|
|
static char lcl_TZname[MY_TZNAME_MAX + 1];
|
|
static int lcl_is_set;
|
|
static int gmt_is_set;
|
|
|
|
char *tzname[2] =
|
|
{
|
|
(FAR char*)wildabbr,
|
|
(FAR char*)wildabbr
|
|
};
|
|
|
|
/* Section 4.12.3 of X3.159-1989 requires that
|
|
* Except for the strftime function, these functions [asctime,
|
|
* ctime, gmtime, localtime] return values in one of two static
|
|
* objects: a broken-down time structure and an array of char.
|
|
* Thanks to Paul Eggert for noting this.
|
|
*/
|
|
|
|
static struct tm tm;
|
|
|
|
static const int mon_lengths[2][MONSPERYEAR] = {
|
|
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
|
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
|
|
};
|
|
|
|
static const int year_lengths[2] = {
|
|
DAYSPERNYEAR, DAYSPERLYEAR
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Private Function Prototypes
|
|
****************************************************************************/
|
|
|
|
static int_fast32_t detzcode(FAR const char *codep);
|
|
static int_fast64_t detzcode64(FAR const char *codep);
|
|
static int differ_by_repeat(time_t t1, time_t t0);
|
|
static FAR const char *getzname(FAR const char *strp);
|
|
static FAR const char *getqzname(FAR const char *strp, const int delim);
|
|
static FAR const char *getnum(FAR const char *strp, FAR int *nump,
|
|
int min, int max);
|
|
static FAR const char *getsecs(FAR const char *strp, FAR int_fast32_t *secsp);
|
|
static FAR const char *getoffset(FAR const char *strp,
|
|
FAR int_fast32_t *offsetp);
|
|
static FAR const char *getrule(FAR const char *strp,
|
|
FAR struct rule_s *rulep);
|
|
static void gmtload(struct state_s *sp);
|
|
static FAR struct tm *gmtsub(FAR const time_t * timep, int_fast32_t offset,
|
|
FAR struct tm *tmp);
|
|
static FAR struct tm *localsub(FAR const time_t * timep, int_fast32_t offset,
|
|
FAR struct tm *tmp);
|
|
static int increment_overflow(FAR int *number, int delta);
|
|
static int leaps_thru_end_of(int y);
|
|
static int increment_overflow32(FAR int_fast32_t * number, int delta);
|
|
static int increment_overflow_time(time_t * t, int_fast32_t delta);
|
|
static int normalize_overflow32(FAR int_fast32_t * tensptr,
|
|
FAR int *unitsptr, int base);
|
|
static int normalize_overflow(FAR int *tensptr, FAR int *unitsptr, int base);
|
|
static void settzname(void);
|
|
static time_t time1(FAR struct tm *tmp,
|
|
FAR struct tm *(*funcp)(FAR const time_t *, int_fast32_t,
|
|
FAR struct tm *),
|
|
int_fast32_t offset);
|
|
static time_t time2(FAR struct tm *tmp,
|
|
FAR struct tm *(*funcp)(FAR const time_t *,
|
|
int_fast32_t, FAR struct tm *),
|
|
int_fast32_t offset, FAR int *okayp);
|
|
static time_t time2sub(FAR struct tm *tmp,
|
|
FAR struct tm *(*funcp)(FAR const time_t *,
|
|
int_fast32_t, FAR struct tm *),
|
|
int_fast32_t offset, FAR int *okayp, int do_norm_secs);
|
|
static FAR struct tm *timesub(FAR const time_t * timep, int_fast32_t offset,
|
|
FAR const struct state_s *sp, FAR struct tm *tmp);
|
|
static int tmcomp(FAR const struct tm *atmp, FAR const struct tm *btmp);
|
|
static int_fast32_t transtime(int year, FAR const struct rule_s *rulep,
|
|
int_fast32_t offset);
|
|
static int typesequiv(FAR const struct state_s *sp, int a, int b);
|
|
static int tzload(FAR const char *name, FAR struct state_s *sp,
|
|
int doextend);
|
|
static int tzparse(FAR const char *name, FAR struct state_s *sp,
|
|
int lastditch);
|
|
static FAR struct state_s *lclptr;
|
|
static FAR struct state_s *gmtptr;
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
static int_fast32_t detzcode(FAR const char *const codep)
|
|
{
|
|
int_fast32_t result;
|
|
int i;
|
|
|
|
result = (codep[0] & 0x80) ? -1 : 0;
|
|
for (i = 0; i < 4; ++i)
|
|
{
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int_fast64_t detzcode64(FAR const char *const codep)
|
|
{
|
|
int_fast64_t result;
|
|
int i;
|
|
|
|
result = (codep[0] & 0x80) ? -1 : 0;
|
|
for (i = 0; i < 8; ++i)
|
|
{
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void settzname(void)
|
|
{
|
|
FAR struct state_s *const sp = lclptr;
|
|
int i;
|
|
|
|
tzname[0] = tzname[1] = (FAR char*)wildabbr;
|
|
if (sp == NULL)
|
|
{
|
|
tzname[0] = tzname[1] = (FAR char*)GMT;
|
|
return;
|
|
}
|
|
|
|
/* And to get the latest zone names into tzname */
|
|
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
const struct ttinfo_s *const ttisp = &sp->ttis[i];
|
|
|
|
tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
|
|
}
|
|
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
const struct ttinfo_s *const ttisp = &sp->ttis[sp->types[i]];
|
|
|
|
tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
|
|
}
|
|
|
|
/* Finally, scrub the abbreviations. First, replace bogus characters. */
|
|
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
{
|
|
if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
|
|
{
|
|
sp->chars[i] = TZ_ABBR_ERR_CHAR;
|
|
}
|
|
}
|
|
|
|
/* Second, truncate long abbreviations. */
|
|
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
const struct ttinfo_s *const ttisp = &sp->ttis[i];
|
|
char *cp = &sp->chars[ttisp->tt_abbrind];
|
|
|
|
if (strlen(cp) > TZ_ABBR_MAX_LEN && strcmp(cp, GRANDPARENTED) != 0)
|
|
{
|
|
*(cp + TZ_ABBR_MAX_LEN) = '\0';
|
|
}
|
|
}
|
|
}
|
|
|
|
static int differ_by_repeat(const time_t t1, const time_t t0)
|
|
{
|
|
if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
return t1 - t0 == SECSPERREPEAT;
|
|
}
|
|
|
|
static int tzload(FAR const char *name,
|
|
FAR struct state_s *const sp, const int doextend)
|
|
{
|
|
FAR const char *p;
|
|
int i;
|
|
int fid;
|
|
int stored;
|
|
int nread;
|
|
|
|
typedef union
|
|
{
|
|
struct tzhead_s tzhead_s;
|
|
char buf[2 * sizeof(struct tzhead_s) + 2 * sizeof *sp + 4 * TZ_MAX_TIMES];
|
|
} u_t;
|
|
|
|
union local_storage
|
|
{
|
|
/* Section 4.9.1 of the C standard says that
|
|
* "FILENAME_MAX expands to an integral constant expression
|
|
* that is the size needed for an array of char large enough
|
|
* to hold the longest file name string that the implementation
|
|
* guarantees can be opened."
|
|
*/
|
|
|
|
char fullname[FILENAME_MAX + 1];
|
|
|
|
/* The main part of the storage for this function. */
|
|
|
|
struct
|
|
{
|
|
u_t u;
|
|
struct state_s st;
|
|
} u;
|
|
};
|
|
char *fullname;
|
|
u_t *up;
|
|
int doaccess;
|
|
union local_storage *lsp;
|
|
|
|
lsp = malloc(sizeof *lsp);
|
|
if (!lsp)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
fullname = lsp->fullname;
|
|
up = &lsp->u.u;
|
|
|
|
sp->goback = sp->goahead = FALSE;
|
|
|
|
if (!name)
|
|
{
|
|
name = TZDEFAULT;
|
|
if (!name)
|
|
{
|
|
goto oops;
|
|
}
|
|
}
|
|
|
|
if (name[0] == ':')
|
|
{
|
|
++name;
|
|
}
|
|
|
|
doaccess = name[0] == '/';
|
|
if (!doaccess)
|
|
{
|
|
p = TZDIR;
|
|
if (!p || sizeof lsp->fullname - 1 <= strlen(p) + strlen(name))
|
|
{
|
|
goto oops;
|
|
}
|
|
|
|
strcpy(fullname, p);
|
|
strcat(fullname, "/");
|
|
strcat(fullname, name);
|
|
|
|
/* Set doaccess if '.' (as in "../") shows up in name. */
|
|
|
|
if (strchr(name, '.'))
|
|
{
|
|
doaccess = TRUE;
|
|
}
|
|
|
|
name = fullname;
|
|
}
|
|
|
|
if (doaccess && access(name, R_OK) != 0)
|
|
{
|
|
goto oops;
|
|
}
|
|
|
|
fid = open(name, O_RDONLY | O_BINARY);
|
|
if (fid < 0)
|
|
{
|
|
goto oops;
|
|
}
|
|
|
|
nread = read(fid, up->buf, sizeof up->buf);
|
|
if (close(fid) < 0 || nread <= 0)
|
|
{
|
|
goto oops;
|
|
}
|
|
|
|
for (stored = 4; stored <= 8; stored *= 2)
|
|
{
|
|
int ttisstdcnt;
|
|
int ttisgmtcnt;
|
|
int timecnt;
|
|
|
|
ttisstdcnt = (int)detzcode(up->tzhead_s.tzh_ttisstdcnt);
|
|
ttisgmtcnt = (int)detzcode(up->tzhead_s.tzh_ttisgmtcnt);
|
|
sp->leapcnt = (int)detzcode(up->tzhead_s.tzh_leapcnt);
|
|
sp->timecnt = (int)detzcode(up->tzhead_s.tzh_timecnt);
|
|
sp->typecnt = (int)detzcode(up->tzhead_s.tzh_typecnt);
|
|
sp->charcnt = (int)detzcode(up->tzhead_s.tzh_charcnt);
|
|
|
|
p = up->tzhead_s.tzh_charcnt + sizeof up->tzhead_s.tzh_charcnt;
|
|
if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
|
|
sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
|
|
sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
|
|
sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
|
|
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
|
|
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
|
|
{
|
|
goto oops;
|
|
}
|
|
|
|
if (nread - (p - up->buf) < sp->timecnt * stored + /* ats */
|
|
sp->timecnt + /* types */
|
|
sp->typecnt * 6 + /* ttinfos */
|
|
sp->charcnt + /* chars */
|
|
sp->leapcnt * (stored + 4) + /* lsinfos */
|
|
ttisstdcnt + /* ttisstds */
|
|
ttisgmtcnt) /* ttisgmts */
|
|
{
|
|
goto oops;
|
|
}
|
|
|
|
timecnt = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
int_fast64_t at = stored == 4 ? detzcode(p) : detzcode64(p);
|
|
sp->types[i] = ((TYPE_SIGNED(time_t)
|
|
? time_t_min <= at : 0 <= at) && at <= time_t_max);
|
|
if (sp->types[i])
|
|
{
|
|
if (i && !timecnt && at != time_t_min)
|
|
{
|
|
/* Keep the earlier record, but tweak
|
|
* it so that it starts with the
|
|
* minimum time_t value.
|
|
*/
|
|
|
|
sp->types[i - 1] = 1;
|
|
sp->ats[timecnt++] = time_t_min;
|
|
}
|
|
|
|
sp->ats[timecnt++] = at;
|
|
}
|
|
|
|
p += stored;
|
|
}
|
|
|
|
timecnt = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
unsigned char typ = *p++;
|
|
if (sp->typecnt <= typ)
|
|
{
|
|
goto oops;
|
|
}
|
|
|
|
if (sp->types[i])
|
|
{
|
|
sp->types[timecnt++] = typ;
|
|
}
|
|
}
|
|
|
|
sp->timecnt = timecnt;
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo_s *ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
ttisp->tt_gmtoff = detzcode(p);
|
|
p += 4;
|
|
ttisp->tt_isdst = (unsigned char)*p++;
|
|
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
|
|
{
|
|
goto oops;
|
|
}
|
|
|
|
ttisp->tt_abbrind = (unsigned char)*p++;
|
|
if (ttisp->tt_abbrind < 0 || ttisp->tt_abbrind > sp->charcnt)
|
|
{
|
|
goto oops;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
{
|
|
sp->chars[i] = *p++;
|
|
}
|
|
|
|
sp->chars[i] = '\0'; /* ensure '\0' at end */
|
|
for (i = 0; i < sp->leapcnt; ++i)
|
|
{
|
|
struct lsinfo_s *lsisp;
|
|
|
|
lsisp = &sp->lsis[i];
|
|
lsisp->ls_trans = (stored == 4) ? detzcode(p) : detzcode64(p);
|
|
p += stored;
|
|
lsisp->ls_corr = detzcode(p);
|
|
p += 4;
|
|
}
|
|
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo_s *ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisstdcnt == 0)
|
|
{
|
|
ttisp->tt_ttisstd = FALSE;
|
|
}
|
|
else
|
|
{
|
|
ttisp->tt_ttisstd = *p++;
|
|
if (ttisp->tt_ttisstd != TRUE && ttisp->tt_ttisstd != FALSE)
|
|
{
|
|
goto oops;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo_s *ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisgmtcnt == 0)
|
|
{
|
|
ttisp->tt_ttisgmt = FALSE;
|
|
}
|
|
else
|
|
{
|
|
ttisp->tt_ttisgmt = *p++;
|
|
if (ttisp->tt_ttisgmt != TRUE && ttisp->tt_ttisgmt != FALSE)
|
|
{
|
|
goto oops;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If this is an old file, we're done. */
|
|
|
|
if (up->tzhead_s.tzh_version[0] == '\0')
|
|
{
|
|
break;
|
|
}
|
|
|
|
nread -= p - up->buf;
|
|
for (i = 0; i < nread; ++i)
|
|
{
|
|
up->buf[i] = p[i];
|
|
}
|
|
|
|
/* If this is a signed narrow time_t system, we're done. */
|
|
|
|
if (TYPE_SIGNED(time_t) && stored >= (int)sizeof(time_t))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (doextend && nread > 2 &&
|
|
up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
|
|
sp->typecnt + 2 <= TZ_MAX_TYPES)
|
|
{
|
|
FAR struct state_s *ts = &lsp->u.st;
|
|
int result;
|
|
|
|
up->buf[nread - 1] = '\0';
|
|
result = tzparse(&up->buf[1], ts, FALSE);
|
|
if (result == 0 && ts->typecnt == 2 &&
|
|
sp->charcnt + ts->charcnt <= TZ_MAX_CHARS)
|
|
{
|
|
for (i = 0; i < 2; ++i)
|
|
{
|
|
ts->ttis[i].tt_abbrind += sp->charcnt;
|
|
}
|
|
|
|
for (i = 0; i < ts->charcnt; ++i)
|
|
{
|
|
sp->chars[sp->charcnt++] = ts->chars[i];
|
|
}
|
|
|
|
i = 0;
|
|
while (i < ts->timecnt && ts->ats[i] <= sp->ats[sp->timecnt - 1])
|
|
{
|
|
++i;
|
|
}
|
|
|
|
while (i < ts->timecnt && sp->timecnt < TZ_MAX_TIMES)
|
|
{
|
|
sp->ats[sp->timecnt] = ts->ats[i];
|
|
sp->types[sp->timecnt] = sp->typecnt + ts->types[i];
|
|
++sp->timecnt;
|
|
++i;
|
|
}
|
|
|
|
sp->ttis[sp->typecnt++] = ts->ttis[0];
|
|
sp->ttis[sp->typecnt++] = ts->ttis[1];
|
|
}
|
|
}
|
|
|
|
if (sp->timecnt > 1)
|
|
{
|
|
for (i = 1; i < sp->timecnt; ++i)
|
|
{
|
|
if (typesequiv(sp, sp->types[i], sp->types[0]) &&
|
|
differ_by_repeat(sp->ats[i], sp->ats[0]))
|
|
{
|
|
sp->goback = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = sp->timecnt - 2; i >= 0; --i)
|
|
{
|
|
if (typesequiv(sp, sp->types[sp->timecnt - 1],
|
|
sp->types[i]) &&
|
|
differ_by_repeat(sp->ats[sp->timecnt - 1], sp->ats[i]))
|
|
{
|
|
sp->goahead = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If type 0 is is unused in transitions, it's the type to use for early
|
|
* times.
|
|
*/
|
|
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
if (sp->types[i] == 0)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
i = (i >= sp->typecnt) ? 0 : -1;
|
|
|
|
/* Absent the above, if there are transition times and the first
|
|
* transition is to a daylight time find the standard type less than and
|
|
* closest to the type of the first transition.
|
|
*/
|
|
|
|
if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst)
|
|
{
|
|
i = sp->types[0];
|
|
while (--i >= 0)
|
|
{
|
|
if (!sp->ttis[i].tt_isdst)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If no result yet, find the first standard type. If there is none, punt
|
|
* to type zero.
|
|
*/
|
|
|
|
if (i < 0)
|
|
{
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
{
|
|
if (++i >= sp->typecnt)
|
|
{
|
|
i = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
sp->defaulttype = i;
|
|
free(up);
|
|
return 0;
|
|
|
|
oops:
|
|
free(up);
|
|
return -1;
|
|
}
|
|
|
|
static int typesequiv(FAR const struct state_s *const sp, const int a, const int b)
|
|
{
|
|
int result;
|
|
|
|
if (sp == NULL || a < 0 || a >= sp->typecnt || b < 0 || b >= sp->typecnt)
|
|
{
|
|
result = FALSE;
|
|
}
|
|
else
|
|
{
|
|
const struct ttinfo_s *ap = &sp->ttis[a];
|
|
const struct ttinfo_s *bp = &sp->ttis[b];
|
|
result = ap->tt_gmtoff == bp->tt_gmtoff &&
|
|
ap->tt_isdst == bp->tt_isdst &&
|
|
ap->tt_ttisstd == bp->tt_ttisstd &&
|
|
ap->tt_ttisgmt == bp->tt_ttisgmt &&
|
|
strcmp(&sp->chars[ap->tt_abbrind], &sp->chars[bp->tt_abbrind]) == 0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Given a pointer into a time zone string, scan until a character that is not
|
|
* a valid character in a zone name is found. Return a pointer to that
|
|
* character.
|
|
*/
|
|
|
|
static FAR const char *getzname(FAR const char *strp)
|
|
{
|
|
char c;
|
|
|
|
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && c != '+')
|
|
{
|
|
++strp;
|
|
}
|
|
|
|
return strp;
|
|
}
|
|
|
|
/* Given a pointer into an extended time zone string, scan until the ending
|
|
* delimiter of the zone name is located. Return a pointer to the delimiter.
|
|
*
|
|
* As with getzname above, the legal character set is actually quite
|
|
* restricted, with other characters producing undefined results.
|
|
* We don't do any checking here; checking is done later in common-case code.
|
|
*/
|
|
|
|
static FAR const char *getqzname(FAR const char *strp, const int delim)
|
|
{
|
|
int c;
|
|
|
|
while ((c = *strp) != '\0' && c != delim)
|
|
{
|
|
++strp;
|
|
}
|
|
|
|
return strp;
|
|
}
|
|
|
|
/* Given a pointer into a time zone string, extract a number from that string.
|
|
* Check that the number is within a specified range; if it is not, return
|
|
* NULL.
|
|
* Otherwise, return a pointer to the first character not part of the number.
|
|
*/
|
|
|
|
static FAR const char *getnum(FAR const char *strp, FAR int *const nump,
|
|
const int min, const int max)
|
|
{
|
|
char c;
|
|
int num;
|
|
|
|
if (strp == NULL || !is_digit(c = *strp))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
num = 0;
|
|
do
|
|
{
|
|
num = num * 10 + (c - '0');
|
|
if (num > max)
|
|
{
|
|
return NULL; /* illegal value */
|
|
}
|
|
|
|
c = *++strp;
|
|
}
|
|
while (is_digit(c));
|
|
|
|
if (num < min)
|
|
{
|
|
return NULL; /* illegal value */
|
|
}
|
|
|
|
*nump = num;
|
|
return strp;
|
|
}
|
|
|
|
/* Given a pointer into a time zone string, extract a number of seconds,
|
|
* in hh[:mm[:ss]] form, from the string.
|
|
* If any error occurs, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the number
|
|
* of seconds.
|
|
*/
|
|
|
|
static FAR const char *getsecs(FAR const char *strp,
|
|
FAR int_fast32_t * const secsp)
|
|
{
|
|
int num;
|
|
|
|
/* 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
|
|
* "M10.4.6/26", which does not conform to Posix,
|
|
* but which specifies the equivalent of
|
|
* "02:00 on the first Sunday on or after 23 Oct".
|
|
*/
|
|
|
|
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
|
|
if (strp == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
*secsp = num * (int_fast32_t) SECSPERHOUR;
|
|
if (*strp == ':')
|
|
{
|
|
++strp;
|
|
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
|
|
if (strp == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
*secsp += num * SECSPERMIN;
|
|
if (*strp == ':')
|
|
{
|
|
++strp;
|
|
|
|
/* 'SECSPERMIN' allows for leap seconds. */
|
|
|
|
strp = getnum(strp, &num, 0, SECSPERMIN);
|
|
if (strp == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
*secsp += num;
|
|
}
|
|
}
|
|
|
|
return strp;
|
|
}
|
|
|
|
/* Given a pointer into a time zone string, extract an offset, in
|
|
* [+-]hh[:mm[:ss]] form, from the string.
|
|
* If any error occurs, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the time.
|
|
*/
|
|
|
|
static FAR const char *getoffset(FAR const char *strp,
|
|
FAR int_fast32_t * const offsetp)
|
|
{
|
|
int neg = 0;
|
|
|
|
if (*strp == '-')
|
|
{
|
|
neg = 1;
|
|
++strp;
|
|
}
|
|
else if (*strp == '+')
|
|
{
|
|
++strp;
|
|
}
|
|
|
|
strp = getsecs(strp, offsetp);
|
|
if (strp == NULL)
|
|
{
|
|
return NULL; /* illegal time */
|
|
}
|
|
|
|
if (neg)
|
|
{
|
|
*offsetp = -*offsetp;
|
|
}
|
|
|
|
return strp;
|
|
}
|
|
|
|
/* Given a pointer into a time zone string, extract a rule in the form
|
|
* date[/time]. See POSIX section 8 for the format of "date" and "time".
|
|
* If a valid rule is not found, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the rule.
|
|
*/
|
|
|
|
static FAR const char *getrule(FAR const char *strp,
|
|
FAR struct rule_s *const rulep)
|
|
{
|
|
if (*strp == 'J')
|
|
{
|
|
/* Julian day */
|
|
|
|
rulep->r_type = JULIAN_DAY;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
|
|
}
|
|
else if (*strp == 'M')
|
|
{
|
|
/* Month, week, day. */
|
|
|
|
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
|
|
if (strp == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if (*strp++ != '.')
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
strp = getnum(strp, &rulep->r_week, 1, 5);
|
|
if (strp == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if (*strp++ != '.')
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
|
|
}
|
|
else if (is_digit(*strp))
|
|
{
|
|
/* Day of year */
|
|
|
|
rulep->r_type = DAY_OF_YEAR;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
|
|
}
|
|
else
|
|
{
|
|
return NULL; /* invalid format */
|
|
}
|
|
|
|
if (strp == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if (*strp == '/')
|
|
{
|
|
/* Time specified */
|
|
|
|
++strp;
|
|
strp = getoffset(strp, &rulep->r_time);
|
|
}
|
|
else
|
|
{
|
|
rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
|
|
}
|
|
|
|
return strp;
|
|
}
|
|
|
|
/*Given a year, a rule, and the offset from UT at the time that rule takes
|
|
* effect, calculate the year-relative time that rule takes effect.
|
|
*/
|
|
|
|
static int_fast32_t transtime(const int year,
|
|
FAR const struct rule_s *const rulep,
|
|
const int_fast32_t offset)
|
|
{
|
|
int leapyear;
|
|
int_fast32_t value;
|
|
int i;
|
|
int d, m1, yy0, yy1, yy2, dow;
|
|
|
|
value = 0;
|
|
leapyear = isleap(year);
|
|
switch (rulep->r_type)
|
|
{
|
|
case JULIAN_DAY:
|
|
/* Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
|
|
* years.
|
|
* In non-leap years, or if the day number is 59 or less, just
|
|
* add SECSPERDAY times the day number-1 to the time of
|
|
* January 1, midnight, to get the day.
|
|
*/
|
|
|
|
value = (rulep->r_day - 1) * SECSPERDAY;
|
|
if (leapyear && rulep->r_day >= 60)
|
|
value += SECSPERDAY;
|
|
break;
|
|
|
|
case DAY_OF_YEAR:
|
|
/* n - day of year.
|
|
* Just add SECSPERDAY times the day number to the time of
|
|
* January 1, midnight, to get the day.
|
|
*/
|
|
|
|
value = rulep->r_day * SECSPERDAY;
|
|
break;
|
|
|
|
case MONTH_NTH_DAY_OF_WEEK:
|
|
/* Mm.n.d - nth "dth day" of month m */
|
|
|
|
/* Use Zeller's Congruence to get day-of-week of first day of
|
|
* month.
|
|
*/
|
|
|
|
m1 = (rulep->r_mon + 9) % 12 + 1;
|
|
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
|
|
yy1 = yy0 / 100;
|
|
yy2 = yy0 % 100;
|
|
dow = ((26 * m1 - 2) / 10 + 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
|
|
if (dow < 0)
|
|
{
|
|
dow += DAYSPERWEEK;
|
|
}
|
|
|
|
/* "dow" is the day-of-week of the first day of the month. Get
|
|
* the day-of-month (zero-origin) of the first "dow" day of the
|
|
* month.
|
|
*/
|
|
|
|
d = rulep->r_day - dow;
|
|
if (d < 0)
|
|
{
|
|
d += DAYSPERWEEK;
|
|
}
|
|
|
|
for (i = 1; i < rulep->r_week; ++i)
|
|
{
|
|
if (d + DAYSPERWEEK >= mon_lengths[leapyear][rulep->r_mon - 1])
|
|
{
|
|
break;
|
|
}
|
|
|
|
d += DAYSPERWEEK;
|
|
}
|
|
|
|
/* "d" is the day-of-month (zero-origin) of the day we want */
|
|
|
|
value = d * SECSPERDAY;
|
|
for (i = 0; i < rulep->r_mon - 1; ++i)
|
|
{
|
|
value += mon_lengths[leapyear][i] * SECSPERDAY;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* "value" is the year-relative time of 00:00:00 UT on the day in
|
|
* question. To get the year-relative time of the specified local
|
|
* time on that day, add the transition time and the current offset
|
|
* from UT.
|
|
*/
|
|
|
|
return value + rulep->r_time + offset;
|
|
}
|
|
|
|
/* Given a POSIX section 8-style TZ string, fill in the rule tables as
|
|
* appropriate.
|
|
*/
|
|
|
|
static int tzparse(FAR const char *name, FAR struct state_s *const sp,
|
|
const int lastditch)
|
|
{
|
|
FAR const char *stdname;
|
|
FAR const char *dstname;
|
|
size_t stdlen;
|
|
size_t dstlen;
|
|
int_fast32_t stdoffset;
|
|
int_fast32_t dstoffset;
|
|
char *cp;
|
|
int load_result;
|
|
static struct ttinfo_s zttinfo;
|
|
|
|
stdname = name;
|
|
if (lastditch)
|
|
{
|
|
stdlen = strlen(name); /* length of standard zone name */
|
|
name += stdlen;
|
|
if (stdlen >= sizeof sp->chars)
|
|
{
|
|
stdlen = (sizeof sp->chars) - 1;
|
|
}
|
|
|
|
stdoffset = 0;
|
|
}
|
|
else
|
|
{
|
|
if (*name == '<')
|
|
{
|
|
name++;
|
|
stdname = name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
stdlen = name - stdname;
|
|
name++;
|
|
}
|
|
else
|
|
{
|
|
name = getzname(name);
|
|
stdlen = name - stdname;
|
|
}
|
|
if (*name == '\0')
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
name = getoffset(name, &stdoffset);
|
|
if (name == NULL)
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
load_result = tzload(TZDEFRULES, sp, FALSE);
|
|
if (load_result != 0)
|
|
{
|
|
sp->leapcnt = 0; /* so, we're off a little */
|
|
}
|
|
|
|
if (*name != '\0')
|
|
{
|
|
if (*name == '<')
|
|
{
|
|
dstname = ++name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
dstlen = name - dstname;
|
|
name++;
|
|
}
|
|
else
|
|
{
|
|
dstname = name;
|
|
name = getzname(name);
|
|
dstlen = name - dstname; /* length of DST zone name */
|
|
}
|
|
|
|
if (*name != '\0' && *name != ',' && *name != ';')
|
|
{
|
|
name = getoffset(name, &dstoffset);
|
|
if (name == NULL)
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dstoffset = stdoffset - SECSPERHOUR;
|
|
}
|
|
|
|
if (*name == '\0' && load_result != 0)
|
|
{
|
|
name = TZDEFRULESTRING;
|
|
}
|
|
|
|
if (*name == ',' || *name == ';')
|
|
{
|
|
struct rule_s start;
|
|
struct rule_s end;
|
|
int year;
|
|
int yearlim;
|
|
int timecnt;
|
|
time_t janfirst;
|
|
|
|
++name;
|
|
if ((name = getrule(name, &start)) == NULL)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
if (*name++ != ',')
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
if ((name = getrule(name, &end)) == NULL)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
if (*name != '\0')
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
sp->typecnt = 2; /* standard time and DST */
|
|
|
|
/* Two transitions per year, from EPOCH_YEAR forward */
|
|
|
|
sp->ttis[0] = sp->ttis[1] = zttinfo;
|
|
sp->ttis[0].tt_gmtoff = -dstoffset;
|
|
sp->ttis[0].tt_isdst = 1;
|
|
sp->ttis[0].tt_abbrind = stdlen + 1;
|
|
sp->ttis[1].tt_gmtoff = -stdoffset;
|
|
sp->ttis[1].tt_isdst = 0;
|
|
sp->ttis[1].tt_abbrind = 0;
|
|
sp->defaulttype = 0;
|
|
timecnt = 0;
|
|
janfirst = 0;
|
|
yearlim = EPOCH_YEAR + YEARSPERREPEAT;
|
|
for (year = EPOCH_YEAR; year < yearlim; year++)
|
|
{
|
|
int_fast32_t
|
|
starttime = transtime(year, &start, stdoffset),
|
|
endtime = transtime(year, &end, dstoffset);
|
|
int_fast32_t yearsecs = (year_lengths[isleap(year)] * SECSPERDAY);
|
|
int reversed = endtime < starttime;
|
|
if (reversed)
|
|
{
|
|
int_fast32_t swap = starttime;
|
|
starttime = endtime;
|
|
endtime = swap;
|
|
}
|
|
|
|
if (reversed ||
|
|
(starttime < endtime &&
|
|
(endtime - starttime < (yearsecs + (stdoffset - dstoffset)))))
|
|
{
|
|
if (TZ_MAX_TIMES - 2 < timecnt)
|
|
{
|
|
break;
|
|
}
|
|
|
|
yearlim = year + YEARSPERREPEAT + 1;
|
|
sp->ats[timecnt] = janfirst;
|
|
if (increment_overflow_time(&sp->ats[timecnt], starttime))
|
|
{
|
|
break;
|
|
}
|
|
|
|
sp->types[timecnt++] = reversed;
|
|
sp->ats[timecnt] = janfirst;
|
|
if (increment_overflow_time(&sp->ats[timecnt], endtime))
|
|
{
|
|
break;
|
|
}
|
|
|
|
sp->types[timecnt++] = !reversed;
|
|
}
|
|
|
|
if (increment_overflow_time(&janfirst, yearsecs))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
sp->timecnt = timecnt;
|
|
if (!timecnt)
|
|
{
|
|
sp->typecnt = 1; /* Perpetual DST. */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int_fast32_t theirstdoffset;
|
|
int_fast32_t theirdstoffset;
|
|
int_fast32_t theiroffset;
|
|
int isdst;
|
|
int i;
|
|
int j;
|
|
|
|
if (*name != '\0')
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
/* Initial values of theirstdoffset and theirdstoffset */
|
|
|
|
theirstdoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
if (!sp->ttis[j].tt_isdst)
|
|
{
|
|
theirstdoffset = -sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
|
|
theirdstoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
if (sp->ttis[j].tt_isdst)
|
|
{
|
|
theirdstoffset = -sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Initially we're assumed to be in standard time */
|
|
|
|
isdst = FALSE;
|
|
theiroffset = theirstdoffset;
|
|
|
|
/* Now juggle transition times and types
|
|
* tracking offsets as you do.
|
|
*/
|
|
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
sp->types[i] = sp->ttis[j].tt_isdst;
|
|
if (sp->ttis[j].tt_ttisgmt)
|
|
{
|
|
/* No adjustment to transition time */
|
|
}
|
|
else
|
|
{
|
|
/* If summer time is in effect, and the
|
|
* transition time was not specified as
|
|
* standard time, add the summer time
|
|
* offset to the transition time;
|
|
* otherwise, add the standard time
|
|
* offset to the transition time.
|
|
*
|
|
* Transitions from DST to DDST
|
|
* will effectively disappear since
|
|
* POSIX provides for only one DST
|
|
* offset.
|
|
*/
|
|
|
|
if (isdst && !sp->ttis[j].tt_ttisstd)
|
|
{
|
|
sp->ats[i] += dstoffset - theirdstoffset;
|
|
}
|
|
else
|
|
{
|
|
sp->ats[i] += stdoffset - theirstdoffset;
|
|
}
|
|
}
|
|
|
|
theiroffset = -sp->ttis[j].tt_gmtoff;
|
|
if (sp->ttis[j].tt_isdst)
|
|
{
|
|
theirdstoffset = theiroffset;
|
|
}
|
|
else
|
|
{
|
|
theirstdoffset = theiroffset;
|
|
}
|
|
}
|
|
|
|
/* Finally, fill in ttis */
|
|
|
|
sp->ttis[0] = sp->ttis[1] = zttinfo;
|
|
sp->ttis[0].tt_gmtoff = -stdoffset;
|
|
sp->ttis[0].tt_isdst = FALSE;
|
|
sp->ttis[0].tt_abbrind = 0;
|
|
sp->ttis[1].tt_gmtoff = -dstoffset;
|
|
sp->ttis[1].tt_isdst = TRUE;
|
|
sp->ttis[1].tt_abbrind = stdlen + 1;
|
|
sp->typecnt = 2;
|
|
sp->defaulttype = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dstlen = 0;
|
|
sp->typecnt = 1; /* only standard time */
|
|
sp->timecnt = 0;
|
|
sp->ttis[0] = zttinfo;
|
|
sp->ttis[0].tt_gmtoff = -stdoffset;
|
|
sp->ttis[0].tt_isdst = 0;
|
|
sp->ttis[0].tt_abbrind = 0;
|
|
sp->defaulttype = 0;
|
|
}
|
|
|
|
sp->charcnt = stdlen + 1;
|
|
if (dstlen != 0)
|
|
{
|
|
sp->charcnt += dstlen + 1;
|
|
}
|
|
|
|
if ((size_t) sp->charcnt > sizeof sp->chars)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
cp = sp->chars;
|
|
(void)strncpy(cp, stdname, stdlen);
|
|
cp += stdlen;
|
|
*cp++ = '\0';
|
|
if (dstlen != 0)
|
|
{
|
|
(void)strncpy(cp, dstname, dstlen);
|
|
*(cp + dstlen) = '\0';
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gmtload(FAR struct state_s *const sp)
|
|
{
|
|
if (tzload(GMT, sp, TRUE) != 0)
|
|
{
|
|
(void)tzparse(GMT, sp, TRUE);
|
|
}
|
|
}
|
|
|
|
/* A non-static declaration of tzsetwall in a system header file
|
|
* may cause a warning about this upcoming static declaration...
|
|
*/
|
|
|
|
static void tzsetwall(void)
|
|
{
|
|
if (lcl_is_set < 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
lcl_is_set = -1;
|
|
|
|
if (lclptr == NULL)
|
|
{
|
|
lclptr = malloc(sizeof *lclptr);
|
|
if (lclptr == NULL)
|
|
{
|
|
settzname(); /* all we can do */
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (tzload(NULL, lclptr, TRUE) != 0)
|
|
{
|
|
gmtload(lclptr);
|
|
}
|
|
|
|
settzname();
|
|
}
|
|
|
|
/* The easy way to behave "as if no library function calls" localtime
|
|
* is to not call it, so we drop its guts into "localsub", which can be
|
|
* freely called. (And no, the PANS doesn't require the above behavior,
|
|
* but it *is* desirable.)
|
|
*
|
|
* The unused offset argument is for the benefit of mktime variants.
|
|
*/
|
|
|
|
static struct tm *localsub(FAR const time_t * const timep,
|
|
const int_fast32_t offset, struct tm *const tmp)
|
|
{
|
|
FAR struct state_s *sp;
|
|
const struct ttinfo_s *ttisp;
|
|
int i;
|
|
struct tm *result;
|
|
const time_t t = *timep;
|
|
|
|
sp = lclptr;
|
|
if (sp == NULL)
|
|
{
|
|
return gmtsub(timep, offset, tmp);
|
|
}
|
|
|
|
if ((sp->goback && t < sp->ats[0]) ||
|
|
(sp->goahead && t > sp->ats[sp->timecnt - 1]))
|
|
{
|
|
time_t newt = t;
|
|
time_t seconds;
|
|
time_t years;
|
|
|
|
if (t < sp->ats[0])
|
|
{
|
|
seconds = sp->ats[0] - t;
|
|
}
|
|
else
|
|
{
|
|
seconds = t - sp->ats[sp->timecnt - 1];
|
|
}
|
|
|
|
--seconds;
|
|
years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT;
|
|
seconds = years * AVGSECSPERYEAR;
|
|
if (t < sp->ats[0])
|
|
{
|
|
newt += seconds;
|
|
}
|
|
else
|
|
{
|
|
newt -= seconds;
|
|
}
|
|
|
|
if (newt < sp->ats[0] || newt > sp->ats[sp->timecnt - 1])
|
|
{
|
|
return NULL; /* "cannot happen" */
|
|
}
|
|
|
|
result = localsub(&newt, offset, tmp);
|
|
if (result == tmp)
|
|
{
|
|
time_t newy;
|
|
|
|
newy = tmp->tm_year;
|
|
if (t < sp->ats[0])
|
|
{
|
|
newy -= years;
|
|
}
|
|
else
|
|
{
|
|
newy += years;
|
|
}
|
|
|
|
tmp->tm_year = newy;
|
|
if (tmp->tm_year != newy)
|
|
{
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
if (sp->timecnt == 0 || t < sp->ats[0])
|
|
{
|
|
i = sp->defaulttype;
|
|
}
|
|
else
|
|
{
|
|
int lo = 1;
|
|
int hi = sp->timecnt;
|
|
|
|
while (lo < hi)
|
|
{
|
|
int mid = (lo + hi) >> 1;
|
|
|
|
if (t < sp->ats[mid])
|
|
{
|
|
hi = mid;
|
|
}
|
|
else
|
|
{
|
|
lo = mid + 1;
|
|
}
|
|
}
|
|
|
|
i = (int)sp->types[lo - 1];
|
|
}
|
|
|
|
ttisp = &sp->ttis[i];
|
|
|
|
/* To get (wrong) behavior that's compatible with System V Release 2.0
|
|
* you'd replace the statement below with
|
|
* t += ttisp->tt_gmtoff;
|
|
* timesub(&t, 0L, sp, tmp);
|
|
*/
|
|
|
|
result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
|
|
tmp->tm_isdst = ttisp->tt_isdst;
|
|
tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
|
|
|
|
return result;
|
|
}
|
|
|
|
/* gmtsub is to gmtime as localsub is to localtime */
|
|
|
|
static struct tm *gmtsub(FAR const time_t * const timep, const int_fast32_t offset,
|
|
struct tm *const tmp)
|
|
{
|
|
if (!gmt_is_set)
|
|
{
|
|
gmtptr = malloc(sizeof *gmtptr);
|
|
gmt_is_set = gmtptr != NULL;
|
|
if (gmt_is_set)
|
|
{
|
|
gmtload(gmtptr);
|
|
}
|
|
}
|
|
|
|
return timesub(timep, offset, gmtptr, tmp);
|
|
}
|
|
|
|
/* Return the number of leap years through the end of the given year
|
|
* where, to make the math easy, the answer for year zero is defined as zero.
|
|
*/
|
|
|
|
static int leaps_thru_end_of(const int y)
|
|
{
|
|
return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
|
|
-(leaps_thru_end_of(-(y + 1)) + 1);
|
|
}
|
|
|
|
static struct tm *timesub(FAR const time_t * const timep,
|
|
const int_fast32_t offset,
|
|
FAR const struct state_s *const sp,
|
|
struct tm *const tmp)
|
|
{
|
|
const struct lsinfo_s *lp;
|
|
time_t tdays;
|
|
int idays; /* unsigned would be so 2003 */
|
|
int_fast64_t rem;
|
|
int y;
|
|
FAR const int *ip;
|
|
int_fast64_t corr;
|
|
int hit;
|
|
int i;
|
|
|
|
corr = 0;
|
|
hit = 0;
|
|
i = (sp == NULL) ? 0 : sp->leapcnt;
|
|
while (--i >= 0)
|
|
{
|
|
lp = &sp->lsis[i];
|
|
if (*timep >= lp->ls_trans)
|
|
{
|
|
if (*timep == lp->ls_trans)
|
|
{
|
|
hit = ((i == 0 && lp->ls_corr > 0) ||
|
|
lp->ls_corr > sp->lsis[i - 1].ls_corr);
|
|
if (hit)
|
|
{
|
|
while (i > 0 &&
|
|
sp->lsis[i].ls_trans ==
|
|
sp->lsis[i - 1].ls_trans + 1 &&
|
|
sp->lsis[i].ls_corr == sp->lsis[i - 1].ls_corr + 1)
|
|
{
|
|
++hit;
|
|
--i;
|
|
}
|
|
}
|
|
}
|
|
|
|
corr = lp->ls_corr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
y = EPOCH_YEAR;
|
|
tdays = *timep / SECSPERDAY;
|
|
rem = *timep - tdays * SECSPERDAY;
|
|
while (tdays < 0 || tdays >= year_lengths[isleap(y)])
|
|
{
|
|
int newy;
|
|
time_t tdelta;
|
|
int idelta;
|
|
int leapdays;
|
|
|
|
tdelta = tdays / DAYSPERLYEAR;
|
|
if (!((!TYPE_SIGNED(time_t) || INT_MIN <= tdelta) && tdelta <= INT_MAX))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
idelta = tdelta;
|
|
if (idelta == 0)
|
|
{
|
|
idelta = (tdays < 0) ? -1 : 1;
|
|
}
|
|
|
|
newy = y;
|
|
if (increment_overflow(&newy, idelta))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
leapdays = leaps_thru_end_of(newy - 1) - leaps_thru_end_of(y - 1);
|
|
tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
|
|
tdays -= leapdays;
|
|
y = newy;
|
|
}
|
|
|
|
{
|
|
int_fast32_t seconds;
|
|
|
|
seconds = tdays * SECSPERDAY;
|
|
tdays = seconds / SECSPERDAY;
|
|
rem += seconds - tdays * SECSPERDAY;
|
|
}
|
|
|
|
/* Given the range, we can now fearlessly cast */
|
|
|
|
idays = tdays;
|
|
rem += offset - corr;
|
|
while (rem < 0)
|
|
{
|
|
rem += SECSPERDAY;
|
|
--idays;
|
|
}
|
|
|
|
while (rem >= SECSPERDAY)
|
|
{
|
|
rem -= SECSPERDAY;
|
|
++idays;
|
|
}
|
|
|
|
while (idays < 0)
|
|
{
|
|
if (increment_overflow(&y, -1))
|
|
return NULL;
|
|
idays += year_lengths[isleap(y)];
|
|
}
|
|
|
|
while (idays >= year_lengths[isleap(y)])
|
|
{
|
|
idays -= year_lengths[isleap(y)];
|
|
if (increment_overflow(&y, 1))
|
|
{
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
tmp->tm_year = y;
|
|
if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
tmp->tm_yday = idays;
|
|
|
|
/* The "extra" mods below avoid overflow problems */
|
|
|
|
tmp->tm_wday = EPOCH_WDAY +
|
|
((y - EPOCH_YEAR) % DAYSPERWEEK) *
|
|
(DAYSPERNYEAR % DAYSPERWEEK) +
|
|
leaps_thru_end_of(y - 1) - leaps_thru_end_of(EPOCH_YEAR - 1) + idays;
|
|
tmp->tm_wday %= DAYSPERWEEK;
|
|
if (tmp->tm_wday < 0)
|
|
{
|
|
tmp->tm_wday += DAYSPERWEEK;
|
|
}
|
|
|
|
tmp->tm_hour = (int)(rem / SECSPERHOUR);
|
|
rem %= SECSPERHOUR;
|
|
tmp->tm_min = (int)(rem / SECSPERMIN);
|
|
|
|
/* A positive leap second requires a special
|
|
* representation. This uses "... ??:59:60" et seq.
|
|
*/
|
|
|
|
tmp->tm_sec = (int)(rem % SECSPERMIN) + hit;
|
|
ip = mon_lengths[isleap(y)];
|
|
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
|
|
{
|
|
idays -= ip[tmp->tm_mon];
|
|
}
|
|
|
|
tmp->tm_mday = (int)(idays + 1);
|
|
tmp->tm_isdst = 0;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/* Adapted from code provided by Robert Elz, who writes:
|
|
* The "best" way to do mktime I think is based on an idea of Bob
|
|
* Kridle's (so its said...) from a long time ago.
|
|
* It does a binary search of the time_t space. Since time_t's are
|
|
* just 32 bits, its a max of 32 iterations (even at 64 bits it
|
|
* would still be very reasonable).
|
|
*/
|
|
|
|
/* Normalize logic courtesy Paul Eggert */
|
|
|
|
static int increment_overflow(FAR int *const ip, int j)
|
|
{
|
|
int const i = *ip;
|
|
|
|
/* If i >= 0 there can only be overflow if i + j > INT_MAX
|
|
* or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
|
|
* If i < 0 there can only be overflow if i + j < INT_MIN
|
|
* or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
|
|
*/
|
|
|
|
if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
*ip += j;
|
|
return FALSE;
|
|
}
|
|
|
|
static int increment_overflow32(FAR int_fast32_t * const lp, int const m)
|
|
{
|
|
int_fast32_t const l = *lp;
|
|
|
|
if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
*lp += m;
|
|
return FALSE;
|
|
}
|
|
|
|
static int increment_overflow_time(time_t * tp, int_fast32_t j)
|
|
{
|
|
/* This is like
|
|
* 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
|
|
* except that it does the right thing even if *tp + j would overflow.
|
|
*/
|
|
|
|
if (!(j < 0
|
|
? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
|
|
: *tp <= time_t_max - j))
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
*tp += j;
|
|
return FALSE;
|
|
}
|
|
|
|
static int normalize_overflow(FAR int *const tensptr,
|
|
FAR int *const unitsptr, const int base)
|
|
{
|
|
int tensdelta;
|
|
|
|
tensdelta = (*unitsptr >= 0) ?
|
|
(*unitsptr / base) : (-1 - (-1 - *unitsptr) / base);
|
|
*unitsptr -= tensdelta * base;
|
|
return increment_overflow(tensptr, tensdelta);
|
|
}
|
|
|
|
static int normalize_overflow32(FAR int_fast32_t * const tensptr,
|
|
FAR int *const unitsptr, const int base)
|
|
{
|
|
int tensdelta;
|
|
|
|
tensdelta = (*unitsptr >= 0) ?
|
|
(*unitsptr / base) : (-1 - (-1 - *unitsptr) / base);
|
|
*unitsptr -= tensdelta * base;
|
|
return increment_overflow32(tensptr, tensdelta);
|
|
}
|
|
|
|
static int tmcomp(FAR const struct tm *atmp, FAR const struct tm *btmp)
|
|
{
|
|
int result;
|
|
|
|
if (atmp->tm_year != btmp->tm_year)
|
|
{
|
|
return atmp->tm_year < btmp->tm_year ? -1 : 1;
|
|
}
|
|
|
|
if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
|
|
(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
|
|
(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
|
|
(result = (atmp->tm_min - btmp->tm_min)) == 0)
|
|
{
|
|
result = atmp->tm_sec - btmp->tm_sec;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static time_t time2sub(struct tm *const tmp,
|
|
FAR struct tm *(*const funcp)(FAR const time_t *,
|
|
int_fast32_t, struct tm *),
|
|
const int_fast32_t offset, FAR int *const okayp,
|
|
const int do_norm_secs)
|
|
{
|
|
FAR const struct state_s *sp;
|
|
int dir;
|
|
int i, j;
|
|
int saved_seconds;
|
|
int_fast32_t li;
|
|
time_t lo;
|
|
time_t hi;
|
|
int_fast32_t y;
|
|
time_t newt;
|
|
time_t t;
|
|
struct tm yourtm, mytm;
|
|
|
|
*okayp = FALSE;
|
|
yourtm = *tmp;
|
|
if (do_norm_secs)
|
|
{
|
|
if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, SECSPERMIN))
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
y = yourtm.tm_year;
|
|
if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
/* Turn y into an actual year number for now.
|
|
* It is converted back to an offset from TM_YEAR_BASE later.
|
|
*/
|
|
|
|
if (increment_overflow32(&y, TM_YEAR_BASE))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
while (yourtm.tm_mday <= 0)
|
|
{
|
|
if (increment_overflow32(&y, -1))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
li = y + (1 < yourtm.tm_mon);
|
|
yourtm.tm_mday += year_lengths[isleap(li)];
|
|
}
|
|
|
|
while (yourtm.tm_mday > DAYSPERLYEAR)
|
|
{
|
|
li = y + (1 < yourtm.tm_mon);
|
|
yourtm.tm_mday -= year_lengths[isleap(li)];
|
|
if (increment_overflow32(&y, 1))
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
for (;;)
|
|
{
|
|
i = mon_lengths[isleap(y)][yourtm.tm_mon];
|
|
if (yourtm.tm_mday <= i)
|
|
{
|
|
break;
|
|
}
|
|
|
|
yourtm.tm_mday -= i;
|
|
if (++yourtm.tm_mon >= MONSPERYEAR)
|
|
{
|
|
yourtm.tm_mon = 0;
|
|
if (increment_overflow32(&y, 1))
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (increment_overflow32(&y, -TM_YEAR_BASE))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
yourtm.tm_year = y;
|
|
if (yourtm.tm_year != y)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
|
|
{
|
|
saved_seconds = 0;
|
|
}
|
|
else if (y + TM_YEAR_BASE < EPOCH_YEAR)
|
|
{
|
|
/* We can't set tm_sec to 0, because that might push the
|
|
* time below the minimum representable time.
|
|
* Set tm_sec to 59 instead.
|
|
* This assumes that the minimum representable time is
|
|
* not in the same minute that a leap second was deleted from,
|
|
* which is a safer assumption than using 58 would be.
|
|
*/
|
|
|
|
if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
saved_seconds = yourtm.tm_sec;
|
|
yourtm.tm_sec = SECSPERMIN - 1;
|
|
}
|
|
else
|
|
{
|
|
saved_seconds = yourtm.tm_sec;
|
|
yourtm.tm_sec = 0;
|
|
}
|
|
|
|
/* Do a binary search (this works whatever time_t's type is) */
|
|
|
|
if (!TYPE_SIGNED(time_t))
|
|
{
|
|
lo = 0;
|
|
hi = lo - 1;
|
|
}
|
|
else
|
|
{
|
|
lo = 1;
|
|
for (i = 0; i < (int)TYPE_BIT(time_t) - 1; ++i)
|
|
{
|
|
lo *= 2;
|
|
}
|
|
|
|
hi = -(lo + 1);
|
|
}
|
|
|
|
for (;;)
|
|
{
|
|
t = lo / 2 + hi / 2;
|
|
if (t < lo)
|
|
{
|
|
t = lo;
|
|
}
|
|
else if (t > hi)
|
|
{
|
|
t = hi;
|
|
}
|
|
|
|
if ((*funcp) (&t, offset, &mytm) == NULL)
|
|
{
|
|
/* Assume that t is too extreme to be represented in
|
|
* a struct tm; arrange things so that it is less
|
|
* extreme on the next pass.
|
|
*/
|
|
|
|
dir = (t > 0) ? 1 : -1;
|
|
}
|
|
else
|
|
{
|
|
dir = tmcomp(&mytm, &yourtm);
|
|
}
|
|
|
|
if (dir != 0)
|
|
{
|
|
if (t == lo)
|
|
{
|
|
if (t == time_t_max)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
++t;
|
|
++lo;
|
|
}
|
|
else if (t == hi)
|
|
{
|
|
if (t == time_t_min)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
--t;
|
|
--hi;
|
|
}
|
|
|
|
if (lo > hi)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
if (dir > 0)
|
|
{
|
|
hi = t;
|
|
}
|
|
else
|
|
{
|
|
lo = t;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* Right time, wrong type.
|
|
* Hunt for right time, right type.
|
|
* It's okay to guess wrong since the guess
|
|
* gets checked.
|
|
*/
|
|
|
|
sp = (FAR const struct state_s *)((funcp == localsub) ? lclptr : gmtptr);
|
|
if (sp == NULL)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
for (i = sp->typecnt - 1; i >= 0; --i)
|
|
{
|
|
if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
for (j = sp->typecnt - 1; j >= 0; --j)
|
|
{
|
|
if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
newt = t + sp->ttis[j].tt_gmtoff - sp->ttis[i].tt_gmtoff;
|
|
if ((*funcp) (&newt, offset, &mytm) == NULL)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (tmcomp(&mytm, &yourtm) != 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (mytm.tm_isdst != yourtm.tm_isdst)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/* We have a match */
|
|
|
|
t = newt;
|
|
goto label;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
label:
|
|
newt = t + saved_seconds;
|
|
if ((newt < t) != (saved_seconds < 0))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
t = newt;
|
|
if ((*funcp) (&t, offset, tmp))
|
|
{
|
|
*okayp = TRUE;
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
static time_t time2(FAR struct tm *const tmp,
|
|
FAR struct tm *(*const funcp)(FAR const time_t *,
|
|
int_fast32_t, struct tm *),
|
|
const int_fast32_t offset, FAR int *const okayp)
|
|
{
|
|
time_t t;
|
|
|
|
/* First try without normalization of seconds
|
|
* (in case tm_sec contains a value associated with a leap second).
|
|
* If that fails, try with normalization of seconds.
|
|
*/
|
|
|
|
t = time2sub(tmp, funcp, offset, okayp, FALSE);
|
|
return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
|
|
}
|
|
|
|
static time_t time1(FAR struct tm *const tmp,
|
|
FAR struct tm *(*const funcp)(FAR const time_t *,
|
|
int_fast32_t, FAR struct tm *),
|
|
const int_fast32_t offset)
|
|
{
|
|
time_t t;
|
|
FAR const struct state_s *sp;
|
|
int samei, otheri;
|
|
int sameind, otherind;
|
|
int i;
|
|
int nseen;
|
|
char seen[TZ_MAX_TYPES];
|
|
unsigned char types[TZ_MAX_TYPES];
|
|
int okay;
|
|
|
|
if (tmp == NULL)
|
|
{
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (tmp->tm_isdst > 1)
|
|
{
|
|
tmp->tm_isdst = 1;
|
|
}
|
|
|
|
t = time2(tmp, funcp, offset, &okay);
|
|
if (okay)
|
|
{
|
|
return t;
|
|
}
|
|
|
|
if (tmp->tm_isdst < 0)
|
|
{
|
|
return t;
|
|
}
|
|
|
|
/* We're supposed to assume that somebody took a time of one type
|
|
* and did some math on it that yielded a "struct tm" that's bad.
|
|
* We try to divine the type they started from and adjust to the
|
|
* type they need.
|
|
*/
|
|
|
|
sp = (FAR const struct state_s *)((funcp == localsub) ? lclptr : gmtptr);
|
|
if (sp == NULL)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
seen[i] = FALSE;
|
|
}
|
|
|
|
nseen = 0;
|
|
for (i = sp->timecnt - 1; i >= 0; --i)
|
|
{
|
|
if (!seen[sp->types[i]])
|
|
{
|
|
seen[sp->types[i]] = TRUE;
|
|
types[nseen++] = sp->types[i];
|
|
}
|
|
}
|
|
|
|
for (sameind = 0; sameind < nseen; ++sameind)
|
|
{
|
|
samei = types[sameind];
|
|
if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
for (otherind = 0; otherind < nseen; ++otherind)
|
|
{
|
|
otheri = types[otherind];
|
|
if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - sp->ttis[samei].tt_gmtoff;
|
|
tmp->tm_isdst = !tmp->tm_isdst;
|
|
t = time2(tmp, funcp, offset, &okay);
|
|
if (okay)
|
|
{
|
|
return t;
|
|
}
|
|
|
|
tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - sp->ttis[samei].tt_gmtoff;
|
|
tmp->tm_isdst = !tmp->tm_isdst;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
void tzset(void)
|
|
{
|
|
FAR const char *name;
|
|
|
|
name = getenv("TZ");
|
|
if (name == NULL)
|
|
{
|
|
tzsetwall();
|
|
return;
|
|
}
|
|
|
|
if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
lcl_is_set = strlen(name) < sizeof lcl_TZname;
|
|
if (lcl_is_set)
|
|
{
|
|
(void)strcpy(lcl_TZname, name);
|
|
}
|
|
|
|
if (lclptr == NULL)
|
|
{
|
|
lclptr = malloc(sizeof *lclptr);
|
|
if (lclptr == NULL)
|
|
{
|
|
settzname(); /* all we can do */
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (*name == '\0')
|
|
{
|
|
/* User wants it fast rather than right */
|
|
|
|
lclptr->leapcnt = 0; /* so, we're off a little */
|
|
lclptr->timecnt = 0;
|
|
lclptr->typecnt = 0;
|
|
lclptr->ttis[0].tt_isdst = 0;
|
|
lclptr->ttis[0].tt_gmtoff = 0;
|
|
lclptr->ttis[0].tt_abbrind = 0;
|
|
(void)strcpy(lclptr->chars, GMT);
|
|
}
|
|
else if (tzload(name, lclptr, TRUE) != 0)
|
|
{
|
|
if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
|
|
{
|
|
(void)gmtload(lclptr);
|
|
}
|
|
}
|
|
|
|
settzname();
|
|
}
|
|
|
|
FAR struct tm *localtime(FAR const time_t * const timep)
|
|
{
|
|
tzset();
|
|
return localsub(timep, 0L, &tm);
|
|
}
|
|
|
|
/* Re-entrant version of localtime */
|
|
|
|
FAR struct tm *localtime_r(FAR const time_t * const timep, struct tm *tmp)
|
|
{
|
|
return localsub(timep, 0L, tmp);
|
|
}
|
|
|
|
FAR struct tm *gmtime(FAR const time_t * const timep)
|
|
{
|
|
return gmtsub(timep, 0L, &tm);
|
|
}
|
|
|
|
/* Re-entrant version of gmtime */
|
|
|
|
FAR struct tm *gmtime_r(FAR const time_t * const timep, struct tm *tmp)
|
|
{
|
|
return gmtsub(timep, 0L, tmp);
|
|
}
|
|
|
|
#if 0 /* No asctime() */
|
|
FAR char *ctime(FAR const time_t * const timep)
|
|
{
|
|
/* Section 4.12.3.2 of X3.159-1989 requires that
|
|
* The ctime function converts the calendar time pointed to by timer
|
|
* to local time in the form of a string. It is equivalent to
|
|
* asctime(localtime(timer))
|
|
*/
|
|
|
|
return asctime(localtime(timep));
|
|
}
|
|
#endif
|
|
|
|
#if 0 /* No asctime_r */
|
|
FAR char *ctime_r(FAR const time_t * const timep, char *buf)
|
|
{
|
|
struct tm mytm;
|
|
|
|
return asctime_r(localtime_r(timep, &mytm), buf);
|
|
}
|
|
#endif
|
|
|
|
time_t mktime(struct tm * const tmp)
|
|
{
|
|
tzset();
|
|
return time1(tmp, localsub, 0L);
|
|
}
|