1171 lines
34 KiB
C
1171 lines
34 KiB
C
/****************************************************************************
|
|
* net/tcp/tcp_send_buffered.c
|
|
*
|
|
* Copyright (C) 2007-2014, 2016-2017 Gregory Nutt. All rights reserved.
|
|
* Author: Gregory Nutt <gnutt@nuttx.org>
|
|
* Jason Jiang <jasonj@live.cn>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
|
|
#if defined(CONFIG_NET) && defined(CONFIG_NET_TCP) && \
|
|
defined(CONFIG_NET_TCP_WRITE_BUFFERS)
|
|
|
|
#if defined(CONFIG_DEBUG_FEATURES) && defined(CONFIG_NET_TCP_WRBUFFER_DEBUG)
|
|
/* Force debug output (from this file only) */
|
|
|
|
# undef CONFIG_DEBUG_NET
|
|
# define CONFIG_DEBUG_NET 1
|
|
#endif
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <debug.h>
|
|
#include <debug.h>
|
|
|
|
#include <arch/irq.h>
|
|
#include <nuttx/clock.h>
|
|
#include <nuttx/net/net.h>
|
|
#include <nuttx/mm/iob.h>
|
|
#include <nuttx/net/netdev.h>
|
|
#include <nuttx/net/arp.h>
|
|
#include <nuttx/net/tcp.h>
|
|
|
|
#include "socket/socket.h"
|
|
#include "netdev/netdev.h"
|
|
#include "arp/arp.h"
|
|
#include "icmpv6/icmpv6.h"
|
|
#include "neighbor/neighbor.h"
|
|
#include "tcp/tcp.h"
|
|
#include "devif/devif.h"
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
/* If both IPv4 and IPv6 support are both enabled, then we will need to build
|
|
* in some additional domain selection support.
|
|
*/
|
|
|
|
#if defined(CONFIG_NET_IPv4) && defined(CONFIG_NET_IPv6)
|
|
# define NEED_IPDOMAIN_SUPPORT 1
|
|
#endif
|
|
|
|
#define TCPIPv4BUF ((struct tcp_hdr_s *)&dev->d_buf[NET_LL_HDRLEN(dev) + IPv4_HDRLEN])
|
|
#define TCPIPv6BUF ((struct tcp_hdr_s *)&dev->d_buf[NET_LL_HDRLEN(dev) + IPv6_HDRLEN])
|
|
|
|
/* Debug */
|
|
|
|
#ifdef CONFIG_NET_TCP_WRBUFFER_DUMP
|
|
# define BUF_DUMP(msg,buf,len) lib_dumpbuffer(msg,buf,len)
|
|
#else
|
|
# define BUF_DUMP(msg,buf,len)
|
|
# undef WRB_DUMP
|
|
# define WRB_DUMP(msg,wrb,len,offset)
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: psock_insert_segment
|
|
*
|
|
* Description:
|
|
* Insert a new segment in a write buffer queue, keep the segment queue in
|
|
* ascending order of sequence number.
|
|
*
|
|
* Parameters:
|
|
* wrb The segment to be inserted
|
|
* q The write buffer queue in which to insert the segment
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
* Assumptions:
|
|
* Running at the interrupt level
|
|
*
|
|
****************************************************************************/
|
|
|
|
static void psock_insert_segment(FAR struct tcp_wrbuffer_s *wrb,
|
|
FAR sq_queue_t *q)
|
|
{
|
|
FAR sq_entry_t *entry = (FAR sq_entry_t *)wrb;
|
|
FAR sq_entry_t *insert = NULL;
|
|
|
|
FAR sq_entry_t *itr;
|
|
for (itr = sq_peek(q); itr; itr = sq_next(itr))
|
|
{
|
|
FAR struct tcp_wrbuffer_s *wrb0 = (FAR struct tcp_wrbuffer_s *)itr;
|
|
if (WRB_SEQNO(wrb0) < WRB_SEQNO(wrb))
|
|
{
|
|
insert = itr;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (insert)
|
|
{
|
|
sq_addafter(insert, entry, q);
|
|
}
|
|
else
|
|
{
|
|
sq_addfirst(entry, q);
|
|
}
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: psock_lost_connection
|
|
*
|
|
* Description:
|
|
* The TCP connection has been lost. Free all write buffers.
|
|
*
|
|
* Parameters:
|
|
* psock The socket structure
|
|
* conn The connection structure associated with the socket
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline void psock_lost_connection(FAR struct socket *psock,
|
|
FAR struct tcp_conn_s *conn)
|
|
{
|
|
FAR sq_entry_t *entry;
|
|
FAR sq_entry_t *next;
|
|
|
|
/* Do not allow any further callbacks */
|
|
|
|
if (psock->s_sndcb != NULL)
|
|
{
|
|
psock->s_sndcb->flags = 0;
|
|
psock->s_sndcb->event = NULL;
|
|
}
|
|
|
|
/* Free all queued write buffers */
|
|
|
|
for (entry = sq_peek(&conn->unacked_q); entry; entry = next)
|
|
{
|
|
next = sq_next(entry);
|
|
tcp_wrbuffer_release((FAR struct tcp_wrbuffer_s *)entry);
|
|
}
|
|
|
|
for (entry = sq_peek(&conn->write_q); entry; entry = next)
|
|
{
|
|
next = sq_next(entry);
|
|
tcp_wrbuffer_release((FAR struct tcp_wrbuffer_s *)entry);
|
|
}
|
|
|
|
/* Reset write buffering variables */
|
|
|
|
sq_init(&conn->unacked_q);
|
|
sq_init(&conn->write_q);
|
|
conn->sent = 0;
|
|
conn->sndseq_max = 0;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: send_ipselect
|
|
*
|
|
* Description:
|
|
* If both IPv4 and IPv6 support are enabled, then we will need to select
|
|
* which one to use when generating the outgoing packet. If only one
|
|
* domain is selected, then the setup is already in place and we need do
|
|
* nothing.
|
|
*
|
|
* Parameters:
|
|
* dev - The structure of the network driver that caused the interrupt
|
|
* psock - Socket state structure
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
* Assumptions:
|
|
* Running at the interrupt level
|
|
*
|
|
****************************************************************************/
|
|
|
|
#ifdef NEED_IPDOMAIN_SUPPORT
|
|
static inline void send_ipselect(FAR struct net_driver_s *dev,
|
|
FAR struct tcp_conn_s *conn)
|
|
{
|
|
/* Which domain the the socket support */
|
|
|
|
if (conn->domain == PF_INET)
|
|
{
|
|
/* Select the IPv4 domain */
|
|
|
|
tcp_ipv4_select(dev);
|
|
}
|
|
else /* if (conn->domain == PF_INET6) */
|
|
{
|
|
/* Select the IPv6 domain */
|
|
|
|
DEBUGASSERT(conn->domain == PF_INET6);
|
|
tcp_ipv4_select(dev);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Name: psock_send_addrchck
|
|
*
|
|
* Description:
|
|
* Check if the destination IP address is in the IPv4 ARP or IPv6 Neighbor
|
|
* tables. If not, then the send won't actually make it out... it will be
|
|
* replaced with an ARP request (IPv4) or a Neighbor Solicitation (IPv6).
|
|
*
|
|
* NOTE 1: This could be an expensive check if there are a lot of
|
|
* entries in the ARP or Neighbor tables.
|
|
*
|
|
* NOTE 2: If we are actually harvesting IP addresses on incoming IP
|
|
* packets, then this check should not be necessary; the MAC mapping
|
|
* should already be in the ARP table in many cases (IPv4 only).
|
|
*
|
|
* NOTE 3: If CONFIG_NET_ARP_SEND then we can be assured that the IP
|
|
* address mapping is already in the ARP table.
|
|
*
|
|
* Parameters:
|
|
* conn - The TCP connection structure
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
* Assumptions:
|
|
* Running at the interrupt level
|
|
*
|
|
****************************************************************************/
|
|
|
|
#ifdef CONFIG_NET_ETHERNET
|
|
static inline bool psock_send_addrchck(FAR struct tcp_conn_s *conn)
|
|
{
|
|
#ifdef CONFIG_NET_IPv4
|
|
#ifdef CONFIG_NET_IPv6
|
|
if (conn->domain == PF_INET)
|
|
#endif
|
|
{
|
|
#if !defined(CONFIG_NET_ARP_IPIN) && !defined(CONFIG_NET_ARP_SEND)
|
|
return (arp_find(conn->u.ipv4.raddr) != NULL);
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
#endif /* CONFIG_NET_IPv4 */
|
|
|
|
#ifdef CONFIG_NET_IPv6
|
|
#ifdef CONFIG_NET_IPv4
|
|
else
|
|
#endif
|
|
{
|
|
#if !defined(CONFIG_NET_ICMPv6_NEIGHBOR)
|
|
return (neighbor_findentry(conn->u.ipv6.raddr) != NULL);
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
}
|
|
|
|
#else /* CONFIG_NET_ETHERNET */
|
|
# define psock_send_addrchck(r) (true)
|
|
#endif /* CONFIG_NET_ETHERNET */
|
|
|
|
/****************************************************************************
|
|
* Name: psock_send_interrupt
|
|
*
|
|
* Description:
|
|
* This function is called from the interrupt level to perform the actual
|
|
* send operation when polled by the lower, device interfacing layer.
|
|
*
|
|
* Parameters:
|
|
* dev The structure of the network driver that caused the interrupt
|
|
* conn The connection structure associated with the socket
|
|
* flags Set of events describing why the callback was invoked
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
* Assumptions:
|
|
* Running at the interrupt level
|
|
*
|
|
****************************************************************************/
|
|
|
|
static uint16_t psock_send_interrupt(FAR struct net_driver_s *dev,
|
|
FAR void *pvconn, FAR void *pvpriv,
|
|
uint16_t flags)
|
|
{
|
|
FAR struct tcp_conn_s *conn = (FAR struct tcp_conn_s *)pvconn;
|
|
FAR struct socket *psock = (FAR struct socket *)pvpriv;
|
|
|
|
#ifdef CONFIG_NETDEV_MULTINIC
|
|
/* The TCP socket is connected and, hence, should be bound to a device.
|
|
* Make sure that the polling device is the one that we are bound to.
|
|
*/
|
|
|
|
DEBUGASSERT(conn->dev != NULL);
|
|
if (dev != conn->dev)
|
|
{
|
|
return flags;
|
|
}
|
|
#endif
|
|
|
|
ninfo("flags: %04x\n", flags);
|
|
|
|
/* If this packet contains an acknowledgement, then update the count of
|
|
* acknowledged bytes.
|
|
*/
|
|
|
|
if ((flags & TCP_ACKDATA) != 0)
|
|
{
|
|
FAR struct tcp_wrbuffer_s *wrb;
|
|
FAR struct tcp_hdr_s *tcp;
|
|
FAR sq_entry_t *entry;
|
|
FAR sq_entry_t *next;
|
|
uint32_t ackno;
|
|
|
|
/* Get the offset address of the TCP header */
|
|
|
|
#ifdef CONFIG_NET_IPv4
|
|
#ifdef CONFIG_NET_IPv6
|
|
if (conn->domain == PF_INET)
|
|
#endif
|
|
{
|
|
DEBUGASSERT(IFF_IS_IPv4(dev->d_flags));
|
|
tcp = TCPIPv4BUF;
|
|
}
|
|
#endif /* CONFIG_NET_IPv4 */
|
|
|
|
#ifdef CONFIG_NET_IPv6
|
|
#ifdef CONFIG_NET_IPv4
|
|
else
|
|
#endif
|
|
{
|
|
DEBUGASSERT(IFF_IS_IPv6(dev->d_flags));
|
|
tcp = TCPIPv6BUF;
|
|
}
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
|
|
/* Get the ACK number from the TCP header */
|
|
|
|
ackno = tcp_getsequence(tcp->ackno);
|
|
ninfo("ACK: ackno=%u flags=%04x\n", ackno, flags);
|
|
|
|
/* Look at every write buffer in the unacked_q. The unacked_q
|
|
* holds write buffers that have been entirely sent, but which
|
|
* have not yet been ACKed.
|
|
*/
|
|
|
|
for (entry = sq_peek(&conn->unacked_q); entry; entry = next)
|
|
{
|
|
uint32_t lastseq;
|
|
|
|
/* Check of some or all of this write buffer has been ACKed. */
|
|
|
|
next = sq_next(entry);
|
|
wrb = (FAR struct tcp_wrbuffer_s *)entry;
|
|
|
|
/* If the ACKed sequence number is greater than the start
|
|
* sequence number of the write buffer, then some or all of
|
|
* the write buffer has been ACKed.
|
|
*/
|
|
|
|
if (ackno > WRB_SEQNO(wrb))
|
|
{
|
|
/* Get the sequence number at the end of the data */
|
|
|
|
lastseq = WRB_SEQNO(wrb) + WRB_PKTLEN(wrb);
|
|
ninfo("ACK: wrb=%p seqno=%u lastseq=%u pktlen=%u ackno=%u\n",
|
|
wrb, WRB_SEQNO(wrb), lastseq, WRB_PKTLEN(wrb), ackno);
|
|
|
|
/* Has the entire buffer been ACKed? */
|
|
|
|
if (ackno >= lastseq)
|
|
{
|
|
ninfo("ACK: wrb=%p Freeing write buffer\n", wrb);
|
|
|
|
/* Yes... Remove the write buffer from ACK waiting queue */
|
|
|
|
sq_rem(entry, &conn->unacked_q);
|
|
|
|
/* And return the write buffer to the pool of free buffers */
|
|
|
|
tcp_wrbuffer_release(wrb);
|
|
}
|
|
else
|
|
{
|
|
unsigned int trimlen;
|
|
|
|
/* No, then just trim the ACKed bytes from the beginning
|
|
* of the write buffer. This will free up some I/O buffers
|
|
* that can be reused while are still sending the last
|
|
* buffers in the chain.
|
|
*/
|
|
|
|
trimlen = ackno - WRB_SEQNO(wrb);
|
|
if (trimlen > WRB_SENT(wrb))
|
|
{
|
|
/* More data has been ACKed then we have sent? */
|
|
|
|
trimlen = WRB_SENT(wrb);
|
|
}
|
|
|
|
ninfo("ACK: wrb=%p trim %u bytes\n", wrb, trimlen);
|
|
|
|
WRB_TRIM(wrb, trimlen);
|
|
WRB_SEQNO(wrb) = ackno;
|
|
WRB_SENT(wrb) -= trimlen;
|
|
|
|
/* Set the new sequence number for what remains */
|
|
|
|
ninfo("ACK: wrb=%p seqno=%u pktlen=%u\n",
|
|
wrb, WRB_SEQNO(wrb), WRB_PKTLEN(wrb));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* A special case is the head of the write_q which may be partially
|
|
* sent and so can still have un-ACKed bytes that could get ACKed
|
|
* before the entire write buffer has even been sent.
|
|
*/
|
|
|
|
wrb = (FAR struct tcp_wrbuffer_s *)sq_peek(&conn->write_q);
|
|
if (wrb && WRB_SENT(wrb) > 0 && ackno > WRB_SEQNO(wrb))
|
|
{
|
|
uint32_t nacked;
|
|
|
|
/* Number of bytes that were ACKed */
|
|
|
|
nacked = ackno - WRB_SEQNO(wrb);
|
|
if (nacked > WRB_SENT(wrb))
|
|
{
|
|
/* More data has been ACKed then we have sent? ASSERT? */
|
|
|
|
nacked = WRB_SENT(wrb);
|
|
}
|
|
|
|
ninfo("ACK: wrb=%p seqno=%u nacked=%u sent=%u ackno=%u\n",
|
|
wrb, WRB_SEQNO(wrb), nacked, WRB_SENT(wrb), ackno);
|
|
|
|
/* Trim the ACKed bytes from the beginning of the write buffer. */
|
|
|
|
WRB_TRIM(wrb, nacked);
|
|
WRB_SEQNO(wrb) = ackno;
|
|
WRB_SENT(wrb) -= nacked;
|
|
|
|
ninfo("ACK: wrb=%p seqno=%u pktlen=%u sent=%u\n",
|
|
wrb, WRB_SEQNO(wrb), WRB_PKTLEN(wrb), WRB_SENT(wrb));
|
|
}
|
|
}
|
|
|
|
/* Check for a loss of connection */
|
|
|
|
else if ((flags & TCP_DISCONN_EVENTS) != 0)
|
|
{
|
|
ninfo("Lost connection: %04x\n", flags);
|
|
|
|
if (psock->s_conn != NULL)
|
|
{
|
|
/* Report not connected */
|
|
|
|
net_lostconnection(psock, flags);
|
|
}
|
|
|
|
/* Free write buffers and terminate polling */
|
|
|
|
psock_lost_connection(psock, conn);
|
|
return flags;
|
|
}
|
|
|
|
/* Check if we are being asked to retransmit data */
|
|
|
|
else if ((flags & TCP_REXMIT) != 0)
|
|
{
|
|
FAR struct tcp_wrbuffer_s *wrb;
|
|
FAR sq_entry_t *entry;
|
|
|
|
ninfo("REXMIT: %04x\n", flags);
|
|
|
|
/* If there is a partially sent write buffer at the head of the
|
|
* write_q? Has anything been sent from that write buffer?
|
|
*/
|
|
|
|
wrb = (FAR struct tcp_wrbuffer_s *)sq_peek(&conn->write_q);
|
|
ninfo("REXMIT: wrb=%p sent=%u\n", wrb, wrb ? WRB_SENT(wrb) : 0);
|
|
|
|
if (wrb != NULL && WRB_SENT(wrb) > 0)
|
|
{
|
|
FAR struct tcp_wrbuffer_s *tmp;
|
|
uint16_t sent;
|
|
|
|
/* Yes.. Reset the number of bytes sent sent from the write buffer */
|
|
|
|
sent = WRB_SENT(wrb);
|
|
if (conn->unacked > sent)
|
|
{
|
|
conn->unacked -= sent;
|
|
}
|
|
else
|
|
{
|
|
conn->unacked = 0;
|
|
}
|
|
|
|
if (conn->sent > sent)
|
|
{
|
|
conn->sent -= sent;
|
|
}
|
|
else
|
|
{
|
|
conn->sent = 0;
|
|
}
|
|
|
|
WRB_SENT(wrb) = 0;
|
|
ninfo("REXMIT: wrb=%p sent=%u, conn unacked=%d sent=%d\n",
|
|
wrb, WRB_SENT(wrb), conn->unacked, conn->sent);
|
|
|
|
/* Increment the retransmit count on this write buffer. */
|
|
|
|
if (++WRB_NRTX(wrb) >= TCP_MAXRTX)
|
|
{
|
|
nwarn("WARNING: Expiring wrb=%p nrtx=%u\n",
|
|
wrb, WRB_NRTX(wrb));
|
|
|
|
/* The maximum retry count as been exhausted. Remove the write
|
|
* buffer at the head of the queue.
|
|
*/
|
|
|
|
tmp = (FAR struct tcp_wrbuffer_s *)sq_remfirst(&conn->write_q);
|
|
DEBUGASSERT(tmp == wrb);
|
|
UNUSED(tmp);
|
|
|
|
/* And return the write buffer to the free list */
|
|
|
|
tcp_wrbuffer_release(wrb);
|
|
|
|
/* NOTE expired is different from un-ACKed, it is designed to
|
|
* represent the number of segments that have been sent,
|
|
* retransmitted, and un-ACKed, if expired is not zero, the
|
|
* connection will be closed.
|
|
*
|
|
* field expired can only be updated at TCP_ESTABLISHED state
|
|
*/
|
|
|
|
conn->expired++;
|
|
}
|
|
}
|
|
|
|
/* Move all segments that have been sent but not ACKed to the write
|
|
* queue again note, the un-ACKed segments are put at the head of the
|
|
* write_q so they can be resent as soon as possible.
|
|
*/
|
|
|
|
while ((entry = sq_remlast(&conn->unacked_q)) != NULL)
|
|
{
|
|
wrb = (FAR struct tcp_wrbuffer_s *)entry;
|
|
uint16_t sent;
|
|
|
|
/* Reset the number of bytes sent sent from the write buffer */
|
|
|
|
sent = WRB_SENT(wrb);
|
|
if (conn->unacked > sent)
|
|
{
|
|
conn->unacked -= sent;
|
|
}
|
|
else
|
|
{
|
|
conn->unacked = 0;
|
|
}
|
|
|
|
if (conn->sent > sent)
|
|
{
|
|
conn->sent -= sent;
|
|
}
|
|
else
|
|
{
|
|
conn->sent = 0;
|
|
}
|
|
|
|
WRB_SENT(wrb) = 0;
|
|
ninfo("REXMIT: wrb=%p sent=%u, conn unacked=%d sent=%d\n",
|
|
wrb, WRB_SENT(wrb), conn->unacked, conn->sent);
|
|
|
|
/* Free any write buffers that have exceed the retry count */
|
|
|
|
if (++WRB_NRTX(wrb) >= TCP_MAXRTX)
|
|
{
|
|
nwarn("WARNING: Expiring wrb=%p nrtx=%u\n",
|
|
wrb, WRB_NRTX(wrb));
|
|
|
|
/* Return the write buffer to the free list */
|
|
|
|
tcp_wrbuffer_release(wrb);
|
|
|
|
/* NOTE expired is different from un-ACKed, it is designed to
|
|
* represent the number of segments that have been sent,
|
|
* retransmitted, and un-ACKed, if expired is not zero, the
|
|
* connection will be closed.
|
|
*
|
|
* field expired can only be updated at TCP_ESTABLISHED state
|
|
*/
|
|
|
|
conn->expired++;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
/* Insert the write buffer into the write_q (in sequence
|
|
* number order). The retransmission will occur below
|
|
* when the write buffer with the lowest sequence number
|
|
* is pulled from the write_q again.
|
|
*/
|
|
|
|
ninfo("REXMIT: Moving wrb=%p nrtx=%u\n", wrb, WRB_NRTX(wrb));
|
|
|
|
psock_insert_segment(wrb, &conn->write_q);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check if the outgoing packet is available (it may have been claimed
|
|
* by a sendto interrupt serving a different thread).
|
|
*/
|
|
|
|
if (dev->d_sndlen > 0)
|
|
{
|
|
/* Another thread has beat us sending data, wait for the next poll */
|
|
|
|
return flags;
|
|
}
|
|
|
|
/* We get here if (1) not all of the data has been ACKed, (2) we have been
|
|
* asked to retransmit data, (3) the connection is still healthy, and (4)
|
|
* the outgoing packet is available for our use. In this case, we are
|
|
* now free to send more data to receiver -- UNLESS the buffer contains
|
|
* unprocessed incoming data. In that event, we will have to wait for the
|
|
* next polling cycle.
|
|
*/
|
|
|
|
if ((conn->tcpstateflags & TCP_ESTABLISHED) &&
|
|
(flags & (TCP_POLL | TCP_REXMIT)) &&
|
|
!(sq_empty(&conn->write_q)))
|
|
{
|
|
/* Check if the destination IP address is in the ARP or Neighbor
|
|
* table. If not, then the send won't actually make it out... it
|
|
* will be replaced with an ARP request or Neighbor Solicitation.
|
|
*/
|
|
|
|
if (psock_send_addrchck(conn))
|
|
{
|
|
FAR struct tcp_wrbuffer_s *wrb;
|
|
uint32_t predicted_seqno;
|
|
size_t sndlen;
|
|
|
|
/* Peek at the head of the write queue (but don't remove anything
|
|
* from the write queue yet). We know from the above test that
|
|
* the write_q is not empty.
|
|
*/
|
|
|
|
wrb = (FAR struct tcp_wrbuffer_s *)sq_peek(&conn->write_q);
|
|
DEBUGASSERT(wrb);
|
|
|
|
/* Get the amount of data that we can send in the next packet.
|
|
* We will send either the remaining data in the buffer I/O
|
|
* buffer chain, or as much as will fit given the MSS and current
|
|
* window size.
|
|
*/
|
|
|
|
sndlen = WRB_PKTLEN(wrb) - WRB_SENT(wrb);
|
|
if (sndlen > conn->mss)
|
|
{
|
|
sndlen = conn->mss;
|
|
}
|
|
|
|
if (sndlen > conn->winsize)
|
|
{
|
|
sndlen = conn->winsize;
|
|
}
|
|
|
|
ninfo("SEND: wrb=%p pktlen=%u sent=%u sndlen=%u\n",
|
|
wrb, WRB_PKTLEN(wrb), WRB_SENT(wrb), sndlen);
|
|
|
|
/* Set the sequence number for this segment. If we are
|
|
* retransmitting, then the sequence number will already
|
|
* be set for this write buffer.
|
|
*/
|
|
|
|
if (WRB_SEQNO(wrb) == (unsigned)-1)
|
|
{
|
|
WRB_SEQNO(wrb) = conn->isn + conn->sent;
|
|
}
|
|
|
|
/* The TCP stack updates sndseq on receipt of ACK *before*
|
|
* this function is called. In that case sndseq will point
|
|
* to the next unacknowledged byte (which might have already
|
|
* been sent). We will overwrite the value of sndseq here
|
|
* before the packet is sent.
|
|
*/
|
|
|
|
tcp_setsequence(conn->sndseq, WRB_SEQNO(wrb) + WRB_SENT(wrb));
|
|
|
|
#ifdef NEED_IPDOMAIN_SUPPORT
|
|
/* If both IPv4 and IPv6 support are enabled, then we will need to
|
|
* select which one to use when generating the outgoing packet.
|
|
* If only one domain is selected, then the setup is already in
|
|
* place and we need do nothing.
|
|
*/
|
|
|
|
send_ipselect(dev, conn);
|
|
#endif
|
|
/* Then set-up to send that amount of data with the offset
|
|
* corresponding to the amount of data already sent. (this
|
|
* won't actually happen until the polling cycle completes).
|
|
*/
|
|
|
|
devif_iob_send(dev, WRB_IOB(wrb), sndlen, WRB_SENT(wrb));
|
|
|
|
/* Remember how much data we send out now so that we know
|
|
* when everything has been acknowledged. Just increment
|
|
* the amount of data sent. This will be needed in sequence
|
|
* number calculations.
|
|
*/
|
|
|
|
conn->unacked += sndlen;
|
|
conn->sent += sndlen;
|
|
|
|
/* Below prediction will become true, unless retransmission occurrence */
|
|
|
|
predicted_seqno = tcp_getsequence(conn->sndseq) + sndlen;
|
|
|
|
if ((predicted_seqno > conn->sndseq_max) ||
|
|
(tcp_getsequence(conn->sndseq) > predicted_seqno)) /* overflow */
|
|
{
|
|
conn->sndseq_max = predicted_seqno;
|
|
}
|
|
|
|
ninfo("SEND: wrb=%p nrtx=%u unacked=%u sent=%u\n",
|
|
wrb, WRB_NRTX(wrb), conn->unacked, conn->sent);
|
|
|
|
/* Increment the count of bytes sent from this write buffer */
|
|
|
|
WRB_SENT(wrb) += sndlen;
|
|
|
|
ninfo("SEND: wrb=%p sent=%u pktlen=%u\n",
|
|
wrb, WRB_SENT(wrb), WRB_PKTLEN(wrb));
|
|
|
|
/* Remove the write buffer from the write queue if the
|
|
* last of the data has been sent from the buffer.
|
|
*/
|
|
|
|
DEBUGASSERT(WRB_SENT(wrb) <= WRB_PKTLEN(wrb));
|
|
if (WRB_SENT(wrb) >= WRB_PKTLEN(wrb))
|
|
{
|
|
FAR struct tcp_wrbuffer_s *tmp;
|
|
|
|
ninfo("SEND: wrb=%p Move to unacked_q\n", wrb);
|
|
|
|
tmp = (FAR struct tcp_wrbuffer_s *)sq_remfirst(&conn->write_q);
|
|
DEBUGASSERT(tmp == wrb);
|
|
UNUSED(tmp);
|
|
|
|
/* Put the I/O buffer chain in the un-acked queue; the
|
|
* segment is waiting for ACK again
|
|
*/
|
|
|
|
psock_insert_segment(wrb, &conn->unacked_q);
|
|
}
|
|
|
|
/* Only one data can be sent by low level driver at once,
|
|
* tell the caller stop polling the other connection.
|
|
*/
|
|
|
|
flags &= ~TCP_POLL;
|
|
}
|
|
}
|
|
|
|
/* Continue waiting */
|
|
|
|
return flags;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: send_txnotify
|
|
*
|
|
* Description:
|
|
* Notify the appropriate device driver that we are have data ready to
|
|
* be send (TCP)
|
|
*
|
|
* Parameters:
|
|
* psock - Socket state structure
|
|
* conn - The TCP connection structure
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline void send_txnotify(FAR struct socket *psock,
|
|
FAR struct tcp_conn_s *conn)
|
|
{
|
|
#ifdef CONFIG_NET_IPv4
|
|
#ifdef CONFIG_NET_IPv6
|
|
/* If both IPv4 and IPv6 support are enabled, then we will need to select
|
|
* the device driver using the appropriate IP domain.
|
|
*/
|
|
|
|
if (psock->s_domain == PF_INET)
|
|
#endif
|
|
{
|
|
/* Notify the device driver that send data is available */
|
|
|
|
#ifdef CONFIG_NETDEV_MULTINIC
|
|
netdev_ipv4_txnotify(conn->u.ipv4.laddr, conn->u.ipv4.raddr);
|
|
#else
|
|
netdev_ipv4_txnotify(conn->u.ipv4.raddr);
|
|
#endif
|
|
}
|
|
#endif /* CONFIG_NET_IPv4 */
|
|
|
|
#ifdef CONFIG_NET_IPv6
|
|
#ifdef CONFIG_NET_IPv4
|
|
else /* if (psock->s_domain == PF_INET6) */
|
|
#endif /* CONFIG_NET_IPv4 */
|
|
{
|
|
/* Notify the device driver that send data is available */
|
|
|
|
DEBUGASSERT(psock->s_domain == PF_INET6);
|
|
#ifdef CONFIG_NETDEV_MULTINIC
|
|
netdev_ipv6_txnotify(conn->u.ipv6.laddr, conn->u.ipv6.raddr);
|
|
#else
|
|
netdev_ipv6_txnotify(conn->u.ipv6.raddr);
|
|
#endif
|
|
}
|
|
#endif /* CONFIG_NET_IPv6 */
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: psock_tcp_send
|
|
*
|
|
* Description:
|
|
* psock_tcp_send() call may be used only when the TCP socket is in a
|
|
* connected state (so that the intended recipient is known).
|
|
*
|
|
* Parameters:
|
|
* psock An instance of the internal socket structure.
|
|
* buf Data to send
|
|
* len Length of data to send
|
|
*
|
|
* Returned Value:
|
|
* On success, returns the number of characters sent. On error,
|
|
* -1 is returned, and errno is set appropriately:
|
|
*
|
|
* EAGAIN or EWOULDBLOCK
|
|
* The socket is marked non-blocking and the requested operation
|
|
* would block.
|
|
* EBADF
|
|
* An invalid descriptor was specified.
|
|
* ECONNRESET
|
|
* Connection reset by peer.
|
|
* EDESTADDRREQ
|
|
* The socket is not connection-mode, and no peer address is set.
|
|
* EFAULT
|
|
* An invalid user space address was specified for a parameter.
|
|
* EINTR
|
|
* A signal occurred before any data was transmitted.
|
|
* EINVAL
|
|
* Invalid argument passed.
|
|
* EISCONN
|
|
* The connection-mode socket was connected already but a recipient
|
|
* was specified. (Now either this error is returned, or the recipient
|
|
* specification is ignored.)
|
|
* EMSGSIZE
|
|
* The socket type requires that message be sent atomically, and the
|
|
* size of the message to be sent made this impossible.
|
|
* ENOBUFS
|
|
* The output queue for a network interface was full. This generally
|
|
* indicates that the interface has stopped sending, but may be
|
|
* caused by transient congestion.
|
|
* ENOMEM
|
|
* No memory available.
|
|
* ENOTCONN
|
|
* The socket is not connected, and no target has been given.
|
|
* ENOTSOCK
|
|
* The argument s is not a socket.
|
|
* EPIPE
|
|
* The local end has been shut down on a connection oriented socket.
|
|
* In this case the process will also receive a SIGPIPE unless
|
|
* MSG_NOSIGNAL is set.
|
|
*
|
|
* Assumptions:
|
|
*
|
|
****************************************************************************/
|
|
|
|
ssize_t psock_tcp_send(FAR struct socket *psock, FAR const void *buf,
|
|
size_t len)
|
|
{
|
|
FAR struct tcp_conn_s *conn;
|
|
FAR struct tcp_wrbuffer_s *wrb;
|
|
ssize_t result = 0;
|
|
int errcode;
|
|
int ret = OK;
|
|
|
|
if (psock == NULL || psock->s_crefs <= 0)
|
|
{
|
|
nerr("ERROR: Invalid socket\n");
|
|
errcode = EBADF;
|
|
goto errout;
|
|
}
|
|
|
|
if (psock->s_type != SOCK_STREAM || !_SS_ISCONNECTED(psock->s_flags))
|
|
{
|
|
nerr("ERROR: Not connected\n");
|
|
errcode = ENOTCONN;
|
|
goto errout;
|
|
}
|
|
|
|
/* Make sure that we have the IP address mapping */
|
|
|
|
conn = (FAR struct tcp_conn_s *)psock->s_conn;
|
|
DEBUGASSERT(conn);
|
|
|
|
#if defined(CONFIG_NET_ARP_SEND) || defined(CONFIG_NET_ICMPv6_NEIGHBOR)
|
|
#ifdef CONFIG_NET_ARP_SEND
|
|
#ifdef CONFIG_NET_ICMPv6_NEIGHBOR
|
|
if (psock->s_domain == PF_INET)
|
|
#endif
|
|
{
|
|
/* Make sure that the IP address mapping is in the ARP table */
|
|
|
|
ret = arp_send(conn->u.ipv4.raddr);
|
|
}
|
|
#endif /* CONFIG_NET_ARP_SEND */
|
|
|
|
#ifdef CONFIG_NET_ICMPv6_NEIGHBOR
|
|
#ifdef CONFIG_NET_ARP_SEND
|
|
else
|
|
#endif
|
|
{
|
|
/* Make sure that the IP address mapping is in the Neighbor Table */
|
|
|
|
ret = icmpv6_neighbor(conn->u.ipv6.raddr);
|
|
}
|
|
#endif /* CONFIG_NET_ICMPv6_NEIGHBOR */
|
|
|
|
/* Did we successfully get the address mapping? */
|
|
|
|
if (ret < 0)
|
|
{
|
|
nerr("ERROR: Not reachable\n");
|
|
errcode = ENETUNREACH;
|
|
goto errout;
|
|
}
|
|
#endif /* CONFIG_NET_ARP_SEND || CONFIG_NET_ICMPv6_NEIGHBOR */
|
|
|
|
/* Dump the incoming buffer */
|
|
|
|
BUF_DUMP("psock_tcp_send", buf, len);
|
|
|
|
/* Set the socket state to sending */
|
|
|
|
psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_SEND);
|
|
|
|
if (len > 0)
|
|
{
|
|
/* Allocate a write buffer. Careful, the network will be momentarily
|
|
* unlocked here.
|
|
*/
|
|
|
|
net_lock();
|
|
wrb = tcp_wrbuffer_alloc();
|
|
if (!wrb)
|
|
{
|
|
/* A buffer allocation error occurred */
|
|
|
|
nerr("ERROR: Failed to allocate write buffer\n");
|
|
errcode = ENOMEM;
|
|
goto errout_with_lock;
|
|
}
|
|
|
|
/* Allocate resources to receive a callback */
|
|
|
|
if (!psock->s_sndcb)
|
|
{
|
|
psock->s_sndcb = tcp_callback_alloc(conn);
|
|
}
|
|
|
|
/* Test if the callback has been allocated */
|
|
|
|
if (!psock->s_sndcb)
|
|
{
|
|
/* A buffer allocation error occurred */
|
|
|
|
nerr("ERROR: Failed to allocate callback\n");
|
|
errcode = ENOMEM;
|
|
goto errout_with_wrb;
|
|
}
|
|
|
|
/* Set up the callback in the connection */
|
|
|
|
psock->s_sndcb->flags = (TCP_ACKDATA | TCP_REXMIT | TCP_POLL |
|
|
TCP_DISCONN_EVENTS);
|
|
psock->s_sndcb->priv = (FAR void *)psock;
|
|
psock->s_sndcb->event = psock_send_interrupt;
|
|
|
|
/* Initialize the write buffer */
|
|
|
|
WRB_SEQNO(wrb) = (unsigned)-1;
|
|
WRB_NRTX(wrb) = 0;
|
|
result = WRB_COPYIN(wrb, (FAR uint8_t *)buf, len);
|
|
|
|
/* Dump I/O buffer chain */
|
|
|
|
WRB_DUMP("I/O buffer chain", wrb, WRB_PKTLEN(wrb), 0);
|
|
|
|
/* psock_send_interrupt() will send data in FIFO order from the
|
|
* conn->write_q
|
|
*/
|
|
|
|
sq_addlast(&wrb->wb_node, &conn->write_q);
|
|
ninfo("Queued WRB=%p pktlen=%u write_q(%p,%p)\n",
|
|
wrb, WRB_PKTLEN(wrb),
|
|
conn->write_q.head, conn->write_q.tail);
|
|
|
|
/* Notify the device driver of the availability of TX data */
|
|
|
|
send_txnotify(psock, conn);
|
|
net_unlock();
|
|
}
|
|
|
|
/* Set the socket state to idle */
|
|
|
|
psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_IDLE);
|
|
|
|
/* Check for errors. Errors are signalled by negative errno values
|
|
* for the send length
|
|
*/
|
|
|
|
if (result < 0)
|
|
{
|
|
errcode = result;
|
|
goto errout;
|
|
}
|
|
|
|
/* If net_lockedwait failed, then we were probably reawakened by a signal.
|
|
* In this case, net_lockedwait will have set errno appropriately.
|
|
*/
|
|
|
|
if (ret < 0)
|
|
{
|
|
errcode = -ret;
|
|
goto errout;
|
|
}
|
|
|
|
/* Return the number of bytes actually sent */
|
|
|
|
return result;
|
|
|
|
errout_with_wrb:
|
|
tcp_wrbuffer_release(wrb);
|
|
|
|
errout_with_lock:
|
|
net_unlock();
|
|
|
|
errout:
|
|
set_errno(errcode);
|
|
return ERROR;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: psock_tcp_cansend
|
|
*
|
|
* Description:
|
|
* psock_tcp_cansend() returns a value indicating if a write to the socket
|
|
* would block. No space in the buffer is actually reserved, so it is
|
|
* possible that the write may still block if the buffer is filled by
|
|
* another means.
|
|
*
|
|
* Parameters:
|
|
* psock An instance of the internal socket structure.
|
|
*
|
|
* Returned Value:
|
|
* OK
|
|
* At least one byte of data could be succesfully written.
|
|
* -EWOULDBLOCK
|
|
* There is no room in the output buffer.
|
|
* -EBADF
|
|
* An invalid descriptor was specified.
|
|
* -ENOTCONN
|
|
* The socket is not connected.
|
|
*
|
|
* Assumptions:
|
|
* Not running at the interrupt level
|
|
*
|
|
****************************************************************************/
|
|
|
|
int psock_tcp_cansend(FAR struct socket *psock)
|
|
{
|
|
if (!psock || psock->s_crefs <= 0)
|
|
{
|
|
nerr("ERROR: Invalid socket\n");
|
|
return -EBADF;
|
|
}
|
|
|
|
if (psock->s_type != SOCK_STREAM || !_SS_ISCONNECTED(psock->s_flags))
|
|
{
|
|
nerr("ERROR: Not connected\n");
|
|
return -ENOTCONN;
|
|
}
|
|
|
|
if (tcp_wrbuffer_test())
|
|
{
|
|
return -EWOULDBLOCK;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
#endif /* CONFIG_NET && CONFIG_NET_TCP && CONFIG_NET_TCP_WRITE_BUFFERS */
|