nuttx/arch/arm/src/armv7-a/mmu.h

1465 lines
56 KiB
C

/************************************************************************************
* arch/arm/src/armv7-a/mmu.h
* CP15 MMU register definitions
*
* Copyright (C) 2013-2014 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* References:
*
* "Cortex-A5™ MPCore, Technical Reference Manual", Revision: r0p1, Copyright ©
* 2010 ARM. All rights reserved. ARM DDI 0434B (ID101810)
* "ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition", Copyright ©
* 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM
* DDI 0406C.b (ID072512)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
#ifndef __ARCH_ARM_SRC_ARMV7_A_MMU_H
#define __ARCH_ARM_SRC_ARMV7_A_MMU_H
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
#ifndef __ASSEMBLY__
# include <sys/types.h>
# include <stdint.h>
# include "chip.h"
#endif /* __ASSEMBLY__ */
/************************************************************************************
* Pre-processor Definitions
************************************************************************************/
/* Configuration ********************************************************************/
#if defined(CONFIG_PAGING) || defined(CONFIG_ARCH_ADDRENV)
/* Sanity check -- we cannot be using a ROM page table and supporting on-
* demand paging.
*/
#ifdef CONFIG_ARCH_ROMPGTABLE
# error "Cannot support both CONFIG_PAGING/CONFIG_ARCH_ADDRENV and CONFIG_ARCH_ROMPGTABLE"
#endif
#endif /* CONFIG_PAGING */
/* MMU CP15 Register Bit Definitions ************************************************/
/* Reference: Cortex-A5™ MPCore Paragraph 6.7, "MMU software accessible registers." */
/* TLB Type Register TLB Type Register
*
* The Translation Lookaside Buffer (TLB) Type Register, TLBTR, returns the number of
* lockable entries for the TLB. The Cortex-A5 MPCore processor does not implement
* this feature, so this register always RAZ.
*/
/* System Control Register (SCTLR). see cstlr.h */
/* Non-secure Access Control Register (NSACR). See cstlr.h */
/* Translation Table Base Register 0 (TTBR0)*/
#define TTBR0_IRGN1 (1 << 0) /* Bit 0: Inner cacheability IRGN[1] (MP extensions) */
#define TTBR0_C (1 << 0) /* Bit 0: Inner cacheability for table walk */
#define TTBR0_S (1 << 1) /* Bit 1: Translation table walk */
/* Bit 2: Reserved */
#define TTBR0_RGN_SHIFT (3) /* Bits 3-4: Outer cacheable attributes for table walk */
#define TTBR0_RGN_MASK (3 << TTBR0_RGN_SHIFT)
# define TTBR0_RGN_NONE (0 << TTBR0_RGN_SHIFT) /* Non-cacheable */
# define TTBR0_RGN_WBWA (1 << TTBR0_RGN_SHIFT) /* Write-Back cached + Write-Allocate */
# define TTBR0_RGN_WT (2 << TTBR0_RGN_SHIFT) /* Write-Through */
# define TTBR0_RGN_WB (3 << TTBR0_RGN_SHIFT) /* Write-Back */
#define TTBR0_NOS (1 << 5) /* Bit 5: Not Outer Shareable bit */
#define TTBR0_IRGN0 (1 << 6) /* Bit 6: Inner cacheability IRGN[0] (MP extensions) */
/* Bits 7-n: Reserved, n=7-13 */
#define _TTBR0_LOWER(n) (0xffffffff << (n))
/* Bits (n+1)-31: Translation table base 0 */
#define TTBR0_BASE_MASK(n) (~_TTBR0_LOWER(n))
/* Translation Table Base Register 1 (TTBR1) */
#define TTBR1_IRGN1 (1 << 0) /* Bit 0: Inner cacheability IRGN[1] (MP extensions) */
#define TTBR1_C (1 << 0) /* Bit 0: Inner cacheability for table walk */
#define TTBR1_S (1 << 1) /* Bit 1: Translation table walk */
/* Bit 2: Reserved */
#define TTBR1_RGN_SHIFT (3) /* Bits 3-4: Outer cacheable attributes for table walk */
#define TTBR1_RGN_MASK (3 << TTBR1_RGN_SHIFT)
# define TTBR1_RGN_NONE (0 << TTBR1_RGN_SHIFT) /* Non-cacheable */
# define TTBR1_RGN_WBWA (1 << TTBR1_RGN_SHIFT) /* Write-Back cached + Write-Allocate */
# define TTBR1_RGN_WT (2 << TTBR1_RGN_SHIFT) /* Write-Through */
# define TTBR1_RGN_WB (3 << TTBR1_RGN_SHIFT) /* Write-Back */
#define TTBR1_NOS (1 << 5) /* Bit 5: Not Outer Shareable bit */
#define TTBR1_IRGN0 (1 << 6) /* Bit 6: Inner cacheability IRGN[0] (MP extensions) */
/* Bits 7-13: Reserved */
#define TTBR1_BASE_SHIFT (14) /* Bits 14-31: Translation table base 1 */
#define TTBR1_BASE_MASK (0xffffc000)
/* Translation Table Base Control Register (TTBCR) */
#define TTBCR_N_SHIFT (0) /* Bits 0-2: Boundary size of TTBR0 */
#define TTBCR_N_MASK (7 << TTBCR_N_SHIFT)
# define TTBCR_N_16KB (0 << TTBCR_N_SHIFT) /* Reset value */
# define TTBCR_N_8KB (1 << TTBCR_N_SHIFT)
# define TTBCR_N_4KB (2 << TTBCR_N_SHIFT)
# define TTBCR_N_2KB (3 << TTBCR_N_SHIFT)
# define TTBCR_N_1KB (4 << TTBCR_N_SHIFT)
# define TTBCR_N_512B (5 << TTBCR_N_SHIFT)
# define TTBCR_N_256B (6 << TTBCR_N_SHIFT)
# define TTBCR_N_128B (7 << TTBCR_N_SHIFT)
/* Bit 3: Reserved */
#define TTBCR_PD0 (1 << 4) /* Bit 4: Translation table walk on a TLB miss w/TTBR0 */
#define TTBCR_PD1 (1 << 5) /* Bit 5: Translation table walk on a TLB miss w/TTBR1 */
/* Bits 6-31: Reserved */
/* Domain Access Control Register (DACR) */
#define DACR_SHIFT(n) ((n) << 1) /* Domain n, n=0-15 */
#define DACR_MASK(n) (3 << DACR_SHIFT(n))
# define DACR_NONE(n) (0 << DACR_SHIFT(n)) /* Any access generates a domain fault */
# define DACR_CLIENT(n) (1 << DACR_SHIFT(n)) /* Accesses checked against permissions TLB */
# define DACR_MANAGER(n) (3 << DACR_SHIFT(n)) /* Accesses are not checked */
/* Data Fault Status Register (DFSR) */
#define DFSR_STATUS_SHIFT (0) /* Bits 0-3: Type of exception generated (w/EXT and FS) */
#define DFSR_STATUS_MASK (15 << DFSR_STATUS_SHIFT)
#define DFSR_DOMAIN_SHIFT (4) /* Bits 4-7: Domain accessed when a data fault occurred */
#define DFSR_DOMAIN_MASK (15 << DFSR_STATUS_MASK)
/* Bits 8-9: Reserved */
#define DFSR_FS (1 << 10) /* Bit 10: Part of the STATUS field */
#define DFSR_WNR (1 << 11) /* Bit 11: Not read and write */
#define DFSR_EXT (1 << 12) /* Bit 12: External Abort Qualifier */
/* Bits 13-31: Reserved */
/* Instruction Fault Status Register (IFSR) */
#define IFSR_STATUS_SHIFT (0) /* Bits 0-3: Type of fault generated (w/EXT and FS) */
#define IFSR_STATUS_MASK (15 << IFSR_STATUS_SHIFT)
/* Bits 4-9: Reserved */
#define IFSR_S (1 << 10) /* Bit 10: Part of the STATUS field */
/* Bits 11: Reserved */
#define IFSR_EXT (1 << 12) /* Bit 12: External Abort Qualifier */
/* Bits 13-31: Reserved */
/* Data Fault Address Register(DFAR). Holds the MVA of the faulting address when a
* synchronous fault occurs
*
* Instruction Fault Address Register(IFAR). Holds the MVA of the faulting address
* of the instruction that caused a prefetch abort.
*/
/* TLB operations.
*
* CP15 Register: TLBIALLIS
* Description: Invalidate entire Unified TLB Inner Shareable
* Register Format: SBZ
* Instruction: MCR p15, 0, <Rd>, c8, c3, 0
* CP15 Register: TLBIMVAIS
* Description: Invalidate Unified TLB entry by VA Inner Shareable
* Register Format: VA/ASID
* Instruction: MCR p15, 0, <Rd>, c8, c3, 1
* CP15 Register: TLBIASIDIS
* Description: Invalidate Unified TLB entry by ASID match Inner
* Shareable
* Register Format: ASID
* Instruction: MCR p15, 0, <Rd>, c8, c3, 2
* CP15 Register: TLBIMVAAIS
* Description: Invalidate Unified TLB entry by VA all ASID Inner
* Shareable
* Register Format: VA
* Instruction: MCR p15, 0, <Rd>, c8, c3, 3
* CP15 Register: TLBIALL
* Description: Invalidate entire Unified TLB
* Register Format: Ignored
* Instruction: MCR p15, 0, <Rd>, c8, c7, 0
* CP15 Register: TLBIMVA
* Description: Invalidate Unified TLB by VA
* Register Format: VA/ASID
* Instruction: MCR p15, 0, <Rd>, c8, c7, 1
* CP15 Register: TLBIASID
* Description: Invalidate TLB entries by ASID Match
* Register Format: ASID
* MCR p15, 0, <Rd>, c8, c7, 2
* CP15 Register: TLBIMVAA
* Description: Invalidate TLB entries by VA All ASID
* Register Format: VA
* Instruction: MCR p15, 0, <Rd>, c8, c7, 3
*/
#define TLB_ASID_SHIFT (0) /* Bits 0-7: Address Space Identifier */
#define TLB_ASID_MASK (0xff << TLB_ASID_SHIFT)
#define TLB_SBZ_SHIFT (8) /* Bits 8-11: SBZ */
#define TLB_SBZ_MASK (15 << TLB_SBZ_SHIFT)
#define TLB_VA_MASK (0xfffff000) /* Bits 12-31: Virtual address */
/* Primary Region Remap Register (PRRR) */
/* Normal Memory Remap Register (NMRR) */
/* TLB Hitmap Register (TLBHR) */
#define TLBHR_4KB (1 << 0) /* Bit 0: 4KB pages are present in the TLB */
#define TLBHR_16KB (1 << 1) /* Bit 1: 16KB pages are present in the TLB */
#define TLBHR_1MB (1 << 2) /* Bit 2: 1MB sections are present in the TLB */
#define TLBHR_16MB (1 << 3) /* Bit 3: 16MB supersections are present in the TLB */
/* Bits 4-31: Reserved */
/* Context ID Register (CONTEXTIDR). See cstlr.h */
/* Translation Table Definitions ****************************************************/
/* Hardware translation table definitions. Only the "short descriptor format" is
* supported.
*
* Level 1 Descriptor (PMD)
*
* Common definitions that apply to all L1 table entry types
*/
#define PMD_TYPE_SHIFT (0) /* Bits: 1:0: Type of mapping */
#define PMD_TYPE_MASK (3 << PMD_TYPE_SHIFT)
# define PMD_TYPE_FAULT (0 << PMD_TYPE_SHIFT) /* None */
# define PMD_TYPE_PTE (1 << PMD_TYPE_SHIFT) /* Page table */
# define PMD_TYPE_SECT (2 << PMD_TYPE_SHIFT) /* Section or supersection */
# define PMD_TYPE_PXN (3 << PMD_TYPE_SHIFT) /* PXN Section or supersection */
/* Bits 2-31: Depend on the mapping type */
/* Level 1 Fault Translation Table Format.
*
* Invalid or fault entry. "The associated VA is unmapped, and any attempt to
* access it generates a Translation fault. Software can use bits[31:2] of the
* descriptor for its own purposes, because the hardware ignores
* these bits."
*/
/* Level 1 Page Table Translation Table Format.
*
* Page table. "The descriptor gives the address of a second-level translation
* table, that specifies the mapping of the associated 1MByte VA range."
*/
/* Bits 0-1: Type of mapping */
#define PMD_PTE_PXN (1 << 2) /* Bit 2: Privileged execute-never bit */
#define PMD_PTE_NS (1 << 3) /* Bit 3: Non-secure bit */
/* Bit 4: Should be zero (SBZ) */
#define PMD_PTE_DOM_SHIFT (5) /* Bits 5-8: Domain */
#define PMD_PTE_DOM_MASK (15 << PMD_PTE_DOM_SHIFT)
# define PMD_PTE_DOM(n) ((n) << PMD_PTE_DOM_SHIFT)
/* Bit 9: Not implemented */
#define PMD_PTE_PADDR_MASK (0xfffffc00) /* Bits 10-31: Page table base address */
/* Level 1 Section/Supersection Descriptor.
*
* Section or Supersection. "The descriptor gives the base address of the
* Section or Supersection. Bit[18] determines whether the entry describes a
* Section or a Supersection. If the implementation supports the PXN
* attribute, this encoding also defines the PXN bit as 0. Section descriptors
* allow fast, single level mapping between 1Mb address regions."
* PXN Section or Supersection. "If an implementation supports the PXN attribute,
* this encoding is identical..., except that it defines the PXN bit as 1.
*
* "If the implementation does not support the PXN attribute, an attempt to access
* the associated VA generates a Translation fault. On an implementation that
* does not support the PXN attribute, this encoding must not be used."
*/
/* Section */
#define PMD_SECT_PXN (1 << 0) /* Bit 0: Privileged execute-never bit */
/* Bits 0-1: Type of mapping */
#define PMD_SECT_B (1 << 2) /* Bit 2: Bufferable bit */
#define PMD_SECT_C (1 << 3) /* Bit 3: Cacheable bit */
#define PMD_SECT_XN (1 << 4) /* Bit 4: Execute-never bit */
#define PMD_SECT_DOM_SHIFT (5) /* Bits 5-8: Domain */
#define PMD_SECT_DOM_MASK (15 << PMD_SECT_DOM_SHIFT)
# define PMD_SECT_DOM(n) ((n) << PMD_SECT_DOM_SHIFT)
/* Bit 9: Implementation defined */
#define PMD_SECT_AP_SHIFT (10) /* Bits 10-11: Access Permissions bits AP[0:1] */
#define PMD_SECT_AP_MASK (3 << PMD_SECT_AP_SHIFT)
# define PMD_SECT_AP0 (1 << PMD_SECT_AP_SHIFT) /* AP[0]: Access permission bit 0 */
# define PMD_SECT_AP1 (2 << PMD_SECT_AP_SHIFT) /* AP[1]: Access permission bit 1 */
#define PMD_SECT_TEX_SHIFT (12) /* Bits 12-14: Memory region attribute bits */
#define PMD_SECT_TEX_MASK (7 << PMD_SECT_TEX_SHIFT)
#define PMD_SECT_AP2 (1 << 15) /* Bit 15: AP[2]: Access permission bit 2 */
#define PMD_SECT_S (1 << 16) /* Bit 16: Shareable bit */
#define PMD_SECT_NG (1 << 17) /* Bit 17: Not global bit. */
#define PMD_SECT_PADDR_MASK (0xfff00000) /* Bits 20-31: Section base address, PA[31:20] */
/* Super Section (differences only) */
#define PMD_SSECT_XBA3_SHIFT (5) /* Bits 24-31: Extended base address, PA[39:36] */
#define PMD_SSECT_XBA3_MASK (15 << PMD_SSECT_XBA3_SHIFT)
#define PMD_SSECT_XBA2_SHIFT (5) /* Bits 20-23: Extended base address, PA[35:32] */
#define PMD_SSECT_XBA2_MASK (15 << PMD_SSECT_XBA2_SHIFT)
#define PMD_SSECT_XBA1_SHIFT (5) /* Bits 24-31: Extended base address, PA[31:24] */
#define PMD_SSECT_XBA1_MASK (15 << PMD_SSECT_XBA1_SHIFT)
/* Level 1 Section/Supersection Access Permissions.
*
* Paragraph B3.7.1, Access permissions: "If address translation is using
* the Short-descriptor translation table format, it must set SCTLR.AFE to
* 1 to enable use of the Access flag.... Setting this bit to 1 redefines
* the AP[0] bit in the translation table descriptors as an Access flag, and
* limits the access permissions information in the translation table
* descriptors to AP[2:1]...
*
* Key:
*
* WR - Read/write address allowed
* R - Read-only access allowed
* 0,1,2 - At PL0, PL1, and/or PL2
*
* PL0 - User privilege level
* PL1 - Privileged mode
* PL2 - Software executing in Hyp mode
*/
#ifdef CONFIG_AFE_ENABLE
/* AP[2:1] access permissions model. AP[0] is used as an access flag:
*
* AP[2] AP[1] PL1 PL0 Description
* ----- ----- ----------- ---------- --------------------------------
* 0 0 Read/write No access Access only at PL1
* 0 1 Read/write Read/write Full access
* 1 0 Read-only No access Read-only for PL1
* 1 1 Read-only Read-only Read-only at any privilege level
*/
# define PMD_SECT_AP_RW1 (0)
# define PMD_SECT_AP_RW01 (PMD_SECT_AP1)
# define PMD_SECT_AP_R1 (PMD_SECT_AP2)
# define PMD_SECT_AP_R01 (PMD_SECT_AP1 | PMD_SECT_AP2)
#else
/* AP[2:0] access permissions control, Short-descriptor format only:
*
* AP[2] AP[1] AP[0] PL1/2 PL0 Description
* ----- ----- ----- ----------- ---------- --------------------------------
* 0 0 0 No access No access All accesses generate faults
* 0 0 1 Read/write No access Access only at PL1 and higher
* 0 1 0 Read/write Read-only Writes at PL0 generate faults
* 0 1 1 Read/write Read/write Full access
* 1 0 0 ---- --- Reserved
* 1 0 1 Read-only No access Read-only for PL1 and higher
* 1 1 0 Read-only Read-only (deprecated)
* 1 1 1 Read-only Read-only Read-only at any privilege level
*/
# define PMD_SECT_AP_NONE (0)
# define PMD_SECT_AP_RW12 (PMD_SECT_AP0)
# define PMD_SECT_AP_RW12_R0 (PMD_SECT_AP1)
# define PMD_SECT_AP_RW012 (PMD_SECT_AP0 | PMD_SECT_AP1)
# define PMD_SECT_AP_R12 (PMD_SECT_AP0 | PMD_SECT_AP2)
# define PMD_SECT_AP_R012 (PMD_SECT_AP0 | PMD_SECT_AP1 | PMD_SECT_AP2)
/* Some mode-independent aliases */
# define PMD_SECT_AP_RW1 PMD_SECT_AP_RW12
# define PMD_SECT_AP_RW01 PMD_SECT_AP_RW012
# define PMD_SECT_AP_R1 PMD_SECT_AP_R12
# define PMD_SECT_AP_R01 PMD_SECT_AP_R012
#endif
/* Short-descriptor translation table second-level descriptor formats
*
* A PMD_TYPE_PTE level-one table entry provides the base address of the beginning
* of a second-level page table. There are two types of page table entries:
*
* - Large page table entries support mapping of 64KB memory regions.
* - Small page table entries support mapping of 4KB memory regions.
*
* The following definitions apply to all L2 tables:
*/
#define PTE_TYPE_SHIFT (0) /* Bits: 1:0: Type of mapping */
#define PTE_TYPE_MASK (3 << PTE_TYPE_SHIFT)
# define PTE_TYPE_FAULT (0 << PTE_TYPE_SHIFT) /* None */
# define PTE_TYPE_LARGE (1 << PTE_TYPE_SHIFT) /* 64Kb of memory */
# define PTE_TYPE_SMALL (2 << PTE_TYPE_SHIFT) /* 4Kb of memory */
#define PTE_B (1 << 2) /* Bit 2: Bufferable bit */
#define PTE_C (1 << 3) /* Bit 3: Cacheable bit */
#define PTE_AP_SHIFT (4) /* Bits 4-5: Access Permissions bits AP[0:1] */
#define PTE_AP_MASK (3 << PTE_AP_SHIFT)
# define PTE_AP0 (1 << PTE_AP_SHIFT) /* AP[0]: Access permission bit 0 */
# define PTE_AP1 (2 << PTE_AP_SHIFT) /* AP[1]: Access permission bit 1 */
/* Bits 6-8: Depend on entry type */
#define PTE_AP2 (1 << 9) /* Bit 9: AP[2]: Access permission bit 2 */
#define PTE_S (1 << 10) /* Bit 10: Shareable bit */
#define PTE_NG (1 << 11) /* Bit 11: Not global bit. */
/* Bits 12-31:Depend on entry type */
/* Large page -- 64Kb */
/* Bits: 1:0: Type of mapping */
/* Bit 2: Bufferable bit */
/* Bit 3: Cacheable bit */
/* Bits 4-5: Access Permissions bits AP[0:1] */
#define PTE_LARGE_TEX_SHIFT (12) /* Bits 12-14: Memory region attribute bits */
#define PTE_LARGE_TEX_MASK (7 << PTE_LARGE_TEX_SHIFT)
#define PTE_LARGE_XN (1 << 15) /* Bit 15: Execute-never bit */
#define PTE_LARGE_FLAG_MASK (0x0000f03f) /* Bits 0-15: MMU flags (mostly) */
#define PTE_LARGE_PADDR_MASK (0xffff0000) /* Bits 16-31: Large page base address, PA[31:16] */
/* Small page -- 4Kb */
/* Bits: 1:0: Type of mapping */
/* Bit 2: Bufferable bit */
/* Bit 3: Cacheable bit */
/* Bits 4-5: Access Permissions bits AP[0:1] */
#define PTE_SMALL_FLAG_MASK (0x0000003f) /* Bits 0-11: MMU flags (mostly) */
#define PTE_SMALL_PADDR_MASK (0xfffff000) /* Bits 12-31: Small page base address, PA[31:12] */
/* Level 2 Translation Table Access Permissions:
*
* WR - Read/write access allowed
* R - Read-only access allowed
* 0,1,2 - At PL0, PL1, and/or PL2
*
* PL0 - User privilege level
* PL1 - Privileged mode
* PL2 - Software executing in Hyp mode
*/
#ifdef CONFIG_AFE_ENABLE
/* AP[2:1] access permissions model. AP[0] is used as an access flag:
*
* AP[2] AP[1] PL1 PL0 Description
* ----- ----- ----------- ---------- --------------------------------
* 0 0 Read/write No access Access only at PL1
* 0 1 Read/write Read/write Full access
* 1 0 Read-only No access Read-only for PL1
* 1 1 Read-only Read-only Read-only at any privilege level
*/
# define PTE_AP_RW1 (0)
# define PTE_AP_RW01 (PTE_AP1)
# define PTE_AP_R1 (PTE_AP2)
# define PTE_AP_R01 (PTE_AP1 | PTE_AP2)
#else
/* AP[2:0] access permissions control, Short-descriptor format only:
*
* AP[2] AP[1] AP[0] PL1/2 PL0 Description
* ----- ----- ----- ----------- ---------- --------------------------------
* 0 0 0 No access No access All accesses generate faults
* 0 0 1 Read/write No access Access only at PL1 and higher
* 0 1 0 Read/write Read-only Writes at PL0 generate faults
* 0 1 1 Read/write Read/write Full access
* 1 0 0 ---- --- Reserved
* 1 0 1 Read-only No access Read-only for PL1 and higher
* 1 1 0 Read-only Read-only (deprecated)
* 1 1 1 Read-only Read-only Read-only at any privilege level
*/
# define PTE_AP_NONE (0)
# define PTE_AP_RW12 (PTE_AP0)
# define PTE_AP_RW12_R0 (PTE_AP1)
# define PTE_AP_RW012 (PTE_AP0 | PTE_AP1)
# define PTE_AP_R12 (PTE_AP0 | PTE_AP2)
# define PTE_AP_R012 (PTE_AP0 | PTE_AP1 | PTE_AP2)
/* Some mode-independent aliases */
# define PTE_AP_RW1 PTE_AP_RW12
# define PTE_AP_RW01 PTE_AP_RW012
# define PTE_AP_R1 PTE_AP_R12
# define PTE_AP_R01 PTE_AP_R012
#endif
/* Memory types
*
* When TEX[2] == 1, the memory region is cacheable memory, and TEX[1:0]
* describe inner and outer cache attributes. In this implementation,
* however, TEX[2:0] are always zero. In this case, the cacheability is
* described simply as:
*
* C B Memory Type
* - - ---------------------------------------------------------------
* 0 0 Strongly-ordered. Strongly-ordered Shareable
* 0 1 Shareable Device. Device Shareable
* 1 0 Outer and Inner Write-Through, no Write-Allocate. Normal S bit
* 1 1 Outer and Inner Write-Back, no Write-Allocate. Normal S bit
*
* The memory type is actually controlled by the contents of the PRRR and
* NMRR registers. For the simple case where TEX[2:0] = 0b000, the control
* is as follows:
*
*
* MEMORY INNER OUTER OUTER SHAREABLE
* C B TYPE CACHEABILITY CACHEABILITY ATTRIBUTE
* - - ---------- ------------- ------------ -----------------
* 0 0 PRRR[1:0] NMRR[1:0] NMRR[17:16] NOT(PRRR[24])
* 0 1 PRRR[3:2] NMRR[3:2] NMRR[19:18] NOT(PRRR[25])
* 1 0 PRRR[5:4] NMRR[5:4] NMRR[21:20] NOT(PRRR[26])
* 1 1 PRRR[7:6] NMRR[7:6] NMRR[23:22] NOT(PRRR[27])
*
* But on reset I see the following in PRRR:
*
* PRRR[1:0] = 0b00, Strongly ordered memory
* PRRR[3:2] = 0b01, Device memory
* PRRR[5:4] = 0b10, Normal memory
* PRRR[7:6] = 0b10, Normal memory
* PRRR[14:27] = 0b10, Outer shareable
*
* And the following in NMRR:
*
* NMRR[1:0] = 0b00, Region is Non-cacheable
* NMRR[3:2] = 0b00, Region is Non-cacheable
* NMRR[5:4] = 0b10, Region is Write-Through, no Write-Allocate
* NMRR[7:6] = 0b11, Region is Write-Back, no Write-Allocate
* NMRR[17:16] = 0b00, Region is Non-cacheable
* NMRR[19:18] = 0b00, Region is Non-cacheable
* NMRR[21:20] = 0b10, Region is Write-Through, no Write-Allocate
* NMRR[23:22] = 0b11, Region is Write-Back, no Write-Allocate
*
* Interpretation of Cacheable (C) and Bufferable (B) Bits:
*
* Write-Through Write-Back Write-Through/Write-Back
* C B Cache Only Cache Cache
* --- --- -------------- ------------- -------------------------
* 0 0 Uncached/ Uncached/ Uncached/
* Unbuffered Unbuffered Unbuffered
* 0 1 Uncached/ Uncached/ Uncached/
* Buffered Buffered Buffered
* 1 0 Cached/ UNPREDICTABLE Write-Through cached
* Unbuffered Buffered
* 1 1 Cached/ Cached/ Write-Back cached
* Buffered Buffered Buffered
*/
#define PMD_STRONGLY_ORDERED (0)
#define PMD_DEVICE (PMD_SECT_B)
#define PMD_CACHEABLE (PMD_SECT_B | PMD_SECT_C)
#define PTE_STRONGLY_ORDER (0)
#define PTE_DEVICE (PTE_B)
#define PTE_WRITE_THROUGH (PTE_C)
#define PTE_WRITE_BACK (PTE_B | PTE_C)
/* Default MMU flags for RAM memory, IO, vector sections (level 1)
*
* REVISIT: Here we expect all threads to be running at PL1
*/
#define MMU_ROMFLAGS (PMD_TYPE_SECT | PMD_SECT_AP_R1 | PMD_CACHEABLE | \
PMD_SECT_DOM(0))
#define MMU_MEMFLAGS (PMD_TYPE_SECT | PMD_SECT_AP_RW1 | PMD_CACHEABLE | \
PMD_SECT_DOM(0))
#define MMU_IOFLAGS (PMD_TYPE_SECT | PMD_SECT_AP_RW1 | PMD_DEVICE | \
PMD_SECT_DOM(0) | PMD_SECT_XN)
#define MMU_STRONGLY_ORDERED (PMD_TYPE_SECT | PMD_SECT_AP_RW1 | \
PMD_STRONGLY_ORDERED | PMD_SECT_DOM(0) | \
PMD_SECT_XN)
/* MMU Flags for each type memory region (level 1 and 2) */
#define MMU_L1_TEXTFLAGS (PMD_TYPE_PTE | PMD_PTE_DOM(0))
#define MMU_L2_KTEXTFLAGS (PTE_TYPE_SMALL | PTE_WRITE_BACK | PTE_AP_R1)
#ifdef CONFIG_AFE_ENABLE
# define MMU_L2_UTEXTFLAGS (PTE_TYPE_SMALL | PTE_WRITE_BACK | PTE_AP_RW01)
#else
# define MMU_L2_UTEXTFLAGS (PTE_TYPE_SMALL | PTE_WRITE_BACK | PTE_AP_RW12_R0)
#endif
#define MMU_L1_DATAFLAGS (PMD_TYPE_PTE | PMD_PTE_PXN | PMD_PTE_DOM(0))
#define MMU_L2_UDATAFLAGS (PTE_TYPE_SMALL | PTE_WRITE_BACK | PTE_AP_RW01)
#define MMU_L2_KDATAFLAGS (PTE_TYPE_SMALL | PTE_WRITE_BACK | PTE_AP_RW1)
#define MMU_L2_UALLOCFLAGS (PTE_TYPE_SMALL | PTE_WRITE_BACK | PTE_AP_RW01)
#define MMU_L2_KALLOCFLAGS (PTE_TYPE_SMALL | PTE_WRITE_BACK | PTE_AP_RW1)
#define MMU_L1_PGTABFLAGS (PMD_TYPE_PTE | PMD_PTE_PXN | PTE_WRITE_THROUGH | \
PMD_PTE_DOM(0))
#define MMU_L2_PGTABFLAGS (PTE_TYPE_SMALL | PTE_WRITE_THROUGH | PTE_AP_RW1)
#define MMU_L1_VECTORFLAGS (PMD_TYPE_PTE | PMD_PTE_PXN | PMD_PTE_DOM(0))
#define MMU_L2_VECTRWFLAGS (PTE_TYPE_SMALL | PTE_WRITE_THROUGH | PTE_AP_RW1)
#define MMU_L2_VECTROFLAGS (PTE_TYPE_SMALL | PTE_WRITE_THROUGH | PTE_AP_R1)
#define MMU_L2_VECTORFLAGS MMU_L2_VECTRWFLAGS
/* Mapped section size */
#define SECTION_SHIFT (20)
#define SECTION_SIZE (1 << SECTION_SHIFT) /* 1Mb */
#define SECTION_MASK (SECTION_SIZE - 1)
/* The Cortex-A5 supports two translation table base address registers. In
* this, implementation, only Translation Table Base Register 0 (TTBR0) is
* used. The TTBR0 contains the upper bits of the address a a page table in
* physical memory. If 4KB page sizes are used, then TTBR0 registers holds
* bits 14-31 of the page table address; A full 30-bit address is formed by
* ORing in bits 2-13 or the virtual address (MVA). As a consequence, the
* page table must be aligned to a 16Kb address in physical memory and could
* require up to 16Kb of memory.
*/
#define PGTABLE_SIZE 0x00004000
/* Virtual Page Table Location ******************************************************/
#ifdef CONFIG_PAGING
/* Check if the virtual address of the page table has been defined. It
* should not be defined: architecture specific logic should suppress
* defining PGTABLE_BASE_VADDR unless: (1) it is defined in the NuttX
* configuration file, or (2) the page table is position in low memory
* (because the vectors are in high memory).
*/
#ifndef PGTABLE_BASE_VADDR
# define PGTABLE_BASE_VADDR (PG_LOCKED_VBASE + PG_TEXT_VSIZE + PG_DATA_SIZE)
/* Virtual base of the address of the L2 page tables need to recalculates
* using this new virtual base address of the L2 page table.
*/
# undef PGTABLE_L2_VBASE
# define PGTABLE_L2_VBASE (PGTABLE_BASE_VADDR+PGTABLE_L2_OFFSET)
#endif /* PGTABLE_BASE_VADDR */
/* MMU flags ************************************************************************/
/* Create some friendly definitions to handle page table entries */
#if CONFIG_PAGING_PAGESIZE != 4096
# error "Unsupported value for CONFIG_PAGING_PAGESIZE"
#endif
/* Base of the L2 page table (aligned to 1Kb byte boundaries) */
#define PGTABLE_L2_BASE_PADDR PGTABLE_L2_PBASE
#define PGTABLE_L2_BASE_VADDR PGTABLE_L2_VBASE
/* Number of pages in an L2 table per L1 entry */
#define PTE_NPAGES PTE_SMALL_NPAGES
#define PT_SIZE (4*PTE_NPAGES)
/* Mask to get the page table physical address from an L1 entry */
#define PG_L1_PADDRMASK PMD_SECT_PADDR_MASK
/* Addresses of Memory Regions ******************************************************/
/* We position the locked region PTEs at an offset into the first
* L2 page table. The L1 entry points to an 1Mb aligned virtual
* address. The actual L2 entry will be offset into the aligned
* L2 table. For 4KB, "small" pages:
*
* PG_L1_PADDRMASK=0xfffff000
* OFFSET=(((a) & 0x000fffff) >> 10) << 2)
*/
#define PG_L1_LOCKED_PADDR (PGTABLE_BASE_PADDR + ((PG_LOCKED_VBASE >> 20) << 2))
#define PG_L1_LOCKED_VADDR (PGTABLE_BASE_VADDR + ((PG_LOCKED_VBASE >> 20) << 2))
#define PG_L2_LOCKED_OFFSET (((PG_LOCKED_VBASE & 0x000fffff) >> PAGESHIFT) << 2)
#define PG_L2_LOCKED_PADDR (PGTABLE_L2_BASE_PADDR + PG_L2_LOCKED_OFFSET)
#define PG_L2_LOCKED_VADDR (PGTABLE_L2_BASE_VADDR + PG_L2_LOCKED_OFFSET)
#define PG_L2_LOCKED_SIZE (4*CONFIG_PAGING_NLOCKED)
/* We position the paged region PTEs immediately after the locked
* region PTEs. NOTE that the size of the paged regions is much
* larger than the size of the physical paged region. That is the
* core of what the On-Demanding Paging feature provides.
*/
#define PG_L1_PAGED_PADDR (PGTABLE_BASE_PADDR + ((PG_PAGED_VBASE >> 20) << 2))
#define PG_L1_PAGED_VADDR (PGTABLE_BASE_VADDR + ((PG_PAGED_VBASE >> 20) << 2))
#define PG_L2_PAGED_PADDR (PG_L2_LOCKED_PADDR + PG_L2_LOCKED_SIZE)
#define PG_L2_PAGED_VADDR (PG_L2_LOCKED_VADDR + PG_L2_LOCKED_SIZE)
#define PG_L2_PAGED_SIZE (4*CONFIG_PAGING_NVPAGED)
/* This describes the overall text region */
#define PG_L1_TEXT_PADDR PG_L1_LOCKED_PADDR
#define PG_L1_TEXT_VADDR PG_L1_LOCKED_VADDR
#define PG_L2_TEXT_PADDR PG_L2_LOCKED_PADDR
#define PG_L2_TEXT_VADDR PG_L2_LOCKED_VADDR
#define PG_L2_TEXT_SIZE (PG_L2_LOCKED_SIZE + PG_L2_PAGED_SIZE)
/* We position the data section PTEs just after the text region PTE's */
#define PG_L1_DATA_PADDR (PGTABLE_BASE_PADDR + ((PG_DATA_VBASE >> 20) << 2))
#define PG_L1_DATA_VADDR (PGTABLE_BASE_VADDR + ((PG_DATA_VBASE >> 20) << 2))
#define PG_L2_DATA_PADDR (PG_L2_LOCKED_PADDR + PG_L2_TEXT_SIZE)
#define PG_L2_DATA_VADDR (PG_L2_LOCKED_VADDR + PG_L2_TEXT_SIZE)
#define PG_L2_DATA_SIZE (4*PG_DATA_NPAGES)
/* Page Table Info ******************************************************************/
/* The number of pages in the in the page table (PG_PGTABLE_NPAGES). We
* position the page table PTEs just after the data section PTEs.
*/
#define PG_PGTABLE_NPAGES (PGTABLE_SIZE >> PAGESHIFT)
#define PG_L1_PGTABLE_PADDR (PGTABLE_BASE_PADDR + ((PGTABLE_BASE_VADDR >> 20) << 2))
#define PG_L1_PGTABLE_VADDR (PGTABLE_BASE_VADDR + ((PGTABLE_BASE_VADDR >> 20) << 2))
#define PG_L2_PGTABLE_PADDR (PG_L2_DATA_PADDR + PG_L2_DATA_SIZE)
#define PG_L2_PGTABLE_VADDR (PG_L2_DATA_VADDR + PG_L2_DATA_SIZE)
#define PG_L2_PGTABLE_SIZE (4*PG_DATA_NPAGES)
/* Vector Mapping *******************************************************************/
/* One page is required to map the vector table. The vector table could lie
* at virtual address zero (or at the start of RAM which is aliased to address
* zero on the ea3131) or at virtual address 0xfff00000. We only have logic
* here to support the former case.
*
* NOTE: If the vectors are at address zero, the page table will be
* forced to the highest RAM addresses. If the vectors are at 0xfff0000,
* then the page table is forced to the beginning of RAM.
*
* When the vectors are at the beginning of RAM, they will probably overlap
* the first page of the locked text region. In any other case, the
* configuration must set CONFIG_PAGING_VECPPAGE to provide the physical
* address of the page to use for the vectors.
*
* When the vectors overlap the first page of the locked text region (the
* only case in use so far), then the text page will be temporarily be made
* writable in order to copy the vectors.
*
* PG_VECT_PBASE - This the physical address of the page in memory to be
* mapped to the vector address.
* PG_L2_VECT_PADDR - This is the physical address of the L2 page table
* entry to use for the vector mapping.
* PG_L2_VECT_VADDR - This is the virtual address of the L2 page table
* entry to use for the vector mapping.
*/
/* Case 1: The configuration tells us everything */
#if defined(CONFIG_PAGING_VECPPAGE)
# define PG_VECT_PBASE CONFIG_PAGING_VECPPAGE
# define PG_L2_VECT_PADDR CONFIG_PAGING_VECL2PADDR
# define PG_L2_VECT_VADDR CONFIG_PAGING_VECL2VADDR
/* Case 2: Vectors are in low memory and the locked text region starts at
* the beginning of SRAM (which will be aliased to address 0x00000000).
* However, the beginning of SRAM may not be aligned to the beginning
* of the L2 page table (because the beginning of RAM is offset into
* the table.
*/
#elif defined(CONFIG_ARCH_LOWVECTORS) && !defined(CONFIG_PAGING_LOCKED_PBASE)
# define PG_VECT_PBASE PG_LOCKED_PBASE
# define PG_L2_VECT_OFFSET (((PG_LOCKED_VBASE & 0x000fffff) >> PAGESHIFT) << 2)
# define PG_L2_VECT_PADDR (PGTABLE_L2_BASE_PADDR + PG_L2_VECT_OFFSET)
# define PG_L2_VECT_VADDR (PGTABLE_L2_BASE_VADDR + PG_L2_VECT_OFFSET)
/* Case 3: High vectors or the locked region is not at the beginning or SRAM */
#else
# error "Logic missing for high vectors in this case"
#endif
/* Page Usage ***********************************************************************/
/* This is the total number of pages used in the text/data mapping: */
#define PG_TOTAL_NPPAGES (PG_TEXT_NPPAGES + PG_DATA_NPAGES + PG_PGTABLE_NPAGES)
#define PG_TOTAL_NVPAGES (PG_TEXT_NVPAGES + PG_DATA_NPAGES + PG_PGTABLE_NPAGES)
#define PG_TOTAL_PSIZE (PG_TOTAL_NPPAGES << PAGESHIFT)
#define PG_TOTAL_VSIZE (PG_TOTAL_NVPAGES << PAGESHIFT)
/* Sanity check: */
#if PG_TOTAL_NPPAGES > PG_RAM_PAGES
# error "Total pages required exceeds RAM size"
#endif
/* Page Management ******************************************************************/
/* For page management purposes, the following summarize the "heap" of
* free pages, operations on free pages and the L2 page table.
*
* PG_POOL_VA2L1OFFSET(va) - Given a virtual address, return the L1 table
* offset (in bytes).
* PG_POOL_VA2L1VADDR(va) - Given a virtual address, return the virtual
* address of the L1 table entry
* PG_POOL_L12PPTABLE(L1) - Given the value of an L1 table entry return
* the physical address of the start of the L2
* page table
* PG_POOL_L12PPTABLE(L1) - Given the value of an L1 table entry return
* the virtual address of the start of the L2
* page table.
*
* PG_POOL_L1VBASE - The virtual address of the start of the L1
* page table range corresponding to the first
* virtual address of the paged text region.
* PG_POOL_L1VEND - The virtual address of the end+1 of the L1
* page table range corresponding to the last
* virtual address+1 of the paged text region.
*
* PG_POOL_VA2L2NDX(va) - Converts a virtual address within the paged
* text region to the most compact possible
* representation. Each PAGESIZE of address
* corresponds to 1 index in the L2 page table;
* Index 0 corresponds to the first L2 page table
* entry for the first page in the virtual paged
* text address space.
* PG_POOL_NDX2VA(ndx) - Performs the opposite conversion.. converts
* an index into a virtual address in the paged
* text region (the address at the beginning of
* the page).
* PG_POOL_MAXL2NDX - This is the maximum value+1 of such an index.
*
* PG_POOL_PGPADDR(ndx) - Converts an page index into the corresponding
* (physical) address of the backing page memory.
* PG_POOL_PGVADDR(ndx) - Converts an page index into the corresponding
* (virtual)address of the backing page memory.
*
* These are used as follows: If a miss occurs at some virtual address, va,
* A new page index, ndx, is allocated. PG_POOL_PGPADDR(i) converts the index
* into the physical address of the page memory; PG_POOL_L2VADDR(va) converts
* the virtual address in the L2 page table there the new mapping will be
* written.
*/
#define PG_POOL_VA2L1OFFSET(va) (((va) >> 20) << 2)
#define PG_POOL_VA2L1VADDR(va) (PGTABLE_BASE_VADDR + PG_POOL_VA2L1OFFSET(va))
#define PG_POOL_L12PPTABLE(L1) ((L1) & PG_L1_PADDRMASK)
#define PG_POOL_L12VPTABLE(L1) (PG_POOL_L12PPTABLE(L1) - PGTABLE_BASE_PADDR + PGTABLE_BASE_VADDR)
#define PG_POOL_L1VBASE (PGTABLE_BASE_VADDR + ((PG_PAGED_VBASE >> 20) << 2))
#define PG_POOL_L1VEND (PG_POOL_L1VBASE + (CONFIG_PAGING_NVPAGED << 2))
#define PG_POOL_VA2L2NDX(va) (((va) - PG_PAGED_VBASE) >> PAGESHIFT)
#define PG_POOL_NDX2VA(ndx) (((ndx) << PAGESHIFT) + PG_PAGED_VBASE)
#define PG_POOL_MAXL2NDX PG_POOL_VA2L2NDX(PG_PAGED_VEND)
#define PG_POOL_PGPADDR(ndx) (PG_PAGED_PBASE + ((ndx) << PAGESHIFT))
#define PG_POOL_PGVADDR(ndx) (PG_PAGED_VBASE + ((ndx) << PAGESHIFT))
#endif /* CONFIG_PAGING */
/************************************************************************************
* Public Types
************************************************************************************/
#ifndef __ASSEMBLY__
/* struct section_mapping_s describes the L1 mapping of a large region of memory
* consisting of one or more 1MB sections (nsections).
*
* All addresses must be aligned to 1MB address boundaries.
*/
struct section_mapping_s
{
uint32_t physbase; /* Physical address of the region to be mapped */
uint32_t virtbase; /* Virtual address of the region to be mapped */
uint32_t mmuflags; /* MMU settings for the region (e.g., cache-able) */
uint32_t nsections; /* Number of mappings in the region */
};
#endif
/************************************************************************************
* Assemby Macros
************************************************************************************/
#ifdef __ASSEMBLY__
/************************************************************************************
* Name: cp15_disable_mmu
*
* Description:
* Disable the MMU
*
* Inputs:
* None
*
************************************************************************************/
.macro cp15_disable_mmu, scratch
mrc p15, 0, \scratch, c1, c0, 0
bic \scratch, \scratch, #1
mcr p15, 0, \scratch, c1, c0, 0
.endm
/************************************************************************************
* Name: cp15_invalidate_tlbs
*
* Description:
* Invalidate entire unified TLB
*
* The Invalidate entire TLB operations invalidate all unlocked entries in the
* TLB. The operation ignores the value in the register Rt specified by the MCR
* instruction that performs the operation. Software does not have to write a
* value to the register before issuing the MCR instruction.
*
* Inputs:
* None
*
************************************************************************************/
.macro cp15_invalidate_tlbs, scratch
mcr p15, 0, \scratch, c8, c7, 0 /* TLBIALL */
.endm
/************************************************************************************
* Name: cp15_invalidate_tlb_bymva
*
* Description:
* Invalidate unified TLB entry by MVA all ASID Inner Shareable
*
* Inputs:
* vaddr - The virtual address to be invalidated
*
************************************************************************************/
.macro cp15_invalidate_tlb_bymva, vaddr
dsb
mcr p15, 0, \vaddr, c8, c3, 3 /* TLBIMVAAIS */
dsb
isb
.endm
/************************************************************************************
* Name: cp15_wrdacr
*
* Description:
* Write the Domain Access Control Register (DACR)
*
* Inputs:
* dacr - The new value of the DACR
*
************************************************************************************/
.macro cp15_wrdacr, dacr
mcr p15, 0, \dacr, c3, c0, 0
nop
nop
nop
nop
nop
nop
nop
nop
.endm
/************************************************************************************
* Name: cp14_wrttb
*
* Description:
* The ARMv7-aA architecture supports two translation tables. This
* implementation, however, uses only translation table 0. This
* function writes the address of the page table to the Translation
* Table Base Register 0 (TTBR0). Then it clears the TTB control
* register (TTBCR), indicating that we are using TTBR0.
*
* Inputs:
* ttb - The new value of the TTBR0 register
*
************************************************************************************/
.macro cp14_wrttb, ttb, scratch
mcr p15, 0, \ttb, c2, c0, 0
nop
nop
nop
nop
nop
nop
nop
nop
mov \scratch, #0x0
mcr p15, 0, \scratch, c2, c0, 2
.endm
/************************************************************************************
* Name: pg_l2map
*
* Description:
* Write several, contiguous L2 page table entries. npages entries will be
* written. This macro is used when CONFIG_PAGING is enable. This case,
* it is used as follows:
*
* ldr r0, =PGTABLE_L2_BASE_PADDR <-- Address in L2 table
* ldr r1, =PG_LOCKED_PBASE <-- Physical page memory address
* ldr r2, =CONFIG_PAGING_NLOCKED <-- number of pages
* ldr r3, =MMUFLAGS <-- L2 MMU flags
* pg_l2map r0, r1, r2, r3, r4
*
* Inputs:
* l2 - Physical or virtual start address in the L2 page table, depending
* upon the context. (modified)
* ppage - The physical address of the start of the region to span. Must
* be aligned to 1Mb section boundaries (modified)
* npages - Number of pages to write in the section (modified)
* mmuflags - L2 MMU FLAGS
*
* Scratch registers (modified): tmp
* l2 - Next address in the L2 page table.
* ppage - Start of next physical page
* npages - Loop counter
* tmp - scratch
*
* Assumptions:
* - The MMU is not yet enabled
* - The L2 page tables have been zeroed prior to calling this function
* - pg_l1span has been called to initialize the L1 table.
*
************************************************************************************/
#ifdef CONFIG_PAGING
.macro pg_l2map, l2, ppage, npages, mmuflags, tmp
b 2f
1:
/* Write the one L2 entries. First, get tmp = (ppage | mmuflags),
* the value to write into the L2 PTE
*/
orr \tmp, \ppage, \mmuflags
/* Write value into table at the current table address
* (and increment the L2 page table address by 4)
*/
str \tmp, [\l2], #4
/* Update the physical address that will correspond to the next
* table entry.
*/
add \ppage, \ppage, #CONFIG_PAGING_PAGESIZE
/* Decrement the number of pages written */
sub \npages, \npages, #1
2:
/* Check if all of the pages have been written. If not, then
* loop and write the next PTE.
*/
cmp \npages, #0
bgt 1b
.endm
#endif /* CONFIG_PAGING */
/************************************************************************************
* Name: pg_l1span
*
* Description:
* Write several, contiguous, unmapped, small L1 page table entries. As many
* entries will be written as many as needed to span npages. This macro is
* used when CONFIG_PAGING is enable. In this case, it is used as follows:
*
* ldr r0, =PG_L1_PGTABLE_PADDR <-- Address in the L1 table
* ldr r1, =PG_L2_PGTABLE_PADDR <-- Physical address of L2 page table
* ldr r2, =PG_PGTABLE_NPAGES <-- Total number of pages
* ldr r3, =PG_PGTABLE_NPAGE1 <-- Number of pages in the first PTE
* ldr r4, =MMU_L1_PGTABFLAGS <-- L1 MMU flags
* pg_l1span r0, r1, r2, r3, r4, r4
*
* Inputs (unmodified unless noted):
* l1 - Physical or virtual address in the L1 table to begin writing (modified)
* l2 - Physical start address in the L2 page table (modified)
* npages - Number of pages to required to span that memory region (modified)
* ppage - The number of pages in page 1 (modified)
* mmuflags - L1 MMU flags to use
*
* Scratch registers (modified): l1, l2, npages, tmp
* l1 - Next L1 table address
* l2 - Physical start address of the next L2 page table
* npages - Loop counter
* ppage - After the first page, this will be the full number of pages.
* tmp - scratch
*
* Return:
* Nothing of interest.
*
* Assumptions:
* - The MMU is not yet enabled
* - The L2 page tables have been zeroed prior to calling this function
*
************************************************************************************/
#ifdef CONFIG_PAGING
.macro pg_l1span, l1, l2, npages, ppage, mmuflags, tmp
b 2f
1:
/* Write the L1 table entry that refers to this (unmapped) small page
* table.
*
* tmp = (l2table | mmuflags), the value to write into the page table
*/
orr \tmp, \l2, \mmuflags
/* Write the value into the L1 table at the correct offset.
* (and increment the L1 table address by 4)
*/
str \tmp, [\l1], #4
/* Update the L2 page table address for the next L1 table entry. */
add \l2, \l2, #PT_SIZE /* Next L2 page table start address */
/* Update the number of pages that we have account for (with
* non-mappings). NOTE that the first page may have fewer than
* the maximum entries per page table.
*/
sub \npages, \npages, \ppage
mov \ppage, #PTE_NPAGES
2:
/* Check if all of the pages have been written. If not, then
* loop and write the next L1 entry.
*/
cmp \npages, #0
bgt 1b
.endm
#endif /* CONFIG_PAGING */
#endif /* __ASSEMBLY__ */
/************************************************************************************
* Inline Functions
************************************************************************************/
#ifndef __ASSEMBLY__
/************************************************************************************
* Name: cp15_disable_mmu
*
* Description:
* Disable the MMU
*
* Inputs:
* None
*
************************************************************************************/
static inline void cp15_disable_mmu(void)
{
__asm__ __volatile__
(
"\tmrc p15, 0, r0, c1, c0, 0\n"
"\tbic r0, r0, #1\n"
"\tmcr p15, 0, r0, c1, c0, 0\n"
:
:
: "r0", "memory"
);
}
/************************************************************************************
* Name: cp15_invalidate_tlbs
*
* Description:
* Invalidate entire unified TLB
*
* The Invalidate entire TLB operations invalidate all unlocked entries in the
* TLB. The operation ignores the value in the register Rt specified by the MCR
* instruction that performs the operation. Software does not have to write a
* value to the register before issuing the MCR instruction.
*
* Inputs:
* None
*
************************************************************************************/
static inline void cp15_invalidate_tlbs(void)
{
__asm__ __volatile__
(
"\tmcr p15, 0, r0, c8, c7, 0\n" /* TLBIALL */
:
:
: "r0", "memory"
);
}
/************************************************************************************
* Name: cp15_invalidate_tlb_bymva
*
* Description:
* Invalidate unified TLB entry by MVA all ASID Inner Shareable
*
* Inputs:
* vaddr - The virtual address to be invalidated
*
************************************************************************************/
static inline void cp15_invalidate_tlb_bymva(uint32_t vaddr)
{
__asm__ __volatile__
(
"\tdsb\n"
"\tmcr p15, 0, %0, c8, c3, 3\n" /* TLBIMVAAIS */
"\tdsb\n"
"\tisb\n"
:
: "r" (vaddr)
: "r1", "memory"
);
}
/************************************************************************************
* Name: cp15_wrdacr
*
* Description:
* Write the Domain Access Control Register (DACR)
*
* Inputs:
* dacr - The new value of the DACR
*
************************************************************************************/
static inline void cp15_wrdacr(unsigned int dacr)
{
__asm__ __volatile__
(
"\tmcr p15, 0,0, c3, c0, 0\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
:
: "r" (dacr)
: "memory"
);
}
/************************************************************************************
* Name: cp14_wrttb
*
* Description:
* The ARMv7-aA architecture supports two translation tables. This
* implementation, however, uses only translation table 0. This
* function writes the address of the page table to the Translation
* Table Base Register 0 (TTBR0). Then it clears the TTB control
* register (TTBCR), indicating that we are using TTBR0.
*
* Inputs:
* ttb - The new value of the TTBR0 register
*
************************************************************************************/
static inline void cp14_wrttb(unsigned int ttb)
{
__asm__ __volatile__
(
"\tmcr p15, 0,0, c2, c0, 0\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
"\tnop\n"
"\tmov r1, #0\n"
"\tmcr p15, 0, r1, c2, c0, 2\n"
:
: "r" (ttb)
: "r1", "memory"
);
}
/*************************************************************************************
* Name: mmu_l1_getentry
*
* Description:
* Given a virtual address, return the value of the corresponding L1 table entry.
*
* Input Parameters:
* vaddr - The virtual address to be mapped.
*
************************************************************************************/
#ifndef CONFIG_ARCH_ROMPGTABLE
static inline uint32_t mmu_l1_getentry(uint32_t vaddr)
{
uint32_t *l1table = (uint32_t*)PGTABLE_BASE_VADDR;
uint32_t index = vaddr >> 20;
/* Return the address of the page table entry */
return l1table[index];
}
#endif
/*************************************************************************************
* Name: mmu_l2_getentry
*
* Description:
* Given a address of the beginning of an L2 page table and a virtual address,
* return the value of the corresponding L2 page table entry.
*
* Input Parameters:
* l2vaddr - The virtual address of the beginning of the L2 page table
* vaddr - The virtual address to be mapped.
*
************************************************************************************/
#ifndef CONFIG_ARCH_ROMPGTABLE
static inline uint32_t mmu_l2_getentry(uint32_t l2vaddr, uint32_t vaddr)
{
uint32_t *l2table = (uint32_t*)l2vaddr;
uint32_t index;
/* The table divides a 1Mb address space up into 256 entries, each
* corresponding to 4Kb of address space. The page table index is
* related to the offset from the beginning of 1Mb region.
*/
index = (vaddr & 0x000ff000) >> 12;
/* Return the address of the page table entry */
return l2table[index];
}
#endif
#endif /* __ASSEMBLY__ */
/************************************************************************************
* Public Variables
************************************************************************************/
/************************************************************************************
* Public Function Prototypes
************************************************************************************/
#ifndef __ASSEMBLY__
#ifdef __cplusplus
#define EXTERN extern "C"
extern "C" {
#else
#define EXTERN extern
#endif
/************************************************************************************
* Name: mmu_l1_setentry
*
* Description:
* Set a one level 1 translation table entry. Only a single L1 page table is
* supported.
*
* Input Parameters:
* paddr - The physical address to be mapped. Must be aligned to a 1MB address
* boundary
* vaddr - The virtual address to be mapped. Must be aligned to a 1MB address
* boundary
* mmuflags - The MMU flags to use in the mapping.
*
************************************************************************************/
#ifndef CONFIG_ARCH_ROMPGTABLE
void mmu_l1_setentry(uint32_t paddr, uint32_t vaddr, uint32_t mmuflags);
#endif
/****************************************************************************
* Name: mmu_l1_restore
*
* Description:
* Restore one L1 table entry previously returned by mmu_l1_getentry() (or
* any other encoded L1 page table value).
*
* Input Parameters:
* vaddr - A virtual address to be mapped
* l1entry - The value to write into the page table entry
*
****************************************************************************/
#if !defined(CONFIG_ARCH_ROMPGTABLE) && defined(CONFIG_ARCH_ADDRENV)
void mmu_l1_restore(uintptr_t vaddr, uint32_t l1entry);
#endif
/************************************************************************************
* Name: mmu_l1_clrentry
*
* Description:
* Unmap one L1 region by writing zero into the L1 page table entry and by
* flushing caches and TLBs appropriately.
*
* Input Parameters:
* vaddr - A virtual address within the L1 address region to be unmapped.
*
************************************************************************************/
#if !defined (CONFIG_ARCH_ROMPGTABLE) && defined(CONFIG_ARCH_ADDRENV)
# define mmu_l1_clrentry(v) mmu_l1_restore(v,0)
#endif
/************************************************************************************
* Name: mmu_l1_map_region
*
* Description:
* Set multiple level 1 translation table entries in order to map a region of
* memory.
*
* Input Parameters:
* mapping - Describes the mapping to be performed.
*
************************************************************************************/
#ifndef CONFIG_ARCH_ROMPGTABLE
void mmu_l1_map_region(const struct section_mapping_s *mapping);
#endif
/****************************************************************************
* Name: mmu_invalidate_region
*
* Description:
* Invalidate TLBs for a range of addresses (all 4KB aligned).
*
* Input Parameters:
* vaddr - The beginning of the region to invalidate.
* size - The size of the region in bytes to be invalidated.
*
****************************************************************************/
#ifndef CONFIG_ARCH_ROMPGTABLE
void mmu_invalidate_region(uint32_t vstart, size_t size);
#endif
#undef EXTERN
#ifdef __cplusplus
}
#endif
#endif /* __ASSEMBLY__ */
#endif /* __ARCH_ARM_SRC_ARMV7_A_MMU_H */