nuttx/arch/arm/src/efm32/efm32_adc.c
Xiang Xiao 03c31d332f arch/arm: Remove FAR and CODE from chip folder(1)
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
2022-05-03 16:50:52 +03:00

1354 lines
38 KiB
C

/****************************************************************************
* arch/arm/src/efm32/efm32_adc.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdio.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <debug.h>
#include <unistd.h>
#include <arch/board/board.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/analog/adc.h>
#include <nuttx/analog/ioctl.h>
#include "arm_internal.h"
#include "chip.h"
#include "efm32.h"
#include "efm32_adc.h"
/* ADC "lower half" support must be enabled */
#ifdef CONFIG_EFM32_ADC
/* Some ADC peripheral must be enabled */
#if defined(CONFIG_EFM32_ADC1)
/* This implementation is for the EFM32GG Only */
#if defined(CONFIG_EFM32_EFM32GG)
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* ADC interrupts ***********************************************************/
/* The maximum number of channels that can be sampled. If dma support is
* not enabled, then only a single channel can be sampled. Otherwise,
* data overruns would occur.
*/
#ifdef CONFIG_ADC_DMA
# define ADC_MAX_SAMPLES 16
# warning "not tested !"
#else
# define ADC_MAX_SAMPLES 1
#endif
/****************************************************************************
* Private Types
****************************************************************************/
/* This structure describes the state of one ADC block */
struct efm32_dev_s
{
const struct adc_callback_s *cb;
uint8_t irq; /* Interrupt generated by this ADC block */
uint8_t nchannels; /* Number of channels */
uint8_t current; /* Current ADC channel being converted */
xcpt_t isr; /* Interrupt handler for this ADC block */
uint32_t base; /* Base address of registers unique to this ADC block */
uint8_t chanlist[ADC_MAX_SAMPLES];
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* ADC Register access */
static uint32_t adc_getreg(struct efm32_dev_s *priv, int offset);
static void adc_putreg(struct efm32_dev_s *priv, int offset,
uint32_t value);
static void adc_hw_reset(struct efm32_dev_s *priv, bool reset);
/* ADC Interrupt Handler */
static int adc_interrupt(int irq,
void *context, struct adc_dev_s *dev);
/* ADC Driver Methods */
static int adc_bind(struct adc_dev_s *dev,
const struct adc_callback_s *callback);
static void adc_reset(struct adc_dev_s *dev);
static int adc_setup(struct adc_dev_s *dev);
static void adc_shutdown(struct adc_dev_s *dev);
static void adc_rxint(struct adc_dev_s *dev, bool enable);
static int adc_ioctl(struct adc_dev_s *dev, int cmd, unsigned long arg);
static void adc_enable(struct efm32_dev_s *priv, bool enable);
#ifdef ADC_HAVE_TIMER
static void adc_timstart(struct efm32_dev_s *priv, bool enable);
static int adc_timinit(struct efm32_dev_s *priv);
#endif
#if defined(CONFIG_EFM32_EFM32GG)
static void adc_startconv(struct efm32_dev_s *priv, bool enable);
#endif
/****************************************************************************
* Private Data
****************************************************************************/
/* ADC interface operations */
static const struct adc_ops_s g_adcops =
{
.ao_bind = adc_bind,
.ao_reset = adc_reset,
.ao_setup = adc_setup,
.ao_shutdown = adc_shutdown,
.ao_rxint = adc_rxint,
.ao_ioctl = adc_ioctl,
};
/* ADC1 state */
#ifdef CONFIG_EFM32_ADC1
static struct efm32_dev_s g_adcpriv1 =
{
.irq = EFM32_IRQ_ADC0,
.isr = adc_interrupt,
.base = EFM32_ADC1_BASE,
};
static struct adc_dev_s g_adcdev1 =
{
.ad_ops = &g_adcops,
.ad_priv = &g_adcpriv1,
};
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: adc_getreg
*
* Description:
* Read the value of an ADC register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
*
****************************************************************************/
static uint32_t adc_getreg(struct efm32_dev_s *priv, int offset)
{
return getreg32(priv->base + offset);
}
/****************************************************************************
* Name: adc_getreg
*
* Description:
* Read the value of an ADC register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
*
****************************************************************************/
static void adc_putreg(struct efm32_dev_s *priv, int offset, uint32_t value)
{
putreg32(value, priv->base + offset);
}
/****************************************************************************
* Name: adc_calibrate_load_scan
*
* Description:
* Load SCAN calibrate register with predefined values for a certain
* reference.
*
* During production, calibration values are made and stored in the device
* information page for known references. Notice that for external
* references, calibration values must be determined explicitly, and this
* function will not modify the calibration register.
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
* ref - Reference to load calibrated values for. No values are loaded for
* external references.
*
****************************************************************************/
static void adc_calibrate_load_scan(adc_typedef *adc, adc_ref_typedef ref)
{
uint32_t cal;
/* Load proper calibration data depending on selected reference
* NOTE: We use ...SCAN... defines below, they are the same as
* similar ...SINGLE... defines.
*/
switch (ref)
{
case adc_ref1_v25:
cal = adc->CAL & ~(_ADC_CAL_SCANOFFSET_MASK | _ADC_CAL_SCANGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_1V25_GAIN_MASK) >>
_DEVINFO_ADC0CAL0_1V25_GAIN_SHIFT) << _ADC_CAL_SCANGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_1V25_OFFSET_MASK) >>
_DEVINFO_ADC0CAL0_1V25_OFFSET_SHIFT) <<
_ADC_CAL_SCANOFFSET_SHIFT;
adc->CAL = cal;
break;
case adc_ref2_v5:
cal = adc->CAL & ~(_ADC_CAL_SCANOFFSET_MASK | _ADC_CAL_SCANGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_2V5_GAIN_MASK) >>
_DEVINFO_ADC0CAL0_2V5_GAIN_SHIFT) << _ADC_CAL_SCANGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_2V5_OFFSET_MASK) >>
_DEVINFO_ADC0CAL0_2V5_OFFSET_SHIFT) <<
_ADC_CAL_SCANOFFSET_SHIFT;
adc->CAL = cal;
break;
case adc_ref_vdd:
cal = adc->CAL & ~(_ADC_CAL_SCANOFFSET_MASK | _ADC_CAL_SCANGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_VDD_GAIN_MASK) >>
_DEVINFO_ADC0CAL1_VDD_GAIN_SHIFT) << _ADC_CAL_SCANGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_VDD_OFFSET_MASK) >>
_DEVINFO_ADC0CAL1_VDD_OFFSET_SHIFT) <<
_ADC_CAL_SCANOFFSET_SHIFT;
adc->CAL = cal;
break;
case adc_ref5v_diff:
cal = adc->CAL & ~(_ADC_CAL_SCANOFFSET_MASK | _ADC_CAL_SCANGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_5VDIFF_GAIN_MASK) >>
_DEVINFO_ADC0CAL1_5VDIFF_GAIN_SHIFT) << _ADC_CAL_SCANGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_5VDIFF_OFFSET_MASK) >>
_DEVINFO_ADC0CAL1_5VDIFF_OFFSET_SHIFT) <<
_ADC_CAL_SCANOFFSET_SHIFT;
adc->CAL = cal;
break;
case adc_ref2x_vdd:
/* Gain value not of relevance for this reference, leave as is */
cal = adc->CAL & ~_ADC_CAL_SCANOFFSET_MASK;
cal |= ((DEVINFO->ADC0CAL2 & _DEVINFO_ADC0CAL2_2XVDDVSS_OFFSET_MASK) >>
_DEVINFO_ADC0CAL2_2XVDDVSS_OFFSET_SHIFT) <<
_ADC_CAL_SCANOFFSET_SHIFT;
adc->CAL = cal;
break;
/* For external references, the calibration must be determined for the
* specific application and set explicitly.
*/
default:
break;
}
}
/****************************************************************************
* Name: adc_calibrate_load_single
*
* Description:
* Load SINGLE calibrate register with predefined values for a certain
* reference.
*
* During production, calibration values are made and stored in the device
* information page for known references. Notice that for external
* references, calibration values must be determined explicitly, and this
* function will not modify the calibration register.
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
* ref - Reference to load calibrated values for. No values are loaded for
* external references.
*
****************************************************************************/
static void adc_calibrate_load_single(adc_typedef *adc, adc_ref_typedef ref)
{
uint32_t cal;
/* Load proper calibration data depending on selected reference
* NOTE: We use ...SCAN... defines below, they are the same as
* similar ...SINGLE... defines.
*/
switch (ref)
{
case adc_ref1_v25:
cal = adc->CAL &
~(_ADC_CAL_SINGLEOFFSET_MASK | _ADC_CAL_SINGLEGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_1V25_GAIN_MASK) >>
_DEVINFO_ADC0CAL0_1V25_GAIN_SHIFT) << _ADC_CAL_SINGLEGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_1V25_OFFSET_MASK) >>
_DEVINFO_ADC0CAL0_1V25_OFFSET_SHIFT) <<
_ADC_CAL_SINGLEOFFSET_SHIFT;
adc->CAL = cal;
break;
case adc_ref2_v5:
cal = adc->CAL &
~(_ADC_CAL_SINGLEOFFSET_MASK | _ADC_CAL_SINGLEGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_2V5_GAIN_MASK) >>
_DEVINFO_ADC0CAL0_2V5_GAIN_SHIFT) << _ADC_CAL_SINGLEGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_2V5_OFFSET_MASK) >>
_DEVINFO_ADC0CAL0_2V5_OFFSET_SHIFT) <<
_ADC_CAL_SINGLEOFFSET_SHIFT;
adc->CAL = cal;
break;
case adc_ref_vdd:
cal = adc->CAL &
~(_ADC_CAL_SINGLEOFFSET_MASK | _ADC_CAL_SINGLEGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_VDD_GAIN_MASK) >>
_DEVINFO_ADC0CAL1_VDD_GAIN_SHIFT) << _ADC_CAL_SINGLEGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_VDD_OFFSET_MASK) >>
_DEVINFO_ADC0CAL1_VDD_OFFSET_SHIFT) <<
_ADC_CAL_SINGLEOFFSET_SHIFT;
adc->CAL = cal;
break;
case adc_ref5v_diff:
cal = adc->CAL &
~(_ADC_CAL_SINGLEOFFSET_MASK | _ADC_CAL_SINGLEGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_5VDIFF_GAIN_MASK) >>
_DEVINFO_ADC0CAL1_5VDIFF_GAIN_SHIFT) <<
_ADC_CAL_SINGLEGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_5VDIFF_OFFSET_MASK) >>
_DEVINFO_ADC0CAL1_5VDIFF_OFFSET_SHIFT) <<
_ADC_CAL_SINGLEOFFSET_SHIFT;
adc->CAL = cal;
break;
case adc_ref2x_vdd:
/* Gain value not of relevance for this reference, leave as is */
cal = adc->CAL & ~_ADC_CAL_SINGLEOFFSET_MASK;
cal |= ((DEVINFO->ADC0CAL2 & _DEVINFO_ADC0CAL2_2XVDDVSS_OFFSET_MASK) >>
_DEVINFO_ADC0CAL2_2XVDDVSS_OFFSET_SHIFT) <<
_ADC_CAL_SINGLEOFFSET_SHIFT;
adc->CAL = cal;
break;
/* For external references, the calibration must be determined for the
* specific application and set explicitly.
*/
default:
break;
}
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: adc_init
* Initialize ADC.
*
* Description:
* Initializes common parts for both single conversion and scan sequence.
* In addition, single and/or scan control configuration must be done,
* please refer to adc_init_single() and adc_init_scan() respectively.
*
* NOTE: This function will stop any ongoing conversion.
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
* int - Pointer to ADC initialization structure.
*
****************************************************************************/
void adc_init(adc_typedef *adc, const adc_init_typedef *init)
{
uint32_t tmp;
EFM_ASSERT(ADC_REF_VALID(adc));
/* Make sure conversion is not in progress */
adc->CMD = ADC_CMD_SINGLESTOP | ADC_CMD_SCANSTOP;
tmp = ((uint32_t)(init->ovs_ratesel) << _ADC_CTRL_OVSRSEL_SHIFT) |
(((uint32_t)(init->timebase) << _ADC_CTRL_TIMEBASE_SHIFT) &
_ADC_CTRL_TIMEBASE_MASK) |
(((uint32_t)(init->prescale) << _ADC_CTRL_PRESC_SHIFT) &
_ADC_CTRL_PRESC_MASK) |
((uint32_t)(init->lpfmode) << _ADC_CTRL_LPFMODE_SHIFT) |
((uint32_t)(init->warmup_mode) << _ADC_CTRL_WARMUPMODE_SHIFT);
if (init->tailgate)
{
tmp |= ADC_CTRL_TAILGATE;
}
adc->CTRL = tmp;
}
/****************************************************************************
* Name: adc_init_scan
*
* Description:
* Initialize ADC scan sequence.
*
* Please refer to ADC_Start() for starting scan sequence.
*
* When selecting an external reference, the gain and offset calibration
* must be set explicitly (CAL register). For other references, the
* calibration is updated with values defined during manufacturing.
*
* NOTE: This function will stop any ongoing scan sequence.
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
* init - Pointer to ADC initialization structure.
*
****************************************************************************/
void adc_init_scan(adc_typedef *adc, const adc_init_scan_typedef *init)
{
uint32_t tmp;
EFM_ASSERT(ADC_REF_VALID(adc));
/* Make sure scan sequence is not in progress */
adc->CMD = ADC_CMD_SCANSTOP;
/* Load proper calibration data depending on selected reference */
adc_calibrate_load_scan(adc, init->reference);
tmp = ((uint32_t)(init->prs_sel) << _ADC_SCANCTRL_PRSSEL_SHIFT) |
((uint32_t)(init->acq_time) << _ADC_SCANCTRL_AT_SHIFT) |
((uint32_t)(init->reference) << _ADC_SCANCTRL_REF_SHIFT) |
init->input |
((uint32_t)(init->resolution) << _ADC_SCANCTRL_RES_SHIFT);
if (init->prs_enable)
{
tmp |= ADC_SCANCTRL_PRSEN;
}
if (init->left_adjust)
{
tmp |= ADC_SCANCTRL_ADJ_LEFT;
}
if (init->diff)
{
tmp |= ADC_SCANCTRL_DIFF;
}
if (init->rep)
{
tmp |= ADC_SCANCTRL_REP;
}
adc->SCANCTRL = tmp;
}
/****************************************************************************
* Name: adc_init_single
*
* Description:
* Initialize single ADC sample conversion.
*
* Please refer to ADC_Start() for starting single conversion.
*
* When selecting an external reference, the gain and offset calibration
* must be set explicitly (CAL register). For other references, the
* calibration is updated with values defined during manufacturing.
*
* NOTE: This function will stop any ongoing single conversion.
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
* init - Pointer to ADC initialization structure.
*
****************************************************************************/
void adc_init_single(adc_typedef *adc, const adc_init_single_typedef *init)
{
uint32_t tmp;
EFM_ASSERT(ADC_REF_VALID(adc));
/* Make sure single conversion is not in progress */
adc->CMD = ADC_CMD_SINGLESTOP;
/* Load proper calibration data depending on selected reference */
adc_calibrate_load_single(adc, init->reference);
tmp = ((uint32_t)(init->prs_sel) << _ADC_SINGLECTRL_PRSSEL_SHIFT) |
((uint32_t)(init->acq_time) << _ADC_SINGLECTRL_AT_SHIFT) |
((uint32_t)(init->reference) << _ADC_SINGLECTRL_REF_SHIFT) |
((uint32_t)(init->input) << _ADC_SINGLECTRL_INPUTSEL_SHIFT) |
((uint32_t)(init->resolution) << _ADC_SINGLECTRL_RES_SHIFT);
if (init->prs_enable)
{
tmp |= ADC_SINGLECTRL_PRSEN;
}
if (init->left_adjust)
{
tmp |= ADC_SINGLECTRL_ADJ_LEFT;
}
if (init->diff)
{
tmp |= ADC_SINGLECTRL_DIFF;
}
if (init->rep)
{
tmp |= ADC_SINGLECTRL_REP;
}
adc->SINGLECTRL = tmp;
}
/****************************************************************************
* Name: adc_prescale_calc
*
* Description:
* Calculate prescaler value used to determine ADC clock.
*
* The ADC clock is given by: HFPERCLK / (prescale + 1).
*
* Input Parameters:
* adc_freq ADC frequency wanted. The frequency will automatically
* be adjusted to be within valid range according to reference
* manual.
* hfperfreq Frequency in Hz of reference HFPER clock. Set to 0 to
* use currently defined HFPER clock setting.
*
* Returned Value:
* Prescaler value to use for ADC in order to achieve a clock value
* <= @p adc_freq.
*
****************************************************************************/
uint8_t adc_prescale_calc(uint32_t adc_freq, uint32_t hfperfreq)
{
uint32_t ret;
/* Make sure selected ADC clock is within valid range */
if (adc_freq > ADC_MAX_CLOCK)
{
adc_freq = ADC_MAX_CLOCK;
}
else if (adc_freq < ADC_MIN_CLOCK)
{
adc_freq = ADC_MIN_CLOCK;
}
/* Use current HFPER frequency? */
if (!hfperfreq)
{
hfperfreq = cmu_clock_freq_get(cmuclock_hfper);
}
ret = (hfperfreq + adc_freq - 1) / adc_freq;
if (ret)
{
ret--;
}
return (uint8_t)ret;
}
/****************************************************************************
* Name: adc_reset
*
* Description:
* Reset ADC to same state as after a HW reset.
*
* @note
* The ROUTE register is NOT reset by this function, in order to allow for
* centralized setup of this feature.
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
*
****************************************************************************/
void adc_reset(adc_typedef *adc)
{
/* Stop conversions, before resetting other registers. */
adc->CMD = ADC_CMD_SINGLESTOP | ADC_CMD_SCANSTOP;
adc->SINGLECTRL = _ADC_SINGLECTRL_RESETVALUE;
adc->SCANCTRL = _ADC_SCANCTRL_RESETVALUE;
adc->CTRL = _ADC_CTRL_RESETVALUE;
adc->IEN = _ADC_IEN_RESETVALUE;
adc->IFC = _ADC_IFC_MASK;
adc->BIASPROG = _ADC_BIASPROG_RESETVALUE;
/* Load calibration values for the 1V25 internal reference. */
adc_calibrate_load_single(adc, adc_ref1_v25);
adc_calibrate_load_scan(adc, adc_ref1_v25);
/* Do not reset route register, setting should be done independently */
}
/****************************************************************************
* Name: adc_timebasecalc
*
* Description:
* Calculate timebase value in order to get a timebase providing at least
* 1us.
*
* Input Parameters:
* hfperfreq Frequency in Hz of reference HFPER clock. Set to 0 to
* use currently defined HFPER clock setting.
*
* Returned Value:
* Timebase value to use for ADC in order to achieve at least 1 us.
*
****************************************************************************/
uint8_t adc_timebasecalc(uint32_t hfperfreq)
{
if (!hfperfreq)
{
hfperfreq = cmu_clock_freq_get(cmuclock_hfper);
/* Just in case, make sure we get non-zero freq for below calculation */
if (!hfperfreq)
{
hfperfreq = 1;
}
}
#if defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
/* Handle errata on Giant Gecko, max TIMEBASE is 5 bits wide or max 0x1F
* cycles. This will give a warmp up time of e.g. 0.645us, not the
* required 1us when operating at 48MHz. One must also increase acq_time
* to compensate for the missing clock cycles, adding up to 1us in total.
* See reference manual for details.
*/
if (hfperfreq > 32000000)
{
hfperfreq = 32000000;
}
#endif
/* Determine number of HFPERCLK cycle >= 1us */
hfperfreq += 999999;
hfperfreq /= 1000000;
/* Return timebase value (N+1 format) */
return (uint8_t)(hfperfreq - 1);
}
endif /* defined(ADC_COUNT) && (ADC_COUNT > 0) */
/****************************************************************************
* Name: adc_tim_dumpregs
*
* Description:
* Dump all timer registers.
*
* Input Parameters:
* priv - A reference to the ADC block status
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void adc_tim_dumpregs(struct efm32_dev_s *priv, const char *msg)
{
#if defined(CONFIG_DEBUG_ANALOG) && defined(CONFIG_DEBUG_INFO)
ainfo("%s:\n", msg);
ainfo(" CR1: %04x CR2: %04x SMCR: %04x DIER: %04x\n",
tim_getreg(priv, EFM32_GTIM_CR1_OFFSET),
tim_getreg(priv, EFM32_GTIM_CR2_OFFSET),
tim_getreg(priv, EFM32_GTIM_SMCR_OFFSET),
tim_getreg(priv, EFM32_GTIM_DIER_OFFSET));
ainfo(" SR: %04x EGR: 0000 CCMR1: %04x CCMR2: %04x\n",
tim_getreg(priv, EFM32_GTIM_SR_OFFSET),
tim_getreg(priv, EFM32_GTIM_CCMR1_OFFSET),
tim_getreg(priv, EFM32_GTIM_CCMR2_OFFSET));
ainfo(" CCER: %04x CNT: %04x PSC: %04x ARR: %04x\n",
tim_getreg(priv, EFM32_GTIM_CCER_OFFSET),
tim_getreg(priv, EFM32_GTIM_CNT_OFFSET),
tim_getreg(priv, EFM32_GTIM_PSC_OFFSET),
tim_getreg(priv, EFM32_GTIM_ARR_OFFSET));
ainfo(" CCR1: %04x CCR2: %04x CCR3: %04x CCR4: %04x\n",
tim_getreg(priv, EFM32_GTIM_CCR1_OFFSET),
tim_getreg(priv, EFM32_GTIM_CCR2_OFFSET),
tim_getreg(priv, EFM32_GTIM_CCR3_OFFSET),
tim_getreg(priv, EFM32_GTIM_CCR4_OFFSET));
if (priv->tbase == EFM32_TIM1_BASE || priv->tbase == EFM32_TIM8_BASE)
{
ainfo(" RCR: %04x BDTR: %04x DCR: %04x DMAR: %04x\n",
tim_getreg(priv, EFM32_ATIM_RCR_OFFSET),
tim_getreg(priv, EFM32_ATIM_BDTR_OFFSET),
tim_getreg(priv, EFM32_ATIM_DCR_OFFSET),
tim_getreg(priv, EFM32_ATIM_DMAR_OFFSET));
}
else
{
ainfo(" DCR: %04x DMAR: %04x\n",
tim_getreg(priv, EFM32_GTIM_DCR_OFFSET),
tim_getreg(priv, EFM32_GTIM_DMAR_OFFSET));
}
#endif
}
#endif
/****************************************************************************
* Name: adc_startconv
*
* Description:
* Start (or stop) the ADC conversion process in DMA mode
*
* Input Parameters:
* priv - A reference to the ADC block status
* enable - True: Start conversion
*
* Returned Value:
*
****************************************************************************/
#if defined(CONFIG_EFM32_EFM32GG)
static void adc_startconv(struct efm32_dev_s *priv, bool enable)
{
uint32_t regval;
ainfo("enable: %d\n", enable);
regval = adc_getreg(priv, EFM32_ADC_CR2_OFFSET);
if (enable)
{
/* Start conversion of regular channels */
regval |= ADC_CR2_SWSTART;
}
else
{
/* Disable the conversion of regular channels */
regval &= ~ADC_CR2_SWSTART;
}
adc_putreg(priv, EFM32_ADC_CR2_OFFSET, regval);
}
#endif
/****************************************************************************
* Name: adc_hw_reset
*
* Description:
* Deinitializes the ADCx peripheral registers to their default
* reset values. It could set all the ADCs configured.
*
* Input Parameters:
* regaddr - The register to read
* reset - Condition, set or reset
*
* Returned Value:
*
****************************************************************************/
static void adc_hw_reset(struct efm32_dev_s *priv, bool reset)
{
irqstate_t flags;
uint32_t regval;
uint32_t adcbit;
/* Pick the appropriate bit in the APB2 reset register */
/* Disable interrupts. This is necessary because the APB2RTSR register
* is used by several different drivers.
*/
flags = enter_critical_section();
/* Set or clear the selected bit in the APB2 reset register */
regval = getreg32(EFM32_RCC_APB2RSTR);
if (reset)
{
/* Enable ADC reset state */
regval |= adcbit;
}
else
{
/* Release ADC from reset state */
regval &= ~adcbit;
}
putreg32(regval, EFM32_RCC_APB2RSTR);
leave_critical_section(flags);
}
/****************************************************************************
* Name: adc_enable
*
* Description:
* Enables or disables the specified ADC peripheral. Also, starts a
* conversion when the ADC is not triggered by timers
*
* Input Parameters:
*
* enable - true: enable ADC conversion
* false: disable ADC conversion
*
* Returned Value:
*
****************************************************************************/
static void adc_enable(struct efm32_dev_s *priv, bool enable)
{
uint32_t regval;
ainfo("enable: %d\n", enable);
regval = adc_getreg(priv, EFM32_ADC_CR2_OFFSET);
if (enable)
{
regval |= ADC_CR2_ADON;
}
else
{
regval &= ~ADC_CR2_ADON;
}
adc_putreg(priv, EFM32_ADC_CR2_OFFSET, regval);
}
/****************************************************************************
* Name: adc_bind
*
* Description:
* Bind the upper-half driver callbacks to the lower-half implementation.
* This must be called early in order to receive ADC event notifications.
*
****************************************************************************/
static int adc_bind(struct adc_dev_s *dev,
const struct adc_callback_s *callback)
{
struct efm32_dev_s *priv = (struct efm32_dev_s *)dev->ad_priv;
DEBUGASSERT(priv != NULL);
priv->cb = callback;
return OK;
}
/****************************************************************************
* Name: adc_reset
*
* Description:
* Reset the ADC device. Called early to initialize the hardware. This
* is called, before adc_setup() and on error conditions.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_reset(struct adc_dev_s *dev)
{
struct efm32_dev_s *priv = (struct efm32_dev_s *)dev->ad_priv;
irqstate_t flags;
uint32_t regval;
int offset;
int i;
#ifdef ADC_HAVE_TIMER
int ret;
#endif
ainfo("intf: ADC%d\n", priv->intf);
flags = enter_critical_section();
/* Enable ADC reset state */
adc_hw_reset(priv, true);
/* Release ADC from reset state */
adc_hw_reset(priv, false);
/* Initialize the ADC data structures */
/* Initialize the watchdog high threshold register */
adc_putreg(priv, EFM32_ADC_HTR_OFFSET, 0x00000fff);
/* Initialize the watchdog low threshold register */
adc_putreg(priv, EFM32_ADC_LTR_OFFSET, 0x00000000);
/* Initialize the same sample time for each ADC 55.5 cycles
*
* During sample cycles channel selection bits must remain unchanged.
*
* 000: 1.5 cycles
* 001: 7.5 cycles
* 010: 13.5 cycles
* 011: 28.5 cycles
* 100: 41.5 cycles
* 101: 55.5 cycles
* 110: 71.5 cycles
* 111: 239.5 cycles
*/
adc_putreg(priv, EFM32_ADC_SMPR1_OFFSET, 0x00b6db6d);
adc_putreg(priv, EFM32_ADC_SMPR2_OFFSET, 0x00b6db6d);
/* ADC CR1 Configuration */
regval = adc_getreg(priv, EFM32_ADC_CR1_OFFSET);
/* Initialize the Analog watchdog enable */
regval |= ADC_CR1_AWDEN;
regval |= (priv->chanlist[0] << ADC_CR1_AWDCH_SHIFT);
/* Enable interrupt flags */
regval |= ADC_CR1_ALLINTS;
adc_putreg(priv, EFM32_ADC_CR1_OFFSET, regval);
/* ADC CR2 Configuration */
regval = adc_getreg(priv, EFM32_ADC_CR2_OFFSET);
/* Clear CONT, continuous mode disable */
regval &= ~ADC_CR2_CONT;
/* Set ALIGN (Right = 0) */
regval &= ~ADC_CR2_ALIGN;
adc_putreg(priv, EFM32_ADC_CR2_OFFSET, regval);
/* Configuration of the channel conversions */
regval = adc_getreg(priv, EFM32_ADC_SQR3_OFFSET) & ADC_SQR3_RESERVED;
for (i = 0, offset = 0; i < priv->nchannels && i < 6; i++, offset += 5)
{
regval |= (uint32_t)priv->chanlist[i] << offset;
}
adc_putreg(priv, EFM32_ADC_SQR3_OFFSET, regval);
regval = adc_getreg(priv, EFM32_ADC_SQR2_OFFSET) & ADC_SQR2_RESERVED;
for (i = 6, offset = 0; i < priv->nchannels && i < 12; i++, offset += 5)
{
regval |= (uint32_t)priv->chanlist[i] << offset;
}
adc_putreg(priv, EFM32_ADC_SQR2_OFFSET, regval);
regval = adc_getreg(priv, EFM32_ADC_SQR1_OFFSET) & ADC_SQR1_RESERVED;
for (i = 12, offset = 0; i < priv->nchannels && i < 16; i++, offset += 5)
{
regval |= (uint32_t)priv->chanlist[i] << offset;
}
/* ADC CCR configuration */
regval = getreg32(EFM32_ADC_CCR);
regval &= ~(ADC_CCR_MULTI_MASK | ADC_CCR_DELAY_MASK |
ADC_CCR_DDS | ADC_CCR_DMA_MASK |
ADC_CCR_ADCPRE_MASK | ADC_CCR_VBATE | ADC_CCR_TSVREFE);
regval |= (ADC_CCR_MULTI_NONE | ADC_CCR_DMA_DISABLED |
ADC_CCR_ADCPRE_DIV2);
putreg32(regval, EFM32_ADC_CCR);
/* Set the number of conversions */
DEBUGASSERT(priv->nchannels <= ADC_MAX_SAMPLES);
regval |= (((uint32_t)priv->nchannels - 1) << ADC_SQR1_L_SHIFT);
adc_putreg(priv, EFM32_ADC_SQR1_OFFSET, regval);
/* Set the channel index of the first conversion */
priv->current = 0;
/* Set ADON to wake up the ADC from Power Down state. */
adc_enable(priv, true);
adc_startconv(priv, true);
leave_critical_section(flags);
ainfo("SR: 0x%08x CR1: 0x%08x CR2: 0x%08x\n",
adc_getreg(priv, EFM32_ADC_SR_OFFSET),
adc_getreg(priv, EFM32_ADC_CR1_OFFSET),
adc_getreg(priv, EFM32_ADC_CR2_OFFSET));
ainfo("SQR1: 0x%08x SQR2: 0x%08x SQR3: 0x%08x\n",
adc_getreg(priv, EFM32_ADC_SQR1_OFFSET),
adc_getreg(priv, EFM32_ADC_SQR2_OFFSET),
adc_getreg(priv, EFM32_ADC_SQR3_OFFSET));
}
/****************************************************************************
* Name: adc_setup
*
* Description:
* Configure the ADC. This method is called the first time that the ADC
* device is opened. This will occur when the port is first opened.
* This setup includes configuring and attaching ADC interrupts.
* Interrupts are all disabled upon return.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_setup(struct adc_dev_s *dev)
{
struct efm32_dev_s *priv = (struct efm32_dev_s *)dev->ad_priv;
int ret;
/* Attach the ADC interrupt */
ret = irq_attach(priv->irq, priv->isr, dev);
if (ret == OK)
{
/* Make sure that the ADC device is in the powered up, reset state */
adc_reset(dev);
/* Enable the ADC interrupt */
ainfo("Enable the ADC interrupt: irq=%d\n", priv->irq);
up_enable_irq(priv->irq);
}
return ret;
}
/****************************************************************************
* Name: adc_shutdown
*
* Description:
* Disable the ADC. This method is called when the ADC device is closed.
* This method reverses the operation the setup method.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_shutdown(struct adc_dev_s *dev)
{
struct efm32_dev_s *priv = (struct efm32_dev_s *)dev->ad_priv;
/* Disable ADC interrupts and detach the ADC interrupt handler */
up_disable_irq(priv->irq);
irq_detach(priv->irq);
/* Disable and reset the ADC module */
adc_hw_reset(priv, true);
}
/****************************************************************************
* Name: adc_rxint
*
* Description:
* Call to enable or disable RX interrupts.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_rxint(struct adc_dev_s *dev, bool enable)
{
struct efm32_dev_s *priv = (struct efm32_dev_s *)dev->ad_priv;
uint32_t regval;
ainfo("intf: %d enable: %d\n", priv->intf, enable);
regval = adc_getreg(priv, EFM32_ADC_CR1_OFFSET);
if (enable)
{
/* Enable the end-of-conversion ADC and analog watchdog interrupts */
regval |= ADC_CR1_ALLINTS;
}
else
{
/* Disable all ADC interrupts */
regval &= ~ADC_CR1_ALLINTS;
}
adc_putreg(priv, EFM32_ADC_CR1_OFFSET, regval);
}
/****************************************************************************
* Name: adc_ioctl
*
* Description:
* All ioctl calls will be routed through this method.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_ioctl(struct adc_dev_s *dev, int cmd, unsigned long arg)
{
struct efm32_dev_s *priv = (struct efm32_dev_s *)dev->ad_priv;
int ret = -ENOTTY;
switch (cmd)
{
case ANIOC_GET_NCHANNELS:
{
/* Return the number of configured channels */
ret = priv->nchannels;
}
break;
default:
{
aerr("ERROR: Unknown cmd: %d\n", cmd);
ret = -ENOTTY;
}
break;
}
return ret;
}
/****************************************************************************
* Name: adc_interrupt
*
* Description:
* Common ADC interrupt handler.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_interrupt(int irq,
void *context, struct adc_dev_s *dev)
{
struct efm32_dev_s *priv = (struct efm32_dev_s *)dev->ad_priv;
uint32_t adcsr;
int32_t value;
/* Identifies the interruption AWD, OVR or EOC */
adcsr = adc_getreg(priv, EFM32_ADC_SR_OFFSET);
if ((adcsr & ADC_SR_AWD) != 0)
{
awarn("WARNING: Analog Watchdog, Value converted out of range!\n");
}
/* EOC: End of conversion */
if ((adcsr & ADC_SR_EOC) != 0)
{
/* Read the converted value and clear EOC bit
* (It is cleared by reading the ADC_DR)
*/
value = adc_getreg(priv, EFM32_ADC_DR_OFFSET);
value &= ADC_DR_DATA_MASK;
/* Verify that the upper-half driver has bound its callback functions */
if (priv->cb != NULL)
{
/* Give the ADC data to the ADC driver. The ADC receive method
* accepts 3 parameters:
*
* 1) The first is the ADC device instance for this ADC block.
* 2) The second is the channel number for the data, and
* 3) The third is the converted data for the channel.
*/
DEBUGASSERT(priv->cb->au_receive != NULL);
priv->cb->au_receive(dev, priv->chanlist[priv->current], value);
}
/* Set the channel number of the next channel that will complete
* conversion
*/
priv->current++;
if (priv->current >= priv->nchannels)
{
/* Restart the conversion sequence from the beginning */
priv->current = 0;
}
}
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: efm32_adcinitialize
*
* Description:
* Initialize the ADC.
*
* The logic is, save nchannels :
* # of channels (conversions) in ADC_SQR1_L
* Then, take the chanlist array and store it in the SQR Regs,
* chanlist[0] -> ADC_SQR3_SQ1
* chanlist[1] -> ADC_SQR3_SQ2
* ...
* chanlist[15]-> ADC_SQR1_SQ16
*
* up to
* chanlist[nchannels]
*
* Input Parameters:
* intf - Could be {1,2,3} for ADC1, ADC2, or ADC3
* chanlist - The list of channels
* nchannels - Number of channels
*
* Returned Value:
* Valid ADC device structure reference on success; a NULL on failure
*
****************************************************************************/
struct adc_dev_s *efm32_adcinitialize(int intf,
const uint8_t *chanlist, int nchannels)
{
struct adc_dev_s *dev;
struct efm32_dev_s *priv;
ainfo("intf: %d nchannels: %d\n", intf, nchannels);
#ifdef CONFIG_EFM32_ADC1
if (intf == 1)
{
ainfo("ADC1 Selected\n");
dev = &g_adcdev1;
}
else
#endif
#ifdef CONFIG_EFM32_ADC2
if (intf == 2)
{
ainfo("ADC2 Selected\n");
dev = &g_adcdev2;
}
else
#endif
#ifdef CONFIG_EFM32_ADC3
if (intf == 3)
{
ainfo("ADC3 Selected\n");
dev = &g_adcdev3;
}
else
#endif
{
aerr("ERROR: No ADC interface defined\n");
return NULL;
}
/* Configure the selected ADC */
priv = dev->ad_priv;
priv->cb = NULL;
DEBUGASSERT(nchannels <= ADC_MAX_SAMPLES);
priv->nchannels = nchannels;
memcpy(priv->chanlist, chanlist, nchannels);
return dev;
}
#endif /* CONFIG_EFM32_EFM32GG */
#endif /* CONFIG_EFM32_ADC1 */
#endif /* CONFIG_EFM32_ADC */