803 lines
25 KiB
ArmAsm
803 lines
25 KiB
ArmAsm
/****************************************************************************
|
|
* arch/arm/src/armv7-a/arm_head.S
|
|
*
|
|
* Copyright (C) 2013-2014 Gregory Nutt. All rights reserved.
|
|
* Author: Gregory Nutt <gnutt@nuttx.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
|
|
#include <arch/board/board.h>
|
|
|
|
#include "arm.h"
|
|
#include "cp15.h"
|
|
#include "sctlr.h"
|
|
#include "mmu.h"
|
|
#include "chip.h"
|
|
#include "up_internal.h"
|
|
|
|
.file "arm_head.S"
|
|
|
|
/**********************************************************************************
|
|
* Configuration
|
|
**********************************************************************************/
|
|
|
|
/* Hard-coded options */
|
|
|
|
#undef CPU_ALIGNMENT_TRAP
|
|
#undef CPU_CACHE_ROUND_ROBIN
|
|
#undef CPU_DCACHE_DISABLE
|
|
#undef CPU_ICACHE_DISABLE
|
|
#undef CPU_AFE_ENABLE
|
|
|
|
/* There are three operational memory configurations:
|
|
*
|
|
* 1. We execute in place in FLASH (CONFIG_BOOT_RUNFROMFLASH=y). In this case
|
|
* the boot logic must:
|
|
*
|
|
* - Configure SDRAM,
|
|
* - Initialize the .data section in RAM, and
|
|
* - Clear .bss section
|
|
*/
|
|
|
|
#ifdef CONFIG_BOOT_RUNFROMFLASH
|
|
/* Check for the identity mapping: For this configuration, this would be
|
|
* the case where the virtual beginning of FLASH is the same as the physical
|
|
* beginning of FLASH.
|
|
*/
|
|
|
|
# if !defined(CONFIG_FLASH_START) || !defined(CONFIG_FLASH_VSTART)
|
|
# error "CONFIG_FLASH_START or CONFIG_FLASH_VSTART is not defined"
|
|
# endif
|
|
|
|
# if CONFIG_FLASH_START == CONFIG_FLASH_VSTART
|
|
# define CONFIG_IDENTITY_TEXTMAP 1
|
|
# endif
|
|
|
|
/* 2. We boot in FLASH but copy ourselves to DRAM from better performance.
|
|
* (CONFIG_BOOT_RUNFROMFLASH=n && CONFIG_BOOT_COPYTORAM=y). In this case
|
|
* the boot logic must:
|
|
*
|
|
* - Configure SDRAM,
|
|
* - Copy ourself to DRAM (after mapping it), and
|
|
* - Clear .bss section
|
|
*
|
|
* In this case, we assume that the logic within this file executes from FLASH.
|
|
*/
|
|
|
|
#elif defined(CONFIG_BOOT_COPYTORAM)
|
|
# error "configuration not implemented
|
|
|
|
/* Check for the identity mapping: For this configuration, this would be
|
|
* the case where the virtual beginning of FLASH is the same as the physical
|
|
* beginning of FLASH.
|
|
*/
|
|
|
|
# if !defined(CONFIG_FLASH_START) || !defined(CONFIG_FLASH_VSTART)
|
|
# error "CONFIG_FLASH_START or CONFIG_FLASH_VSTART is not defined"
|
|
# endif
|
|
|
|
# if CONFIG_FLASH_START == CONFIG_FLASH_VSTART
|
|
# define CONFIG_IDENTITY_TEXTMAP 1
|
|
# endif
|
|
|
|
/* 3. There is bootloader that copies us to DRAM (but probably not to the beginning)
|
|
* (CONFIG_BOOT_RUNFROMFLASH=n && CONFIG_BOOT_COPYTORAM=n). In this case SDRAM
|
|
* was initialized by the boot loader, and this boot logic must:
|
|
*
|
|
* - Clear .bss section
|
|
*/
|
|
|
|
#else
|
|
|
|
/* Check for the identity mapping: For this configuration, this would be
|
|
* the case where the virtual beginning of RAM is the same as the physical
|
|
* beginning of RAM.
|
|
*/
|
|
|
|
# if !defined(CONFIG_RAM_START) || !defined(CONFIG_RAM_VSTART)
|
|
# error "CONFIG_RAM_START or CONFIG_RAM_VSTART is not defined"
|
|
# endif
|
|
|
|
# if CONFIG_RAM_START == CONFIG_RAM_VSTART
|
|
# define CONFIG_IDENTITY_TEXTMAP 1
|
|
# endif
|
|
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
|
|
/* RX_NSECTIONS determines the number of 1Mb sections to map for the
|
|
* Read/eXecute address region. This is based on NUTTX_TEXT_SIZE.
|
|
*/
|
|
|
|
#define WR_NSECTIONS ((NUTTX_RAM_SIZE+0x000fffff) >> 20)
|
|
|
|
/****************************************************************************
|
|
* Assembly Macros
|
|
****************************************************************************/
|
|
|
|
/* The ARMv7-A L1 page table can be placed at the beginning or at the end of
|
|
* the RAM space. This decision is based on the placement of the vector
|
|
* area: If the vectors are place in low memory at address 0x0000 0000, then
|
|
* the page table is placed in high memory; if the vectors are placed in
|
|
* high memory at address 0xfff0 0000, then the page table is locating at
|
|
* the beginning of RAM.
|
|
*
|
|
* For the special case where (1) the program executes out of RAM, and (2)
|
|
* the page is located at the beginning of RAM (i.e., the high vector case),
|
|
* then the following macro can easily find the physical address of the
|
|
* section that includes the first part of the text region: Since the page
|
|
* table is closely related to the NuttX base address in this case, we can
|
|
* convert the page table base address to the base address of the section
|
|
* containing both.
|
|
*/
|
|
|
|
/* This macro will modify r0, r1, r2 and r14 */
|
|
|
|
#ifdef CONFIG_DEBUG_FEATURES
|
|
.macro showprogress, code
|
|
mov r0, #\code
|
|
bl up_lowputc
|
|
.endm
|
|
#else
|
|
.macro showprogress, code
|
|
.endm
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Name: __start
|
|
****************************************************************************/
|
|
|
|
.text
|
|
.global __start
|
|
.type __start, #function
|
|
|
|
__start:
|
|
/* Make sure that we are in SVC mode with IRQs and FIQs disabled */
|
|
|
|
mov r0, #(PSR_MODE_SVC | PSR_I_BIT | PSR_F_BIT)
|
|
msr cpsr_c, r0
|
|
|
|
/* The MMU and caches should be disabled */
|
|
|
|
mrc CP15_SCTLR(r0)
|
|
bic r0, r0, #(SCTLR_M | SCTLR_C)
|
|
bic r0, r0, #(SCTLR_I)
|
|
mcr CP15_SCTLR(r0)
|
|
|
|
/* Clear the 16K level 1 page table */
|
|
|
|
ldr r5, .LCppgtable /* r5=phys. page table */
|
|
#ifndef CONFIG_ARCH_ROMPGTABLE
|
|
mov r0, r5
|
|
mov r1, #0
|
|
add r2, r0, #PGTABLE_SIZE
|
|
.Lpgtableclear:
|
|
str r1, [r0], #4
|
|
str r1, [r0], #4
|
|
str r1, [r0], #4
|
|
str r1, [r0], #4
|
|
teq r0, r2
|
|
bne .Lpgtableclear
|
|
|
|
#ifdef ARMV7A_PGTABLE_MAPPING
|
|
/* If the page table does not lie in the same address space as does the
|
|
* mapped RAM in either case. So we will need to create a special
|
|
* mapping for the page table.
|
|
*
|
|
* Load information needed to map the page table. After the ldmia, we
|
|
* will have
|
|
*
|
|
* R1 = The aligned, physical base address of the page table
|
|
* R2 = The aligned, virtual base address of the page table
|
|
* R3 = The MMU flags to use with the .text space mapping
|
|
* R5 = The physical address of the L1 page table (from above)
|
|
*
|
|
* The value in R1 could have been obtained by simply masking R5.
|
|
*/
|
|
|
|
adr r0, .LCptinfo /* Address of page table description */
|
|
ldmia r0, {r1, r2, r3} /* Load the page table description */
|
|
|
|
/* A single page is sufficient to map the page table */
|
|
|
|
orr r0, r1, r3 /* OR MMU flags into physical address */
|
|
str r0, [r5, r2, lsr #18] /* Map using the virtual address as an index */
|
|
#endif
|
|
|
|
/* Load information needed to map the .text region. After the ldmia, we
|
|
* will have:
|
|
*
|
|
* R1 = Aligned, physical address of the start of the .text region
|
|
* R2 = Aligned, virtual address of the start of the .text region
|
|
* R3 = MMU flags associated with the .txt region
|
|
* R4 = The number of 1MB sections in the mapping
|
|
* R5 = The physical address of the L1 page table (from above)
|
|
*/
|
|
|
|
adr r0, .LCtextinfo /* Address of text info */
|
|
ldmia r0, {r1, r2, r3, r4} /* Load the text description */
|
|
|
|
#ifndef CONFIG_IDENTITY_TEXTMAP
|
|
/* Create identity mapping for first MB of the .text section to support
|
|
* this start-up logic executing out of the physical address space. This
|
|
* identity mapping will be removed by .Lvstart (see below). Of course,
|
|
* we would only do this if the physical-virtual mapping is not already
|
|
* the identity mapping.
|
|
*/
|
|
|
|
orr r0, r1, r3 /* OR MMU flags into physical address */
|
|
str r0, [r5, r1, lsr #18] /* Identity mapping */
|
|
#endif
|
|
|
|
/* Map the entire .text region. We do this before enabling caches so
|
|
* we know that the data will be in place in the data cache. We map the
|
|
* entire text region because we don't know which parts are needed for
|
|
* start-up.
|
|
*
|
|
* The page table base address is in R5. Each 32-bit page table entry
|
|
* maps 1 MB of address space and is indexed by the lower 20 bits of
|
|
* the virtual address in R2
|
|
*/
|
|
|
|
add r2, r5, r2, lsr #18 /* R2=Offset page table address */
|
|
|
|
/* Now loop until each page table entry has been written for the .text
|
|
* region.
|
|
*/
|
|
|
|
.Lpgtextloop:
|
|
orr r0, r1, r3 /* R0: OR MMU flags into physical address */
|
|
subs r4, r4, #1 /* R4: Decrement the section count */
|
|
str r0, [r2], #4 /* Save page table entry, increment page table address */
|
|
add r1, r1, #(1024*1024) /* R1: Increment the physical address */
|
|
bne .Lpgtextloop /* Loop while R4 is non-zero */
|
|
|
|
#if defined(CONFIG_BOOT_RUNFROMFLASH) && !defined(CONFIG_BOOT_SDRAM_DATA)
|
|
/* If we are executing from FLASH, then we will need additional mappings for
|
|
* the primary RAM region that holds the .data, .bss, stack, and heap memory.
|
|
*
|
|
* Here we expect to have:
|
|
* r5 = Address of the base of the L1 table
|
|
*
|
|
* Load information needed to map the .text region. After the ldmia, we
|
|
* will have:
|
|
*
|
|
* R1 = Aligned, physical address of the start of the .text region
|
|
* R2 = Aligned, virtual address of the start of the .text region
|
|
* R3 = MMU flags associated with the .txt region
|
|
* R4 = The number of 1MB sections in the mapping
|
|
* R5 = The physical address of the L1 page table (from above)
|
|
*/
|
|
|
|
adr r0, .LCraminfo /* Address of primary RAM info */
|
|
ldmia r0, {r1, r2, r3, r4} /* Load the primary RAM description */
|
|
add r2, r5, r2, lsr #18 /* R2=Offset page table addres */
|
|
|
|
/* Loop until each page table entry has been written for the primary RAM
|
|
* region.
|
|
*/
|
|
|
|
.Lpgramloop:
|
|
orr r0, r1, r3 /* R0: OR MMU flags into physical address */
|
|
subs r4, r4, #1 /* R4: Decrement the section count */
|
|
str r0, [r2], #4 /* Save page table entry, increment page table address */
|
|
add r1, r1, #(1024*1024) /* R1: Increment the physical address */
|
|
bne .Lpgramloop /* Loop while R4 is non-zero */
|
|
|
|
#endif /* CONFIG_BOOT_RUNFROMFLASH && !CONFIG_BOOT_SDRAM_DATA */
|
|
#endif /* CONFIG_ARCH_ROMPGTABLE */
|
|
|
|
/* The following logic will set up the ARMv7-A for normal operation.
|
|
*
|
|
* Here we expect to have:
|
|
* r5 = Address of the base of the L1 table
|
|
*/
|
|
|
|
/* Invalidate caches and TLBs.
|
|
*
|
|
* NOTE: "The ARMv7 Virtual Memory System Architecture (VMSA) does not
|
|
* support a CP15 operation to invalidate the entire data cache. ...
|
|
* In normal usage the only time the entire data cache has to be
|
|
* invalidated is on reset."
|
|
*
|
|
* The instruction cache is virtually indexed and physically tagged but
|
|
* the data cache is physically indexed and physically tagged. So it
|
|
* should not be an issue if the system comes up with a dirty Dcache;
|
|
* the ICache, however, must be invalidated.
|
|
*/
|
|
|
|
mov r0, #0
|
|
mcr CP15_TLBIALL(r0,c7) /* Invalidate the entire unified TLB */
|
|
mcr CP15_TLBIALL(r0,c6)
|
|
mcr CP15_TLBIALL(r0,c5)
|
|
mcr CP15_BPIALL(r0) /* Invalidate entire branch prediction array */
|
|
mcr CP15_ICIALLU(r0) /* Invalidate I-cache */
|
|
|
|
/* Load the page table address.
|
|
*
|
|
* NOTES:
|
|
* - Here we assume that the page table address is aligned to at least
|
|
* least a 16KB boundary (bits 0-13 are zero). No masking is provided
|
|
* to protect against an unaligned page table address.
|
|
* - The ARMv7-A has two page table address registers, TTBR0 and 1.
|
|
* Only TTBR0 is used in this implementation but both are initialized.
|
|
*
|
|
* Here we expect to have:
|
|
* r0 = Zero
|
|
* r5 = Address of the base of the L1 table
|
|
*/
|
|
|
|
orr r1, r5, #(TTBR0_RGN_WBWA | TTBR0_IRGN0) /* Select cache properties */
|
|
mcr CP15_TTBR0(r1)
|
|
mcr CP15_TTBR1(r1)
|
|
|
|
/* Set the TTB control register (TTBCR) to indicate that we are using
|
|
* TTBR0. r0 still holds the value of zero.
|
|
*
|
|
* N : 0=Selects TTBR0 and 16KB page table size indexed by VA[31:20]
|
|
* PD0 : 0=Perform translation table walks using TTBR0
|
|
* PD1 : 0=Perform translation table walks using TTBR1 (but it is disabled)
|
|
* EAE : 0=Use 32-bit translation system
|
|
*/
|
|
|
|
mcr CP15_TTBCR(r0)
|
|
|
|
/* Enable the MMU and caches
|
|
* lr = Resume at .Lvstart with the MMU enabled
|
|
*/
|
|
|
|
ldr lr, .LCvstart /* Abs. virtual address */
|
|
|
|
/* Configure the domain access register (see mmu.h). Only domain 0 is
|
|
* supported and it uses the permissions in the TLB.
|
|
*/
|
|
|
|
mov r0, #DACR_CLIENT(0)
|
|
mcr CP15_DACR(r0) /* Set domain access register */
|
|
|
|
/* Configure the system control register (see sctrl.h) */
|
|
|
|
mrc CP15_SCTLR(r0) /* Get control register */
|
|
|
|
/* Clear bits to reset values. This is only necessary in situations like, for
|
|
* example, we get here via a bootloader and the control register is in some
|
|
* unknown state.
|
|
*
|
|
* SCTLR_M Bit 0: Enable the MMU
|
|
* SCTLR_A Bit 1: Strict alignment disabled (reset value)
|
|
* SCTLR_C Bit 2: DCache disabled (reset value)
|
|
*
|
|
* SCTLR_SW Bit 10: SWP/SWPB not enabled (reset value)
|
|
* SCTLR_I Bit 12: ICache disabled (reset value)
|
|
* SCTLR_V Bit 13: Assume low vectors (reset value)
|
|
* SCTLR_RR Bit 14: The Cortex-A5 processor only supports a fixed random
|
|
* replacement strategy.
|
|
* SCTLR_HA Bit 17: Not supported by A5
|
|
*
|
|
* SCTLR_EE Bit 25: 0=Little endian (reset value).
|
|
* SCTLR_TRE Bit 28: No memory region remapping (reset value)
|
|
* SCTLR_AFE Bit 29: Full, legacy access permissions behavior (reset value).
|
|
* SCTLR_TE Bit 30: All exceptions handled in ARM state (reset value).
|
|
*/
|
|
|
|
bic r0, r0, #(SCTLR_A | SCTLR_C)
|
|
bic r0, r0, #(SCTLR_SW | SCTLR_I | SCTLR_V | SCTLR_RR | SCTLR_HA)
|
|
bic r0, r0, #(SCTLR_EE | SCTLR_TRE | SCTLR_AFE | SCTLR_TE)
|
|
|
|
/* Set bits to enable the MMU
|
|
*
|
|
* SCTLR_M Bit 0: Enable the MMU
|
|
* SCTLR_Z Bit 11: Program flow prediction control always enabled on A5
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_M)
|
|
#ifndef CONFIG_ARCH_CORTEXA5
|
|
orr r0, r0, #(SCTLR_Z)
|
|
#endif
|
|
|
|
#ifndef CONFIG_ARCH_LOWVECTORS
|
|
/* Position vectors to 0xffff0000 if so configured.
|
|
*
|
|
* SCTLR_V Bit 13: High vectors
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_V)
|
|
#endif
|
|
|
|
#if defined(CPU_CACHE_ROUND_ROBIN) && !defined(CONFIG_ARCH_CORTEXA5)
|
|
/* Round Robin cache replacement
|
|
*
|
|
* SCTLR_RR Bit 14: The Cortex-A5 processor only supports a fixed random
|
|
* replacement strategy.
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_RR)
|
|
#endif
|
|
|
|
/* In SMP configurations, the data cache will not be enabled until later
|
|
* after SMP cache coherency has been setup.
|
|
*/
|
|
|
|
#if !defined(CPU_DCACHE_DISABLE) && !defined(CONFIG_SMP)
|
|
/* Dcache enable
|
|
*
|
|
* SCTLR_C Bit 2: DCache enable
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_C)
|
|
#endif
|
|
|
|
#ifndef CPU_ICACHE_DISABLE
|
|
/* Icache enable
|
|
*
|
|
* SCTLR_I Bit 12: ICache enable
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_I)
|
|
#endif
|
|
|
|
#ifdef CPU_ALIGNMENT_TRAP
|
|
/* Alignment abort enable
|
|
*
|
|
* SCTLR_A Bit 1: Strict alignment enabled
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_A)
|
|
#endif
|
|
|
|
#ifdef CONFIG_ENDIAN_BIG
|
|
/* Big endian mode
|
|
*
|
|
* SCTLR_EE Bit 25: 1=Big endian.
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_EE)
|
|
#endif
|
|
|
|
#ifdef CPU_AFE_ENABLE
|
|
/* AP[0:2] Permissions model
|
|
*
|
|
* SCTLR_AFE Bit 29: Full, legacy access permissions behavior (reset value).
|
|
*
|
|
* When AFE=1, the page table AP[0] is used as an access flag and AP[2:1]
|
|
* control. When AFE=0, AP[2:0] control access permissions.
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_AFE)
|
|
#endif
|
|
|
|
/* Then write the configured control register */
|
|
|
|
mcr CP15_SCTLR(r0) /* Write control reg */
|
|
.rept 12 /* Cortex A8 wants lots of NOPs here */
|
|
nop
|
|
.endr
|
|
|
|
/* And "jump" to .Lvstart in the newly mapped virtual address space */
|
|
|
|
mov pc, lr
|
|
|
|
/****************************************************************************
|
|
* PC_Relative Data
|
|
****************************************************************************/
|
|
|
|
/* The physical base address of the page table */
|
|
|
|
.type .LCppgtable, %object
|
|
.LCppgtable:
|
|
.long PGTABLE_BASE_PADDR /* Physical start of page table */
|
|
.size .LCppgtable, . -.LCppgtable
|
|
|
|
#ifdef ARMV7A_PGTABLE_MAPPING
|
|
/* Page table region description. The order of these fields must not
|
|
* change because the values are loaded using ldmia:
|
|
*
|
|
* 1) The aligned, physical base address of the page table
|
|
* 2) The aligned, virtual base address of the page table
|
|
* 3) The MMU flags to use with the .text space mapping
|
|
*/
|
|
|
|
.type .LCptinfo, %object
|
|
.LCptinfo:
|
|
.long (PGTABLE_BASE_PADDR & 0xfff00000) /* Physical base address */
|
|
.long (PGTABLE_BASE_VADDR & 0xfff00000) /* Virtual base address */
|
|
.long MMU_MEMFLAGS /* MMU flags for text section in RAM */
|
|
.size .LCptinfo, . -.LCptinfo
|
|
#endif
|
|
|
|
#ifndef CONFIG_ARCH_ROMPGTABLE
|
|
/* Text region description. The order of these fields must not change
|
|
* because the values are loaded using ldmia:
|
|
*
|
|
* 1) The aligned, physical base address of the .text section
|
|
* 2) The aligned, virtual base address of the .text section
|
|
* 3) The MMU flags to use with the .text space mapping
|
|
* 4) The number of 1MB sections in the .text region
|
|
*
|
|
* Values provided for NUTTX_TEXT_* must all be properly aligned to 1MB
|
|
* address boundaries
|
|
*/
|
|
|
|
.type .LCtextinfo, %object
|
|
.LCtextinfo:
|
|
.LCptextbase:
|
|
.long NUTTX_TEXT_PADDR /* Physical base address */
|
|
.long NUTTX_TEXT_VADDR /* Virtual base address */
|
|
.LCtextflags:
|
|
#ifdef CONFIG_BOOT_RUNFROMFLASH
|
|
.long MMU_ROMFLAGS /* MMU flags text section in FLASH/ROM */
|
|
#else
|
|
.long MMU_MEMFLAGS /* MMU flags for text section in RAM */
|
|
#endif
|
|
.long (NUTTX_TEXT_SIZE >> 20) /* Number of 1MB read-execute sections */
|
|
.size .LCtextinfo, . -.LCtextinfo
|
|
|
|
#ifdef CONFIG_BOOT_RUNFROMFLASH
|
|
/* Primary RAM region description. The order of these fields must not change
|
|
* because the values are loaded using ldmia:
|
|
*
|
|
* 1) The aligned, physical base address of the primary RAM section
|
|
* 2) The aligned, virtual base address of the primary RAM section
|
|
* 3) The MMU flags to use with the primary RAM space mapping
|
|
* 4) The number of 1MB sections in the primary RAM region
|
|
*
|
|
* Values provided for NUTTX_RAM_* must all be properly aligned to 1MB
|
|
* address boundaries
|
|
*/
|
|
|
|
.type .LCraminfo, %object
|
|
.LCraminfo:
|
|
.long NUTTX_RAM_PADDR /* Physical base address */
|
|
.long NUTTX_RAM_VADDR /* Virtual base address */
|
|
.long MMU_MEMFLAGS /* MMU flags for primary RAM section */
|
|
.long (NUTTX_RAM_SIZE >> 20) /* Number of 1MB read-execute sections */
|
|
.size .LCraminfo, . -.LCraminfo
|
|
|
|
#endif /* CONFIG_BOOT_RUNFROMFLASH */
|
|
#endif /* CONFIG_ARCH_ROMPGTABLE */
|
|
|
|
/* The virtual start address of the second phase boot logic */
|
|
|
|
.type .LCvstart, %object
|
|
.LCvstart:
|
|
.long .Lvstart
|
|
.size .LCvstart, . -.LCvstart
|
|
|
|
.size __start, .-__start
|
|
|
|
/****************************************************************************
|
|
* Name: .Lvstart
|
|
***************************************************************************/
|
|
|
|
/* The following is executed after the MMU has been enabled. This uses
|
|
* absolute addresses; this is not position independent.
|
|
*/
|
|
.align 5
|
|
.local .Lvstart
|
|
.type .Lvstart, %function
|
|
|
|
.Lvstart:
|
|
|
|
#if !defined(CONFIG_ARCH_ROMPGTABLE) && !defined(CONFIG_IDENTITY_TEXTMAP)
|
|
/* Remove the temporary mapping (if one was made). The following assumes
|
|
* that the total RAM size is > 1Mb and extends that initial mapping to
|
|
* cover additional RAM sections.
|
|
*/
|
|
|
|
ldr r5, .LCvpgtable /* r5=Virtual page table base address */
|
|
ldr r3, .LCptextbase /* r0=Physical base address of .text section */
|
|
mov r0, #0 /* flags + base = 0 */
|
|
str r3, [r5, r3, lsr #18] /* identity mapping */
|
|
#endif /* !CONFIG_ARCH_ROMPGTABLE && !CONFIG_IDENTITY_TEXTMAP */
|
|
|
|
/* Set up the stack pointer and clear the frame pointer */
|
|
|
|
ldr sp, .Lstackpointer
|
|
mov fp, #0
|
|
|
|
#ifndef CONFIG_BOOT_SDRAM_DATA
|
|
/* Initialize .bss and .data ONLY if .bss and .data lie in SRAM that is
|
|
* ready to use. Other memory, such as SDRAM, must be initialized before
|
|
* it can be used. arm_boot() will perform that memory initialization and
|
|
* .bss and .data can be initialized after arm_boot() returns.
|
|
*/
|
|
|
|
bl arm_data_initialize
|
|
#endif
|
|
|
|
/* Perform early C-level, platform-specific initialization. Logic
|
|
* within arm_boot() must configure SDRAM and call arm_data_initialize().
|
|
*/
|
|
|
|
bl arm_boot
|
|
|
|
#ifdef CONFIG_STACK_COLORATION
|
|
/* Write a known value to the IDLE thread stack to support stack
|
|
* monitoring logic
|
|
*/
|
|
|
|
adr r3, .Lstkinit
|
|
ldmia r3, {r0, r1, r2} /* R0 = start of IDLE stack; R1 = Size of tack; R2 = coloration */
|
|
|
|
1: /* Top of the loop */
|
|
sub r1, r1, #1 /* R1 = Number of words remaining */
|
|
cmp r1, #0 /* Check (nwords == 0) */
|
|
str r2, [r0], #4 /* Save stack color word, increment stack address */
|
|
bne 1b /* Bottom of the loop */
|
|
#endif
|
|
|
|
/* Finally branch to the OS entry point */
|
|
|
|
mov lr, #0 /* LR = return address (none) */
|
|
b os_start /* Branch to os_start */
|
|
.size .Lvstart, .-.Lvstart
|
|
|
|
/***************************************************************************
|
|
* Name: arm_data_initialize
|
|
***************************************************************************/
|
|
|
|
.global arm_data_initialize
|
|
.type arm_data_initialize, #function
|
|
|
|
arm_data_initialize:
|
|
|
|
/* Zero BSS */
|
|
|
|
adr r0, .Linitparms
|
|
ldmia r0, {r0, r1}
|
|
|
|
mov r2, #0
|
|
1:
|
|
cmp r0, r1 /* Clear up to _bss_end_ */
|
|
strcc r2, [r0], #4
|
|
bcc 1b
|
|
|
|
#ifdef CONFIG_BOOT_RUNFROMFLASH
|
|
/* If the .data section is in a separate, uninitialized address space,
|
|
* then we will also need to copy the initial values of of the .data
|
|
* section from the .text region into that .data region. This would
|
|
* be the case if we are executing from FLASH and the .data section
|
|
* lies in a different physical address region OR if we are support
|
|
* on-demand paging and the .data section lies in a different virtual
|
|
* address region.
|
|
*/
|
|
|
|
adr r3, .Ldatainit
|
|
ldmia r3, {r0, r1, r2}
|
|
|
|
2:
|
|
ldr r3, [r0], #4
|
|
str r3, [r1], #4
|
|
cmp r1, r2
|
|
blt 2b
|
|
#endif
|
|
|
|
/* And return to the caller */
|
|
|
|
bx lr
|
|
.size arm_data_initialize, . - arm_data_initialize
|
|
|
|
/***************************************************************************
|
|
* Text-section constants
|
|
***************************************************************************/
|
|
|
|
/* Text-section constants:
|
|
*
|
|
* _sbss is the start of the BSS region (see ld.script)
|
|
* _ebss is the end of the BSS region (see ld.script)
|
|
*
|
|
* The idle task stack usually starts at the end of BSS and is of size
|
|
* CONFIG_IDLETHREAD_STACKSIZE. The heap continues from there until the
|
|
* end of memory. See g_idle_topstack below.
|
|
*
|
|
* In the case where CONFIG_BOOT_SDRAM_DATA is defined, the IDLE stack is
|
|
* in ISRAM, but the heap is in SDRAM beginning at _ebss and extending
|
|
* to the end of SDRAM.
|
|
*/
|
|
|
|
#ifndef CONFIG_ARCH_ROMPGTABLE
|
|
/* The virtual base address of the page table */
|
|
|
|
.type .LCvpgtable, %object
|
|
.LCvpgtable:
|
|
.long PGTABLE_BASE_VADDR /* Virtual start of page table */
|
|
.size .LCvpgtable, . -.LCvpgtable
|
|
|
|
#endif /* CONFIG_ARCH_ROMPGTABLE */
|
|
|
|
.type .Linitparms, %object
|
|
.Linitparms:
|
|
.long _sbss
|
|
.long _ebss
|
|
.size .Linitparms, . -.Linitparms
|
|
|
|
.Lstackpointer:
|
|
#ifdef CONFIG_BOOT_SDRAM_DATA
|
|
.long IDLE_STACK_VBASE+CONFIG_IDLETHREAD_STACKSIZE-4
|
|
#else
|
|
.long _ebss+CONFIG_IDLETHREAD_STACKSIZE-4
|
|
#endif
|
|
.size .Lstackpointer, . -.Lstackpointer
|
|
|
|
#ifdef CONFIG_BOOT_RUNFROMFLASH
|
|
.type .Ldatainit, %object
|
|
.Ldatainit:
|
|
.long _eronly /* Where .data defaults are stored in FLASH */
|
|
.long _sdata /* Where .data needs to reside in SDRAM */
|
|
.long _edata
|
|
.size .Ldatainit, . -.Ldatainit
|
|
#endif
|
|
|
|
#ifdef CONFIG_STACK_COLORATION
|
|
.type .Lstkinit, %object
|
|
.Lstkinit:
|
|
#ifdef CONFIG_BOOT_SDRAM_DATA
|
|
.long IDLE_STACK_VBASE /* Beginning of the IDLE stack, then words of IDLE stack */
|
|
#else
|
|
.long _ebss /* Beginning of the IDLE stack, then words of IDLE stack */
|
|
#endif
|
|
.long (CONFIG_IDLETHREAD_STACKSIZE >> 2)
|
|
.long STACK_COLOR /* Stack coloration word */
|
|
.size .Lstkinit, . -.Lstkinit
|
|
#endif
|
|
|
|
/***************************************************************************
|
|
* Data section variables
|
|
***************************************************************************/
|
|
|
|
/* This global variable is unsigned long g_idle_topstack and is
|
|
* exported from here only because of its coupling to .Linitparms
|
|
* above.
|
|
*/
|
|
|
|
.section .rodata, "a"
|
|
.align 4
|
|
.globl g_idle_topstack
|
|
.type g_idle_topstack, object
|
|
|
|
g_idle_topstack:
|
|
|
|
#ifdef CONFIG_BOOT_SDRAM_DATA
|
|
.long IDLE_STACK_VBASE+CONFIG_IDLETHREAD_STACKSIZE
|
|
#else
|
|
.long _ebss+CONFIG_IDLETHREAD_STACKSIZE
|
|
#endif
|
|
.size g_idle_topstack, .-g_idle_topstack
|
|
.end
|