nuttx/configs/sam3u-ek
patacongo 30a0cdf33e Correct a memory leak in NSH
git-svn-id: svn://svn.code.sf.net/p/nuttx/code/trunk@5600 42af7a65-404d-4744-a932-0658087f49c3
2013-02-02 23:56:54 +00:00
..
include Remove executable property from source and make files 2012-09-13 18:46:10 +00:00
kernel Missing comma in EVERY DELFILE/DELDIR macro call in every Makefile 2012-11-20 15:47:41 +00:00
knsh Don't build drivers/mtd unless CONFIG_MTD is defined (Denis Carikli) 2013-01-15 00:03:58 +00:00
nsh Don't build drivers/mtd unless CONFIG_MTD is defined (Denis Carikli) 2013-01-15 00:03:58 +00:00
nx Don't build drivers/mtd unless CONFIG_MTD is defined (Denis Carikli) 2013-01-15 00:03:58 +00:00
ostest Don't build drivers/mtd unless CONFIG_MTD is defined (Denis Carikli) 2013-01-15 00:03:58 +00:00
scripts Massive clean-up of linker scripts from Freddie Chopin 2012-11-04 17:18:25 +00:00
src Add syslog.h; rename lib_rawprintf() to syslog() 2013-01-28 21:55:16 +00:00
touchscreen Add a binary 'loader' so that builtin applications can be executed from the BINFS file system 2013-01-16 19:08:23 +00:00
Kconfig Kconfig: Standardize board LED and button configurations 2012-09-08 03:31:46 +00:00
README.txt Correct a memory leak in NSH 2013-02-02 23:56:54 +00:00

README
^^^^^^

This README discusses issues unique to NuttX configurations for the
Atmel SAM3U-EK development board.

Contents
^^^^^^^^

  - Development Environment
  - GNU Toolchain Options
  - IDEs
  - NuttX EABI "buildroot" Toolchain
  - NuttX OABI "buildroot" Toolchain
  - NXFLAT Toolchain
  - LEDs
  - SAM3U-EK-specific Configuration Options
  - Configurations

Development Environment
^^^^^^^^^^^^^^^^^^^^^^^

  Either Linux or Cygwin on Windows can be used for the development environment.
  The source has been built only using the GNU toolchain (see below).  Other
  toolchains will likely cause problems. Testing was performed using the Cygwin
  environment.

GNU Toolchain Options
^^^^^^^^^^^^^^^^^^^^^

  The NuttX make system has been modified to support the following different
  toolchain options.

  1. The CodeSourcery GNU toolchain,
  2. The devkitARM GNU toolchain, ok
  4. The NuttX buildroot Toolchain (see below).

  All testing has been conducted using the NuttX buildroot toolchain.  However,
  the make system is setup to default to use the devkitARM toolchain.  To use
  the CodeSourcery, devkitARM or Raisonance GNU toolchain, you simply need to
  add one of the following configuration options to your .config (or defconfig)
  file:

    CONFIG_SAM3U_CODESOURCERYW=y  : CodeSourcery under Windows
    CONFIG_SAM3U_CODESOURCERYL=y  : CodeSourcery under Linux
    CONFIG_SAM3U_DEVKITARM=y      : devkitARM under Windows
    CONFIG_SAM3U_BUILDROOT=y      : NuttX buildroot under Linux or Cygwin (default)

  If you are not using CONFIG_SAM3U_BUILDROOT, then you may also have to modify
  the PATH in the setenv.h file if your make cannot find the tools.

  NOTE: the CodeSourcery (for Windows), devkitARM, and Raisonance toolchains are
  Windows native toolchains.  The CodeSourcey (for Linux) and NuttX buildroot
  toolchains are Cygwin and/or Linux native toolchains. There are several limitations
  to using a Windows based toolchain in a Cygwin environment.  The three biggest are:

  1. The Windows toolchain cannot follow Cygwin paths.  Path conversions are
     performed automatically in the Cygwin makefiles using the 'cygpath' utility
     but you might easily find some new path problems.  If so, check out 'cygpath -w'

  2. Windows toolchains cannot follow Cygwin symbolic links.  Many symbolic links
     are used in Nuttx (e.g., include/arch).  The make system works around these
     problems for the Windows tools by copying directories instead of linking them.
     But this can also cause some confusion for you:  For example, you may edit
     a file in a "linked" directory and find that your changes had no effect.
     That is because you are building the copy of the file in the "fake" symbolic
     directory.  If you use a Windows toolchain, you should get in the habit of
     making like this:

       make clean_context all

     An alias in your .bashrc file might make that less painful.

  3. Dependencies are not made when using Windows versions of the GCC.  This is
     because the dependencies are generated using Windows pathes which do not
     work with the Cygwin make.

       MKDEP                = $(TOPDIR)/tools/mknulldeps.sh

  NOTE 1: The CodeSourcery toolchain (2009q1) does not work with default optimization
  level of -Os (See Make.defs).  It will work with -O0, -O1, or -O2, but not with
  -Os.

  NOTE 2: The devkitARM toolchain includes a version of MSYS make.  Make sure that
  the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
  path or will get the wrong version of make.

IDEs
^^^^

  NuttX is built using command-line make.  It can be used with an IDE, but some
  effort will be required to create the project (There is a simple RIDE project
  in the RIDE subdirectory).
  
  Makefile Build
  --------------
  Under Eclipse, it is pretty easy to set up an "empty makefile project" and
  simply use the NuttX makefile to build the system.  That is almost for free
  under Linux.  Under Windows, you will need to set up the "Cygwin GCC" empty
  makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
  there is a lot of help on the internet).

  Native Build
  ------------
  Here are a few tips before you start that effort:

  1) Select the toolchain that you will be using in your .config file
  2) Start the NuttX build at least one time from the Cygwin command line
     before trying to create your project.  This is necessary to create
     certain auto-generated files and directories that will be needed.
  3) Set up include pathes:  You will need include/, arch/arm/src/sam3u,
     arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
  4) All assembly files need to have the definition option -D __ASSEMBLY__
     on the command line.

  Startup files will probably cause you some headaches.  The NuttX startup file
  is arch/arm/src/sam3u/sam3u_vectors.S.  You may need to build NuttX
  one time from the Cygwin command line in order to obtain the pre-built
  startup object needed by RIDE.

NuttX EABI "buildroot" Toolchain
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

  A GNU GCC-based toolchain is assumed.  The files */setenv.sh should
  be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
  different from the default in your PATH variable).

  If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
  SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/).
  This GNU toolchain builds and executes in the Linux or Cygwin environment.

  1. You must have already configured Nuttx in <some-dir>/nuttx.

     cd tools
     ./configure.sh sam3u-ek/<sub-dir>

  2. Download the latest buildroot package into <some-dir>

  3. unpack the buildroot tarball.  The resulting directory may
     have versioning information on it like buildroot-x.y.z.  If so,
     rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.

  4. cd <some-dir>/buildroot

  5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config

  6. make oldconfig

  7. make

  8. Edit setenv.h, if necessary, so that the PATH variable includes
     the path to the newly built binaries.

  See the file configs/README.txt in the buildroot source tree.  That has more
  details PLUS some special instructions that you will need to follow if you are
  building a Cortex-M3 toolchain for Cygwin under Windows.

  NOTE:  Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
  the NXFLAT tools.  See the top-level TODO file (under "Binary loaders") for
  more information about this problem. If you plan to use NXFLAT, please do not
  use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain.
  See instructions below.

NuttX OABI "buildroot" Toolchain
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

  The older, OABI buildroot toolchain is also available.  To use the OABI
  toolchain:

  1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3
     configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI
     configuration such as cortexm3-defconfig-4.3.3

  2. Modify the Make.defs file to use the OABI conventions:

    +CROSSDEV = arm-nuttx-elf-
    +ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft
    +NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections
    -CROSSDEV = arm-nuttx-eabi-
    -ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft
    -NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections

NXFLAT Toolchain
^^^^^^^^^^^^^^^^

  If you are *not* using the NuttX buildroot toolchain and you want to use
  the NXFLAT tools, then you will still have to build a portion of the buildroot
  tools -- just the NXFLAT tools.  The buildroot with the NXFLAT tools can
  be downloaded from the NuttX SourceForge download site
  (https://sourceforge.net/projects/nuttx/files/).
 
  This GNU toolchain builds and executes in the Linux or Cygwin environment.

  1. You must have already configured Nuttx in <some-dir>/nuttx.

     cd tools
     ./configure.sh lpcxpresso-lpc1768/<sub-dir>

  2. Download the latest buildroot package into <some-dir>

  3. unpack the buildroot tarball.  The resulting directory may
     have versioning information on it like buildroot-x.y.z.  If so,
     rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.

  4. cd <some-dir>/buildroot

  5. cp configs/cortexm3-defconfig-nxflat .config

  6. make oldconfig

  7. make

  8. Edit setenv.h, if necessary, so that the PATH variable includes
     the path to the newly builtNXFLAT binaries.

LEDs
^^^^

The SAM3U-EK board has four LEDs labeled LD1, LD2, LD3 and LD4 on the
the board.  Usage of these LEDs is defined in include/board.h and src/up_leds.c.
They are encoded as follows:

    SYMBOL              Meaning                 LED0*   LED1    LED2
    ------------------- ----------------------- ------- ------- -------
    LED_STARTED         NuttX has been started  OFF     OFF     OFF
    LED_HEAPALLOCATE    Heap has been allocated OFF     OFF     ON
    LED_IRQSENABLED     Interrupts enabled      OFF     ON      OFF
    LED_STACKCREATED    Idle stack created      OFF     ON      ON
    LED_INIRQ           In an interrupt**       N/C     FLASH   N/C
    LED_SIGNAL          In a signal handler***  N/C     N/C     FLASH
    LED_ASSERTION       An assertion failed     FLASH   N/C     N/C
    LED_PANIC           The system has crashed  FLASH   N/C     N/C

  * If LED1 and LED2 are statically on, then NuttX probably failed to boot
    and these LEDs will give you some indication of where the failure was
 ** The normal state is LED0=OFF, LED2=ON and LED1 faintly glowing.  This faint
    glow is because of timer interupts that result in the LED being illuminated
    on a small proportion of the time.
*** LED2 may also flicker normally if signals are processed.

SAM3U-EK-specific Configuration Options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

    CONFIG_ARCH - Identifies the arch/ subdirectory.  This should
       be set to:

       CONFIG_ARCH=arm

    CONFIG_ARCH_family - For use in C code:

       CONFIG_ARCH_ARM=y

    CONFIG_ARCH_architecture - For use in C code:

       CONFIG_ARCH_CORTEXM3=y

    CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory

       CONFIG_ARCH_CHIP=sam3u

    CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
       chip:

       CONFIG_ARCH_CHIP_AT91SAM3U4

    CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
       hence, the board that supports the particular chip or SoC.

       CONFIG_ARCH_BOARD=sam3u_ek (for the SAM3U-EK development board)

    CONFIG_ARCH_BOARD_name - For use in C code

       CONFIG_ARCH_BOARD_SAM3UEK=y

    CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
       of delay loops

    CONFIG_ENDIAN_BIG - define if big endian (default is little
       endian)

    CONFIG_DRAM_SIZE - Describes the installed DRAM (SRAM in this case):

       CONFIG_DRAM_SIZE=0x0000c000 (48Kb)

    CONFIG_DRAM_START - The start address of installed DRAM

       CONFIG_DRAM_START=0x20000000

    CONFIG_ARCH_IRQPRIO - The SAM3UF103Z supports interrupt prioritization

       CONFIG_ARCH_IRQPRIO=y

    CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
       have LEDs

    CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
       stack. If defined, this symbol is the size of the interrupt
        stack in bytes.  If not defined, the user task stacks will be
      used during interrupt handling.

    CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions

    CONFIG_ARCH_LEDS -  Use LEDs to show state. Unique to board architecture.

    CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
       cause a 100 second delay during boot-up.  This 100 second delay
       serves no purpose other than it allows you to calibratre
       CONFIG_ARCH_LOOPSPERMSEC.  You simply use a stop watch to measure
       the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
       the delay actually is 100 seconds.

  Individual subsystems can be enabled:

    CONFIG_SAM3U_DMA
    CONFIG_SAM3U_HSMCI
    CONFIG_SAM3U_NAND
    CONFIG_SAM3U_SPI
    CONFIG_SAM3U_UART
    CONFIG_SAM3U_USART0
    CONFIG_SAM3U_USART1
    CONFIG_SAM3U_USART2
    CONFIG_SAM3U_USART3

  Some subsystems can be configured to operate in different ways. The drivers
  need to know how to configure the subsystem.

    CONFIG_GPIOA_IRQ
    CONFIG_GPIOB_IRQ
    CONFIG_GPIOC_IRQ
    CONFIG_USART0_ISUART
    CONFIG_USART1_ISUART
    CONFIG_USART2_ISUART
    CONFIG_USART3_ISUART

  AT91SAM3U specific device driver settings

    CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=0,1,2,3) or UART
           m (m=4,5) for the console and ttys0 (default is the USART1).
    CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received.
       This specific the size of the receive buffer
    CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before
       being sent.  This specific the size of the transmit buffer
    CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART.  Must be
    CONFIG_U[S]ARTn_BITS - The number of bits.  Must be either 7 or 8.
    CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
    CONFIG_U[S]ARTn_2STOP - Two stop bits

  LCD Options.  Other than the standard LCD configuration options
  (see configs/README.txt), the SAM3U-EK driver also supports:

    CONFIG_LCD_PORTRAIT - Present the display in the standard 240x320
       "Portrait" orientation.  Default:  The display is rotated to
       support a 320x240 "Landscape" orientation.

Configurations
^^^^^^^^^^^^^^

Each SAM3U-EK configuration is maintained in a sub-directory and
can be selected as follow:

    cd tools
    ./configure.sh sam3u-ek/<subdir>
    cd -
    . ./setenv.sh

Before sourcing the setenv.sh file above, you should examine it and perform
edits as necessary so that BUILDROOT_BIN is the correct path to the directory
than holds your toolchain binaries.

And then build NuttX by simply typing the following.  At the conclusion of
the make, the nuttx binary will reside in an ELF file called, simply, nuttx.

    make

The <subdir> that is provided above as an argument to the tools/configure.sh
must be is one of the following:

  knsh:
    This is identical to the nsh configuration below except that NuttX
    is built as a kernel-mode, monolithic module and the user applications
    are built separately.  This build requires a special make command; not
    just 'make' but make with the following two arguments:

        make pass1 pass2

    This is required because in the normal case (just 'make'), make will
    create all dependencies then execute the pass1 and pass2 targets.  But
    this example, pass2 depends on auto-generatd files produced during pass1.
    This specall make command ('make pass1 pass2') will make the dependencies
    separately for each pass.

    At there end of the build, there four files will top-level build
    directory:

    nuttx_user.elf    - The pass1 ELF file
    nuttx            - The pass2 ELF file
    nuttx_user.hex    - The pass1 Intel HEX format file
    nuttx.hex        - The pass2 Intel HEX file

    The J-Link program will except files in .hex, .mot, .srec, and .bin
    formats.

  nsh:
    Configures the NuttShell (nsh) located at examples/nsh.  The
    Configuration enables both the serial and telnetd NSH interfaces.

  nx:
    Configures to use examples/nx using the HX834x LCD hardwar on
    the SAM3U-EK development board.

  ostest:
    This configuration directory, performs a simple OS test using
    examples/ostest.  By default, this project assumes that you are
    using the DFU bootloader.

  touchscreen:
    This configuration implements an NSH configuratin with several
    built-in applications.  The configuration is called touchscreen
    because we intend to use this configuration to develop the
    SAM3U-EK touchscreen.  However, there is no touchscreen driver
    in place as of this writing.